mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-21 12:30:06 +00:00
string: Improve generic memchr
New algorithm read the first aligned address and mask off the unwanted bytes (this strategy is similar to arch-specific implementations used on powerpc, sparc, and sh). The loop now read word-aligned address and check using the has_eq macro. Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu, and powerpc64-linux-gnu by removing the arch-specific assembly implementation and disabling multi-arch (it covers both LE and BE for 64 and 32 bits). Co-authored-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
This commit is contained in:
parent
3709ed9047
commit
2a8867a17f
174
string/memchr.c
174
string/memchr.c
@ -1,10 +1,6 @@
|
||||
/* Copyright (C) 1991-2023 Free Software Foundation, Inc.
|
||||
/* Scan memory for a character. Generic version
|
||||
Copyright (C) 1991-2023 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
|
||||
with help from Dan Sahlin (dan@sics.se) and
|
||||
commentary by Jim Blandy (jimb@ai.mit.edu);
|
||||
adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
|
||||
and implemented by Roland McGrath (roland@ai.mit.edu).
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -20,143 +16,73 @@
|
||||
License along with the GNU C Library; if not, see
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#ifndef _LIBC
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
#include <libc-pointer-arith.h>
|
||||
#include <string-fzb.h>
|
||||
#include <string-fzc.h>
|
||||
#include <string-fzi.h>
|
||||
#include <string-shift.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <stddef.h>
|
||||
#undef memchr
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#undef __memchr
|
||||
#ifdef _LIBC
|
||||
# undef memchr
|
||||
#ifdef MEMCHR
|
||||
# define __memchr MEMCHR
|
||||
#endif
|
||||
|
||||
#ifndef weak_alias
|
||||
# define __memchr memchr
|
||||
#endif
|
||||
|
||||
#ifndef MEMCHR
|
||||
# define MEMCHR __memchr
|
||||
#endif
|
||||
static __always_inline const char *
|
||||
sadd (uintptr_t x, uintptr_t y)
|
||||
{
|
||||
return (const char *)(y > UINTPTR_MAX - x ? UINTPTR_MAX : x + y);
|
||||
}
|
||||
|
||||
/* Search no more than N bytes of S for C. */
|
||||
void *
|
||||
MEMCHR (void const *s, int c_in, size_t n)
|
||||
__memchr (void const *s, int c_in, size_t n)
|
||||
{
|
||||
/* On 32-bit hardware, choosing longword to be a 32-bit unsigned
|
||||
long instead of a 64-bit uintmax_t tends to give better
|
||||
performance. On 64-bit hardware, unsigned long is generally 64
|
||||
bits already. Change this typedef to experiment with
|
||||
performance. */
|
||||
typedef unsigned long int longword;
|
||||
if (__glibc_unlikely (n == 0))
|
||||
return NULL;
|
||||
|
||||
const unsigned char *char_ptr;
|
||||
const longword *longword_ptr;
|
||||
longword repeated_one;
|
||||
longword repeated_c;
|
||||
unsigned char c;
|
||||
/* Read the first word, but munge it so that bytes before the array
|
||||
will not match goal. */
|
||||
const op_t *word_ptr = PTR_ALIGN_DOWN (s, sizeof (op_t));
|
||||
uintptr_t s_int = (uintptr_t) s;
|
||||
|
||||
c = (unsigned char) c_in;
|
||||
op_t word = *word_ptr;
|
||||
op_t repeated_c = repeat_bytes (c_in);
|
||||
/* Compute the address of the last byte taking in consideration possible
|
||||
overflow. */
|
||||
const char *lbyte = sadd (s_int, n - 1);
|
||||
/* And also the address of the word containing the last byte. */
|
||||
const op_t *lword = (const op_t *) PTR_ALIGN_DOWN (lbyte, sizeof (op_t));
|
||||
|
||||
/* Handle the first few bytes by reading one byte at a time.
|
||||
Do this until CHAR_PTR is aligned on a longword boundary. */
|
||||
for (char_ptr = (const unsigned char *) s;
|
||||
n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
|
||||
--n, ++char_ptr)
|
||||
if (*char_ptr == c)
|
||||
return (void *) char_ptr;
|
||||
|
||||
longword_ptr = (const longword *) char_ptr;
|
||||
|
||||
/* All these elucidatory comments refer to 4-byte longwords,
|
||||
but the theory applies equally well to any size longwords. */
|
||||
|
||||
/* Compute auxiliary longword values:
|
||||
repeated_one is a value which has a 1 in every byte.
|
||||
repeated_c has c in every byte. */
|
||||
repeated_one = 0x01010101;
|
||||
repeated_c = c | (c << 8);
|
||||
repeated_c |= repeated_c << 16;
|
||||
if (0xffffffffU < (longword) -1)
|
||||
find_t mask = shift_find (find_eq_all (word, repeated_c), s_int);
|
||||
if (mask != 0)
|
||||
{
|
||||
repeated_one |= repeated_one << 31 << 1;
|
||||
repeated_c |= repeated_c << 31 << 1;
|
||||
if (8 < sizeof (longword))
|
||||
{
|
||||
size_t i;
|
||||
char *ret = (char *) s + index_first (mask);
|
||||
return (ret <= lbyte) ? ret : NULL;
|
||||
}
|
||||
if (word_ptr == lword)
|
||||
return NULL;
|
||||
|
||||
for (i = 64; i < sizeof (longword) * 8; i *= 2)
|
||||
{
|
||||
repeated_one |= repeated_one << i;
|
||||
repeated_c |= repeated_c << i;
|
||||
}
|
||||
}
|
||||
word = *++word_ptr;
|
||||
while (word_ptr != lword)
|
||||
{
|
||||
if (has_eq (word, repeated_c))
|
||||
return (char *) word_ptr + index_first_eq (word, repeated_c);
|
||||
word = *++word_ptr;
|
||||
}
|
||||
|
||||
/* Instead of the traditional loop which tests each byte, we will test a
|
||||
longword at a time. The tricky part is testing if *any of the four*
|
||||
bytes in the longword in question are equal to c. We first use an xor
|
||||
with repeated_c. This reduces the task to testing whether *any of the
|
||||
four* bytes in longword1 is zero.
|
||||
|
||||
We compute tmp =
|
||||
((longword1 - repeated_one) & ~longword1) & (repeated_one << 7).
|
||||
That is, we perform the following operations:
|
||||
1. Subtract repeated_one.
|
||||
2. & ~longword1.
|
||||
3. & a mask consisting of 0x80 in every byte.
|
||||
Consider what happens in each byte:
|
||||
- If a byte of longword1 is zero, step 1 and 2 transform it into 0xff,
|
||||
and step 3 transforms it into 0x80. A carry can also be propagated
|
||||
to more significant bytes.
|
||||
- If a byte of longword1 is nonzero, let its lowest 1 bit be at
|
||||
position k (0 <= k <= 7); so the lowest k bits are 0. After step 1,
|
||||
the byte ends in a single bit of value 0 and k bits of value 1.
|
||||
After step 2, the result is just k bits of value 1: 2^k - 1. After
|
||||
step 3, the result is 0. And no carry is produced.
|
||||
So, if longword1 has only non-zero bytes, tmp is zero.
|
||||
Whereas if longword1 has a zero byte, call j the position of the least
|
||||
significant zero byte. Then the result has a zero at positions 0, ...,
|
||||
j-1 and a 0x80 at position j. We cannot predict the result at the more
|
||||
significant bytes (positions j+1..3), but it does not matter since we
|
||||
already have a non-zero bit at position 8*j+7.
|
||||
|
||||
So, the test whether any byte in longword1 is zero is equivalent to
|
||||
testing whether tmp is nonzero. */
|
||||
|
||||
while (n >= sizeof (longword))
|
||||
if (has_eq (word, repeated_c))
|
||||
{
|
||||
longword longword1 = *longword_ptr ^ repeated_c;
|
||||
|
||||
if ((((longword1 - repeated_one) & ~longword1)
|
||||
& (repeated_one << 7)) != 0)
|
||||
break;
|
||||
longword_ptr++;
|
||||
n -= sizeof (longword);
|
||||
/* We found a match, but it might be in a byte past the end of the
|
||||
array. */
|
||||
char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
|
||||
if (ret <= lbyte)
|
||||
return ret;
|
||||
}
|
||||
|
||||
char_ptr = (const unsigned char *) longword_ptr;
|
||||
|
||||
/* At this point, we know that either n < sizeof (longword), or one of the
|
||||
sizeof (longword) bytes starting at char_ptr is == c. On little-endian
|
||||
machines, we could determine the first such byte without any further
|
||||
memory accesses, just by looking at the tmp result from the last loop
|
||||
iteration. But this does not work on big-endian machines. Choose code
|
||||
that works in both cases. */
|
||||
|
||||
for (; n > 0; --n, ++char_ptr)
|
||||
{
|
||||
if (*char_ptr == c)
|
||||
return (void *) char_ptr;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
#ifdef weak_alias
|
||||
#ifndef MEMCHR
|
||||
weak_alias (__memchr, memchr)
|
||||
#endif
|
||||
libc_hidden_builtin_def (memchr)
|
||||
#endif
|
||||
|
@ -18,17 +18,11 @@
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define MEMCHR __memchr_ppc
|
||||
|
||||
#undef weak_alias
|
||||
#define weak_alias(a, b)
|
||||
|
||||
#ifdef SHARED
|
||||
# undef libc_hidden_builtin_def
|
||||
# define libc_hidden_builtin_def(name) \
|
||||
__hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
|
||||
#endif
|
||||
|
||||
extern __typeof (memchr) __memchr_ppc attribute_hidden;
|
||||
|
||||
#define MEMCHR __memchr_ppc
|
||||
#include <string/memchr.c>
|
||||
|
||||
#ifdef SHARED
|
||||
__hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
|
||||
#endif
|
||||
|
@ -18,14 +18,7 @@
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define MEMCHR __memchr_ppc
|
||||
|
||||
#undef weak_alias
|
||||
#define weak_alias(a, b)
|
||||
|
||||
# undef libc_hidden_builtin_def
|
||||
# define libc_hidden_builtin_def(name)
|
||||
|
||||
extern __typeof (memchr) __memchr_ppc attribute_hidden;
|
||||
|
||||
#define MEMCHR __memchr_ppc
|
||||
#include <string/memchr.c>
|
||||
|
Loading…
Reference in New Issue
Block a user