mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-28 13:31:13 +00:00
x86: Use VMM API in memcmpeq-evex.S and minor changes
Changes to generated code are: 1. In a few places use `vpcmpeqb` instead of `vpcmpneq` to save a byte of code size. 2. Add a branch for length <= (VEC_SIZE * 6) as opposed to doing the entire block of [VEC_SIZE * 4 + 1, VEC_SIZE * 8] in a single basic-block (the space to add the extra branch without changing code size is bought with the above change). Change (2) has roughly a 20-25% speedup for sizes in [VEC_SIZE * 4 + 1, VEC_SIZE * 6] and negligible to no-cost for [VEC_SIZE * 6 + 1, VEC_SIZE * 8] From N=10 runs on Tigerlake: align1,align2 ,length ,result ,New Time ,Cur Time ,New Time / Old Time 0 ,0 ,129 ,0 ,5.404 ,6.887 ,0.785 0 ,0 ,129 ,1 ,5.308 ,6.826 ,0.778 0 ,0 ,129 ,18446744073709551615 ,5.359 ,6.823 ,0.785 0 ,0 ,161 ,0 ,5.284 ,6.827 ,0.774 0 ,0 ,161 ,1 ,5.317 ,6.745 ,0.788 0 ,0 ,161 ,18446744073709551615 ,5.406 ,6.778 ,0.798 0 ,0 ,193 ,0 ,6.804 ,6.802 ,1.000 0 ,0 ,193 ,1 ,6.950 ,6.754 ,1.029 0 ,0 ,193 ,18446744073709551615 ,6.792 ,6.719 ,1.011 0 ,0 ,225 ,0 ,6.625 ,6.699 ,0.989 0 ,0 ,225 ,1 ,6.776 ,6.735 ,1.003 0 ,0 ,225 ,18446744073709551615 ,6.758 ,6.738 ,0.992 0 ,0 ,256 ,0 ,5.402 ,5.462 ,0.989 0 ,0 ,256 ,1 ,5.364 ,5.483 ,0.978 0 ,0 ,256 ,18446744073709551615 ,5.341 ,5.539 ,0.964 Rewriting with VMM API allows for memcmpeq-evex to be used with evex512 by including "x86-evex512-vecs.h" at the top. Complete check passes on x86-64.
This commit is contained in:
parent
419c832aba
commit
2d2493a644
@ -41,24 +41,53 @@
|
||||
# define MEMCMPEQ __memcmpeq_evex
|
||||
# endif
|
||||
|
||||
# ifndef VEC_SIZE
|
||||
# include "x86-evex512-vecs.h"
|
||||
# endif
|
||||
# include "reg-macros.h"
|
||||
|
||||
|
||||
# if VEC_SIZE == 32
|
||||
|
||||
# define TEST_ZERO_VCMP(reg) inc %VGPR(reg)
|
||||
# define TEST_ZERO(reg) test %VGPR(reg), %VGPR(reg)
|
||||
|
||||
# define TO_32BIT_P1(reg) /* Do nothing. */
|
||||
# define TO_32BIT_P2(reg) /* Do nothing. */
|
||||
# define TO_32BIT(reg) /* Do nothing. */
|
||||
|
||||
# define VEC_CMP VPCMPEQ
|
||||
|
||||
# elif VEC_SIZE == 64
|
||||
|
||||
# define TEST_ZERO_VCMP(reg) TEST_ZERO(reg)
|
||||
# define TEST_ZERO(reg) neg %VGPR(reg)
|
||||
|
||||
|
||||
/* VEC_SIZE == 64 needs to reduce the 64-bit mask to a 32-bit
|
||||
int. We have two methods for this. If the mask with branched
|
||||
on, we use `neg` for the branch then `sbb` to get the 32-bit
|
||||
return. If the mask was no branched on, we just use
|
||||
`popcntq`. */
|
||||
# define TO_32BIT_P1(reg) TEST_ZERO(reg)
|
||||
# define TO_32BIT_P2(reg) sbb %VGPR_SZ(reg, 32), %VGPR_SZ(reg, 32)
|
||||
# define TO_32BIT(reg) popcntq %reg, %reg
|
||||
|
||||
# define VEC_CMP VPCMPNEQ
|
||||
|
||||
# else
|
||||
# error "Unsupported VEC_SIZE"
|
||||
# endif
|
||||
|
||||
|
||||
# define VMOVU_MASK vmovdqu8
|
||||
# define VMOVU vmovdqu64
|
||||
# define VPCMP vpcmpub
|
||||
# define VPCMPNEQ vpcmpneqb
|
||||
# define VPCMPEQ vpcmpeqb
|
||||
# define VPTEST vptestmb
|
||||
|
||||
# define VEC_SIZE 32
|
||||
# define PAGE_SIZE 4096
|
||||
|
||||
# define YMM0 ymm16
|
||||
# define YMM1 ymm17
|
||||
# define YMM2 ymm18
|
||||
# define YMM3 ymm19
|
||||
# define YMM4 ymm20
|
||||
# define YMM5 ymm21
|
||||
# define YMM6 ymm22
|
||||
|
||||
|
||||
.section .text.evex, "ax", @progbits
|
||||
.section SECTION(.text), "ax", @progbits
|
||||
ENTRY_P2ALIGN (MEMCMPEQ, 6)
|
||||
# ifdef __ILP32__
|
||||
/* Clear the upper 32 bits. */
|
||||
@ -69,47 +98,54 @@ ENTRY_P2ALIGN (MEMCMPEQ, 6)
|
||||
ja L(more_1x_vec)
|
||||
|
||||
/* Create mask of bytes that are guranteed to be valid because
|
||||
of length (edx). Using masked movs allows us to skip checks for
|
||||
page crosses/zero size. */
|
||||
movl $-1, %ecx
|
||||
bzhil %edx, %ecx, %ecx
|
||||
kmovd %ecx, %k2
|
||||
of length (edx). Using masked movs allows us to skip checks
|
||||
for page crosses/zero size. */
|
||||
mov $-1, %VRAX
|
||||
bzhi %VRDX, %VRAX, %VRAX
|
||||
/* NB: A `jz` might be useful here. Page-faults that are
|
||||
invalidated by predicate execution (the evex mask) can be
|
||||
very slow. The expectation is this is not the norm so and
|
||||
"most" code will not regularly call 'memcmp' with length = 0
|
||||
and memory that is not wired up. */
|
||||
KMOV %VRAX, %k2
|
||||
|
||||
/* Use masked loads as VEC_SIZE could page cross where length
|
||||
(edx) would not. */
|
||||
VMOVU_MASK (%rsi), %YMM2{%k2}
|
||||
VPCMP $4,(%rdi), %YMM2, %k1{%k2}
|
||||
kmovd %k1, %eax
|
||||
VMOVU_MASK (%rsi), %VMM(2){%k2}{z}
|
||||
VPCMPNEQ (%rdi), %VMM(2), %k1{%k2}
|
||||
KMOV %k1, %VRAX
|
||||
TO_32BIT (VRAX)
|
||||
ret
|
||||
|
||||
|
||||
.p2align 4,, 3
|
||||
L(last_1x_vec):
|
||||
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %YMM1
|
||||
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %k1
|
||||
kmovd %k1, %eax
|
||||
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %VMM(1)
|
||||
VPCMPNEQ -(VEC_SIZE * 1)(%rdi, %rdx), %VMM(1), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TO_32BIT_P1 (rax)
|
||||
L(return_neq0):
|
||||
TO_32BIT_P2 (rax)
|
||||
ret
|
||||
|
||||
|
||||
|
||||
.p2align 4
|
||||
.p2align 4,, 12
|
||||
L(more_1x_vec):
|
||||
/* From VEC + 1 to 2 * VEC. */
|
||||
VMOVU (%rsi), %YMM1
|
||||
VMOVU (%rsi), %VMM(1)
|
||||
/* Use compare not equals to directly check for mismatch. */
|
||||
VPCMP $4,(%rdi), %YMM1, %k1
|
||||
kmovd %k1, %eax
|
||||
testl %eax, %eax
|
||||
VPCMPNEQ (%rdi), %VMM(1), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TEST_ZERO (rax)
|
||||
jnz L(return_neq0)
|
||||
|
||||
cmpq $(VEC_SIZE * 2), %rdx
|
||||
jbe L(last_1x_vec)
|
||||
|
||||
/* Check second VEC no matter what. */
|
||||
VMOVU VEC_SIZE(%rsi), %YMM2
|
||||
VPCMP $4, VEC_SIZE(%rdi), %YMM2, %k1
|
||||
kmovd %k1, %eax
|
||||
testl %eax, %eax
|
||||
VMOVU VEC_SIZE(%rsi), %VMM(2)
|
||||
VPCMPNEQ VEC_SIZE(%rdi), %VMM(2), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TEST_ZERO (rax)
|
||||
jnz L(return_neq0)
|
||||
|
||||
/* Less than 4 * VEC. */
|
||||
@ -117,16 +153,16 @@ L(more_1x_vec):
|
||||
jbe L(last_2x_vec)
|
||||
|
||||
/* Check third and fourth VEC no matter what. */
|
||||
VMOVU (VEC_SIZE * 2)(%rsi), %YMM3
|
||||
VPCMP $4,(VEC_SIZE * 2)(%rdi), %YMM3, %k1
|
||||
kmovd %k1, %eax
|
||||
testl %eax, %eax
|
||||
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
|
||||
VEC_CMP (VEC_SIZE * 2)(%rdi), %VMM(3), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TEST_ZERO_VCMP (rax)
|
||||
jnz L(return_neq0)
|
||||
|
||||
VMOVU (VEC_SIZE * 3)(%rsi), %YMM4
|
||||
VPCMP $4,(VEC_SIZE * 3)(%rdi), %YMM4, %k1
|
||||
kmovd %k1, %eax
|
||||
testl %eax, %eax
|
||||
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
|
||||
VEC_CMP (VEC_SIZE * 3)(%rdi), %VMM(4), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TEST_ZERO_VCMP (rax)
|
||||
jnz L(return_neq0)
|
||||
|
||||
/* Go to 4x VEC loop. */
|
||||
@ -136,8 +172,8 @@ L(more_1x_vec):
|
||||
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
|
||||
branches. */
|
||||
|
||||
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %YMM1
|
||||
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %YMM2
|
||||
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %VMM(1)
|
||||
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VMM(2)
|
||||
addq %rdx, %rdi
|
||||
|
||||
/* Wait to load from s1 until addressed adjust due to
|
||||
@ -145,26 +181,32 @@ L(more_1x_vec):
|
||||
|
||||
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
|
||||
will have some 1s. */
|
||||
vpxorq -(VEC_SIZE * 4)(%rdi), %YMM1, %YMM1
|
||||
/* Ternary logic to xor -(VEC_SIZE * 3)(%rdi) with YMM2 while
|
||||
oring with YMM1. Result is stored in YMM1. */
|
||||
vpternlogd $0xde, -(VEC_SIZE * 3)(%rdi), %YMM1, %YMM2
|
||||
vpxorq -(VEC_SIZE * 1)(%rdi), %VMM(1), %VMM(1)
|
||||
/* Ternary logic to xor -(VEC_SIZE * 3)(%rdi) with VEC(2) while
|
||||
oring with VEC(1). Result is stored in VEC(1). */
|
||||
vpternlogd $0xde, -(VEC_SIZE * 2)(%rdi), %VMM(1), %VMM(2)
|
||||
|
||||
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %YMM3
|
||||
vpxorq -(VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
|
||||
/* Or together YMM1, YMM2, and YMM3 into YMM3. */
|
||||
VMOVU -(VEC_SIZE)(%rsi, %rdx), %YMM4
|
||||
vpxorq -(VEC_SIZE)(%rdi), %YMM4, %YMM4
|
||||
cmpl $(VEC_SIZE * 6), %edx
|
||||
jbe L(4x_last_2x_vec)
|
||||
|
||||
/* Or together YMM2, YMM3, and YMM4 into YMM4. */
|
||||
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
||||
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VMM(3)
|
||||
vpxorq -(VEC_SIZE * 3)(%rdi), %VMM(3), %VMM(3)
|
||||
/* Or together VEC(1), VEC(2), and VEC(3) into VEC(3). */
|
||||
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VMM(4)
|
||||
vpxorq -(VEC_SIZE * 4)(%rdi), %VMM(4), %VMM(4)
|
||||
|
||||
/* Compare YMM4 with 0. If any 1s s1 and s2 don't match. */
|
||||
VPTEST %YMM4, %YMM4, %k1
|
||||
kmovd %k1, %eax
|
||||
/* Or together VEC(4), VEC(3), and VEC(2) into VEC(2). */
|
||||
vpternlogd $0xfe, %VMM(4), %VMM(3), %VMM(2)
|
||||
|
||||
/* Compare VEC(4) with 0. If any 1s s1 and s2 don't match. */
|
||||
L(4x_last_2x_vec):
|
||||
VPTEST %VMM(2), %VMM(2), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TO_32BIT (VRAX)
|
||||
ret
|
||||
|
||||
.p2align 4
|
||||
|
||||
.p2align 4,, 10
|
||||
L(more_8x_vec):
|
||||
/* Set end of s1 in rdx. */
|
||||
leaq -(VEC_SIZE * 4)(%rdi, %rdx), %rdx
|
||||
@ -175,67 +217,80 @@ L(more_8x_vec):
|
||||
andq $-VEC_SIZE, %rdi
|
||||
/* Adjust because first 4x vec where check already. */
|
||||
subq $-(VEC_SIZE * 4), %rdi
|
||||
.p2align 4
|
||||
.p2align 5,, 12
|
||||
.p2align 4,, 8
|
||||
L(loop_4x_vec):
|
||||
VMOVU (%rsi, %rdi), %YMM1
|
||||
vpxorq (%rdi), %YMM1, %YMM1
|
||||
VMOVU (%rsi, %rdi), %VMM(1)
|
||||
vpxorq (%rdi), %VMM(1), %VMM(1)
|
||||
|
||||
VMOVU VEC_SIZE(%rsi, %rdi), %YMM2
|
||||
vpternlogd $0xde,(VEC_SIZE)(%rdi), %YMM1, %YMM2
|
||||
VMOVU VEC_SIZE(%rsi, %rdi), %VMM(2)
|
||||
vpternlogd $0xde, (VEC_SIZE)(%rdi), %VMM(1), %VMM(2)
|
||||
|
||||
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %YMM3
|
||||
vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
|
||||
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %VMM(3)
|
||||
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
|
||||
|
||||
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %YMM4
|
||||
vpxorq (VEC_SIZE * 3)(%rdi), %YMM4, %YMM4
|
||||
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %VMM(4)
|
||||
vpxorq (VEC_SIZE * 3)(%rdi), %VMM(4), %VMM(4)
|
||||
|
||||
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
||||
VPTEST %YMM4, %YMM4, %k1
|
||||
kmovd %k1, %eax
|
||||
testl %eax, %eax
|
||||
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
|
||||
VPTEST %VMM(4), %VMM(4), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TEST_ZERO (rax)
|
||||
jnz L(return_neq2)
|
||||
subq $-(VEC_SIZE * 4), %rdi
|
||||
cmpq %rdx, %rdi
|
||||
jb L(loop_4x_vec)
|
||||
|
||||
subq %rdx, %rdi
|
||||
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM4
|
||||
vpxorq (VEC_SIZE * 3)(%rdx), %YMM4, %YMM4
|
||||
|
||||
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(4)
|
||||
vpxorq (VEC_SIZE * 3)(%rdx), %VMM(4), %VMM(4)
|
||||
/* rdi has 4 * VEC_SIZE - remaining length. */
|
||||
cmpl $(VEC_SIZE * 3), %edi
|
||||
jae L(8x_last_1x_vec)
|
||||
|
||||
/* Load regardless of branch. */
|
||||
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %YMM3
|
||||
/* Ternary logic to xor (VEC_SIZE * 2)(%rdx) with YMM3 while
|
||||
oring with YMM4. Result is stored in YMM4. */
|
||||
vpternlogd $0xf6,(VEC_SIZE * 2)(%rdx), %YMM3, %YMM4
|
||||
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %VMM(3)
|
||||
/* Ternary logic to xor (VEC_SIZE * 2)(%rdx) with VEC(3) while
|
||||
oring with VEC(4). Result is stored in VEC(4). */
|
||||
vpternlogd $0xf6, (VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(4)
|
||||
|
||||
/* Seperate logic as we can only use testb for VEC_SIZE == 64.
|
||||
*/
|
||||
# if VEC_SIZE == 64
|
||||
testb %dil, %dil
|
||||
js L(8x_last_2x_vec)
|
||||
# else
|
||||
cmpl $(VEC_SIZE * 2), %edi
|
||||
jae L(8x_last_2x_vec)
|
||||
jge L(8x_last_2x_vec)
|
||||
# endif
|
||||
|
||||
VMOVU VEC_SIZE(%rsi, %rdx), %YMM2
|
||||
vpxorq VEC_SIZE(%rdx), %YMM2, %YMM2
|
||||
VMOVU VEC_SIZE(%rsi, %rdx), %VMM(2)
|
||||
vpxorq VEC_SIZE(%rdx), %VMM(2), %VMM(2)
|
||||
|
||||
VMOVU (%rsi, %rdx), %YMM1
|
||||
vpxorq (%rdx), %YMM1, %YMM1
|
||||
VMOVU (%rsi, %rdx), %VMM(1)
|
||||
vpxorq (%rdx), %VMM(1), %VMM(1)
|
||||
|
||||
vpternlogd $0xfe, %YMM1, %YMM2, %YMM4
|
||||
vpternlogd $0xfe, %VMM(1), %VMM(2), %VMM(4)
|
||||
L(8x_last_1x_vec):
|
||||
L(8x_last_2x_vec):
|
||||
VPTEST %YMM4, %YMM4, %k1
|
||||
kmovd %k1, %eax
|
||||
VPTEST %VMM(4), %VMM(4), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TO_32BIT_P1 (rax)
|
||||
L(return_neq2):
|
||||
TO_32BIT_P2 (rax)
|
||||
ret
|
||||
|
||||
.p2align 4,, 8
|
||||
.p2align 4,, 4
|
||||
L(last_2x_vec):
|
||||
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %YMM1
|
||||
vpxorq -(VEC_SIZE * 2)(%rdi, %rdx), %YMM1, %YMM1
|
||||
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %YMM2
|
||||
vpternlogd $0xde, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %YMM2
|
||||
VPTEST %YMM2, %YMM2, %k1
|
||||
kmovd %k1, %eax
|
||||
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VMM(1)
|
||||
vpxorq -(VEC_SIZE * 2)(%rdi, %rdx), %VMM(1), %VMM(1)
|
||||
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %VMM(2)
|
||||
vpternlogd $0xde, -(VEC_SIZE * 1)(%rdi, %rdx), %VMM(1), %VMM(2)
|
||||
VPTEST %VMM(2), %VMM(2), %k1
|
||||
KMOV %k1, %VRAX
|
||||
TO_32BIT (VRAX)
|
||||
ret
|
||||
|
||||
/* 1 Bytes from next cache line. */
|
||||
/* evex256: 1 Bytes from next cache line. evex512: 15 Bytes from
|
||||
next cache line. */
|
||||
END (MEMCMPEQ)
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user