1999-07-15  Jakub Jelinek  <jj@ultra.linux.cz>

	* math/Makefile: Add t_sincosl and k_sincosl support routines.
	* math/math_private.h (__kernel_sincosl): New declaration.
	* sysdeps/generic/t_sincosl.c: New file.
	* sysdeps/generic/k_sincosl.c: New file.
	* sysdeps/ieee754/ldbl-128/k_cosl.c: New file.
	* sysdeps/ieee754/ldbl-128/k_sinl.c: New file.
	* sysdeps/ieee754/ldbl-128/k_sincosl.c: New file.
	* sysdeps/ieee754/ldbl-128/t_sincosl.c: New file.
	* sysdeps/ieee754/ldbl-128/e_rem_pio2l.c: New file.
	* sysdeps/ieee754/ldbl-128/s_sincosl.c (__sincosl): Use
	__kernel_sincosl.
	* sysdeps/ieee754/ldbl-128/math_ldbl.h (GET_LDOUBLE_LSW64): New
	definition.
This commit is contained in:
Ulrich Drepper 1999-07-15 18:26:25 +00:00
parent 446d213c35
commit 3fe4dc4156
11 changed files with 736 additions and 16 deletions

View File

@ -1,3 +1,19 @@
1999-07-15 Jakub Jelinek <jj@ultra.linux.cz>
* math/Makefile: Add t_sincosl and k_sincosl support routines.
* math/math_private.h (__kernel_sincosl): New declaration.
* sysdeps/generic/t_sincosl.c: New file.
* sysdeps/generic/k_sincosl.c: New file.
* sysdeps/ieee754/ldbl-128/k_cosl.c: New file.
* sysdeps/ieee754/ldbl-128/k_sinl.c: New file.
* sysdeps/ieee754/ldbl-128/k_sincosl.c: New file.
* sysdeps/ieee754/ldbl-128/t_sincosl.c: New file.
* sysdeps/ieee754/ldbl-128/e_rem_pio2l.c: New file.
* sysdeps/ieee754/ldbl-128/s_sincosl.c (__sincosl): Use
__kernel_sincosl.
* sysdeps/ieee754/ldbl-128/math_ldbl.h (GET_LDOUBLE_LSW64): New
definition.
1999-07-15 Ulrich Drepper <drepper@cygnus.com>
* posix/unistd.h: Use __PMT for exit.

View File

@ -61,7 +61,8 @@ libm-routines = $(strip $(libm-support) $(libm-calls) \
$(patsubst %_rf,%f_r,$(libm-calls:=f)) \
$(long-m-$(long-double-fcts)))
long-m-routines = $(patsubst %_rl,%l_r,$(libm-calls:=l))
long-m-yes = $(long-m-routines)
long-m-support = t_sincosl k_sincosl
long-m-yes = $(long-m-routines) $(long-m-support)
distribute += $(long-m-yes:=.c)
# These functions are in libc instead of libm because __printf_fp

View File

@ -264,6 +264,8 @@ extern long double __ieee754_scalbl __P((long double,long double));
extern long double __kernel_sinl __P((long double,long double,int));
extern long double __kernel_cosl __P((long double,long double));
extern long double __kernel_tanl __P((long double,long double,int));
extern void __kernel_sincosl __P((long double,long double,
long double *,long double *, int));
extern int __kernel_rem_pio2l __P((long double*,long double*,int,int,
int,const int*));

View File

@ -0,0 +1 @@
/* Empty. Not needed. */

View File

@ -0,0 +1 @@
/* Empty. Not needed unless ldbl __kernel_* functions use it. */

View File

@ -0,0 +1,274 @@
/* Quad-precision floating point argument reduction.
Copyright (C) 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "math.h"
#include "math_private.h"
/*
* Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi
*/
static const int32_t two_over_pi[] = {
0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
0x7b7b89, 0x483d38,
};
static const long double c[] = {
/* 93 bits of pi/2 */
#define PI_2_1 c[0]
1.57079632679489661923132169155131424e+00L, /* 3fff921fb54442d18469898cc5100000 */
/* pi/2 - PI_2_1 */
#define PI_2_1t c[1]
8.84372056613570112025531863263659260e-29L, /* 3fa1c06e0e68948127044533e63a0106 */
};
int32_t __ieee754_rem_pio2l(long double x, long double *y)
{
long double z, w, t;
double tx[8];
int64_t exp, n, ix, hx;
u_int64_t lx;
GET_LDOUBLE_WORDS64 (hx, lx, x);
ix = hx & 0x7fffffffffffffffLL;
if (ix <= 0x3ffe921fb54442d1LL) /* x in <-pi/4, pi/4> */
{
y[0] = x;
y[1] = 0;
return 0;
}
if (ix < 0x40002d97c7f3321dLL) /* |x| in <pi/4, 3pi/4) */
{
if (hx > 0)
{
/* 113 + 93 bit PI is ok */
z = x - PI_2_1;
y[0] = z - PI_2_1t;
y[1] = (z - y[0]) - PI_2_1t;
return 1;
}
else
{
/* 113 + 93 bit PI is ok */
z = x + PI_2_1;
y[0] = z + PI_2_1t;
y[1] = (z - y[0]) + PI_2_1t;
return -1;
}
}
if (ix >= 0x7fff000000000000LL) /* x is +=oo or NaN */
{
y[0] = x - x;
y[1] = y[0];
return 0;
}
/* Handle large arguments.
We split the 113 bits of the mantissa into 5 24bit integers
stored in a double array. */
exp = (ix >> 48) - 16383 - 23;
/* This is faster than doing this in floating point, because we
have to convert it to integers anyway and like this we can keep
both integer and floating point units busy. */
tx [0] = (double)(((ix >> 25) & 0x7fffff) | 0x800000);
tx [1] = (double)((ix >> 1) & 0xffffff);
tx [2] = (double)(((ix << 23) | (lx >> 41)) & 0xffffff);
tx [3] = (double)((lx >> 17) & 0xffffff);
tx [4] = (double)((lx << 7) & 0xffffff);
n = __kernel_rem_pio2 (tx, tx + 5, exp, ((lx << 7) & 0xffffff) ? 5 : 4,
3, two_over_pi);
/* The result is now stored in 3 double values, we need to convert it into
two long double values. */
t = (long double) tx [6] + (long double) tx [7];
w = (long double) tx [5];
if (hx >= 0)
{
y[0] = w + t;
y[1] = t - (y[0] - w);
return n;
}
else
{
y[0] = -(w + t);
y[1] = -t - (y[0] + w);
return -n;
}
}

View File

@ -0,0 +1,128 @@
/* Quad-precision floating point cosine on <-pi/4,pi/4>.
Copyright (C) 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "math.h"
#include "math_private.h"
static const long double c[] = {
#define ONE c[0]
1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
x in <0,1/256> */
#define SCOS1 c[1]
#define SCOS2 c[2]
#define SCOS3 c[3]
#define SCOS4 c[4]
#define SCOS5 c[5]
-5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
-1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
-2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */
/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
x in <0,0.1484375> */
#define COS1 c[6]
#define COS2 c[7]
#define COS3 c[8]
#define COS4 c[9]
#define COS5 c[10]
#define COS6 c[11]
#define COS7 c[12]
#define COS8 c[13]
-4.99999999999999999999999999999999759E-01L, /* bffdfffffffffffffffffffffffffffb */
4.16666666666666666666666666651287795E-02L, /* 3ffa5555555555555555555555516f30 */
-1.38888888888888888888888742314300284E-03L, /* bff56c16c16c16c16c16c16a463dfd0d */
2.48015873015873015867694002851118210E-05L, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
-2.75573192239858811636614709689300351E-07L, /* bfe927e4fb7789f5aa8142a22044b51f */
2.08767569877762248667431926878073669E-09L, /* 3fe21eed8eff881d1e9262d7adff4373 */
-1.14707451049343817400420280514614892E-11L, /* bfda9397496922a9601ed3d4ca48944b */
4.77810092804389587579843296923533297E-14L, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
x in <0,1/256> */
#define SSIN1 c[14]
#define SSIN2 c[15]
#define SSIN3 c[16]
#define SSIN4 c[17]
#define SSIN5 c[18]
-1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
-1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
-2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */
};
#define SINCOSL_COS_HI 0
#define SINCOSL_COS_LO 1
#define SINCOSL_SIN_HI 2
#define SINCOSL_SIN_LO 3
extern const long double __sincosl_table[];
long double
__kernel_cosl(long double x, long double y)
{
long double h, l, z, sin_l, cos_l_m1;
int64_t ix;
u_int32_t tix, hix, index;
GET_LDOUBLE_MSW64 (ix, x);
tix = ((u_int64_t)ix) >> 32;
tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
{
/* Argument is small enough to approximate it by a Chebyshev
polynomial of degree 16. */
if (tix < 0x3fc60000) /* |x| < 2^-57 */
if (!((int)x)) return ONE; /* generate inexact */
z = x * x;
return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
}
else
{
/* So that we don't have to use too large polynomial, we find
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
possible values for h. We look up cosl(h) and sinl(h) in
pre-computed tables, compute cosl(l) and sinl(l) using a
Chebyshev polynomial of degree 10(11) and compute
cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */
index = 0x3ffe - (tix >> 16);
hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
x = fabsl (x);
switch (index)
{
case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
default:
case 2: index = (hix - 0x3ffc3000) >> 10; break;
}
SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0);
l = y - (h - x);
z = l * l;
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
return __sincosl_table [index + SINCOSL_COS_HI]
+ (__sincosl_table [index + SINCOSL_COS_LO]
- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
- __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
}
}

View File

@ -0,0 +1,163 @@
/* Quad-precision floating point sine and cosine on <-pi/4,pi/4>.
Copyright (C) 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "math.h"
#include "math_private.h"
static const long double c[] = {
#define ONE c[0]
1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
x in <0,1/256> */
#define SCOS1 c[1]
#define SCOS2 c[2]
#define SCOS3 c[3]
#define SCOS4 c[4]
#define SCOS5 c[5]
-5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
-1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
-2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */
/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
x in <0,0.1484375> */
#define COS1 c[6]
#define COS2 c[7]
#define COS3 c[8]
#define COS4 c[9]
#define COS5 c[10]
#define COS6 c[11]
#define COS7 c[12]
#define COS8 c[13]
-4.99999999999999999999999999999999759E-01L, /* bffdfffffffffffffffffffffffffffb */
4.16666666666666666666666666651287795E-02L, /* 3ffa5555555555555555555555516f30 */
-1.38888888888888888888888742314300284E-03L, /* bff56c16c16c16c16c16c16a463dfd0d */
2.48015873015873015867694002851118210E-05L, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
-2.75573192239858811636614709689300351E-07L, /* bfe927e4fb7789f5aa8142a22044b51f */
2.08767569877762248667431926878073669E-09L, /* 3fe21eed8eff881d1e9262d7adff4373 */
-1.14707451049343817400420280514614892E-11L, /* bfda9397496922a9601ed3d4ca48944b */
4.77810092804389587579843296923533297E-14L, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
x in <0,1/256> */
#define SSIN1 c[14]
#define SSIN2 c[15]
#define SSIN3 c[16]
#define SSIN4 c[17]
#define SSIN5 c[18]
-1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
-1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
-2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */
/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
x in <0,0.1484375> */
#define SIN1 c[19]
#define SIN2 c[20]
#define SIN3 c[21]
#define SIN4 c[22]
#define SIN5 c[23]
#define SIN6 c[24]
#define SIN7 c[25]
#define SIN8 c[26]
-1.66666666666666666666666666666666538e-01L, /* bffc5555555555555555555555555550 */
8.33333333333333333333333333307532934e-03L, /* 3ff811111111111111111111110e7340 */
-1.98412698412698412698412534478712057e-04L, /* bff2a01a01a01a01a01a019e7a626296 */
2.75573192239858906520896496653095890e-06L, /* 3fec71de3a556c7338fa38527474b8f5 */
-2.50521083854417116999224301266655662e-08L, /* bfe5ae64567f544e16c7de65c2ea551f */
1.60590438367608957516841576404938118e-10L, /* 3fde6124613a811480538a9a41957115 */
-7.64716343504264506714019494041582610e-13L, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
2.81068754939739570236322404393398135e-15L, /* 3fce9510115aabf87aceb2022a9a9180 */
};
#define SINCOSL_COS_HI 0
#define SINCOSL_COS_LO 1
#define SINCOSL_SIN_HI 2
#define SINCOSL_SIN_LO 3
extern const long double __sincosl_table[];
void
__kernel_sincosl(long double x, long double y, long double *sinx, long double *cosx, int iy)
{
long double h, l, z, sin_l, cos_l_m1;
int64_t ix;
u_int32_t tix, hix, index;
GET_LDOUBLE_MSW64 (ix, x);
tix = ((u_int64_t)ix) >> 32;
tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
{
/* Argument is small enough to approximate it by a Chebyshev
polynomial of degree 16(17). */
if (tix < 0x3fc60000) /* |x| < 2^-57 */
if (!((int)x)) /* generate inexact */
{
*sinx = x;
*cosx = ONE;
return;
}
z = x * x;
*sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
*cosx = ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
}
else
{
/* So that we don't have to use too large polynomial, we find
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
possible values for h. We look up cosl(h) and sinl(h) in
pre-computed tables, compute cosl(l) and sinl(l) using a
Chebyshev polynomial of degree 10(11) and compute
sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l) and
cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */
index = 0x3ffe - (tix >> 16);
hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
x = fabsl (x);
switch (index)
{
case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
default:
case 2: index = (hix - 0x3ffc3000) >> 10; break;
}
SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0);
if (iy)
l = y - (h - x);
else
l = x - h;
z = l * l;
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
z = __sincosl_table [index + SINCOSL_SIN_HI]
+ (__sincosl_table [index + SINCOSL_SIN_LO]
+ (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
+ (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
*sinx = (ix < 0) ? -z : z;
*cosx = __sincosl_table [index + SINCOSL_COS_HI]
+ (__sincosl_table [index + SINCOSL_COS_LO]
- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
- __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
}
}

View File

@ -0,0 +1,132 @@
/* Quad-precision floating point sine on <-pi/4,pi/4>.
Copyright (C) 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "math.h"
#include "math_private.h"
static const long double c[] = {
#define ONE c[0]
1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
x in <0,1/256> */
#define SCOS1 c[1]
#define SCOS2 c[2]
#define SCOS3 c[3]
#define SCOS4 c[4]
#define SCOS5 c[5]
-5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
-1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
-2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */
/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
x in <0,0.1484375> */
#define SIN1 c[6]
#define SIN2 c[7]
#define SIN3 c[8]
#define SIN4 c[9]
#define SIN5 c[10]
#define SIN6 c[11]
#define SIN7 c[12]
#define SIN8 c[13]
-1.66666666666666666666666666666666538e-01L, /* bffc5555555555555555555555555550 */
8.33333333333333333333333333307532934e-03L, /* 3ff811111111111111111111110e7340 */
-1.98412698412698412698412534478712057e-04L, /* bff2a01a01a01a01a01a019e7a626296 */
2.75573192239858906520896496653095890e-06L, /* 3fec71de3a556c7338fa38527474b8f5 */
-2.50521083854417116999224301266655662e-08L, /* bfe5ae64567f544e16c7de65c2ea551f */
1.60590438367608957516841576404938118e-10L, /* 3fde6124613a811480538a9a41957115 */
-7.64716343504264506714019494041582610e-13L, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
2.81068754939739570236322404393398135e-15L, /* 3fce9510115aabf87aceb2022a9a9180 */
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
x in <0,1/256> */
#define SSIN1 c[14]
#define SSIN2 c[15]
#define SSIN3 c[16]
#define SSIN4 c[17]
#define SSIN5 c[18]
-1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
-1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
-2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */
};
#define SINCOSL_COS_HI 0
#define SINCOSL_COS_LO 1
#define SINCOSL_SIN_HI 2
#define SINCOSL_SIN_LO 3
extern const long double __sincosl_table[];
long double
__kernel_sinl(long double x, long double y, int iy)
{
long double h, l, z, sin_l, cos_l_m1;
int64_t ix;
u_int32_t tix, hix, index;
GET_LDOUBLE_MSW64 (ix, x);
tix = ((u_int64_t)ix) >> 32;
tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
{
/* Argument is small enough to approximate it by a Chebyshev
polynomial of degree 17. */
if (tix < 0x3fc60000) /* |x| < 2^-57 */
if (!((int)x)) return x; /* generate inexact */
z = x * x;
return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
}
else
{
/* So that we don't have to use too large polynomial, we find
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
possible values for h. We look up cosl(h) and sinl(h) in
pre-computed tables, compute cosl(l) and sinl(l) using a
Chebyshev polynomial of degree 10(11) and compute
sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */
index = 0x3ffe - (tix >> 16);
hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
x = fabsl (x);
switch (index)
{
case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
default:
case 2: index = (hix - 0x3ffc3000) >> 10; break;
}
SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0);
if (iy)
l = y - (h - x);
else
l = x - h;
z = l * l;
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
z = __sincosl_table [index + SINCOSL_SIN_HI]
+ (__sincosl_table [index + SINCOSL_SIN_LO]
+ (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
+ (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
return (ix < 0) ? -z : z;
}
}

View File

@ -80,3 +80,11 @@ do { \
(d) = sh_u.value; \
} while (0)
/* Get the least significant 64 bits of a long double mantissa. */
#define GET_LDOUBLE_LSW64(v,d) \
do { \
ieee854_long_double_shape_type sh_u; \
sh_u.value = (d); \
(v) = sh_u.parts64.lsw; \
} while (0)

View File

@ -23,9 +23,6 @@
#include "math_private.h"
/* Note: We should probably introduce __kernel_sincosl to speed things up,
because __kernel_{cos,sin}l sometimes compute both sine and cosine. */
void
__sincosl (long double x, long double *sinx, long double *cosx)
{
@ -37,10 +34,7 @@ __sincosl (long double x, long double *sinx, long double *cosx)
/* |x| ~< pi/4 */
ix &= 0x7fffffffffffffffLL;
if (ix <= 0x3ffe921fb54442d1LL)
{
*sinx = __kernel_sinl (x, 0.0, 0);
*cosx = __kernel_cosl (x, 0.0);
}
__kernel_sincosl (x, 0.0L, sinx, cosx, 0);
else if (ix >= 0x7fff000000000000LL)
{
/* sin(Inf or NaN) is NaN */
@ -56,20 +50,20 @@ __sincosl (long double x, long double *sinx, long double *cosx)
switch (n & 3)
{
case 0:
*sinx = __kernel_sinl (y[0], y[1], 1);
*cosx = __kernel_cosl (y[0], y[1]);
__kernel_sincosl (y[0], y[1], sinx, cosx, 1);
break;
case 1:
*sinx = __kernel_cosl (y[0], y[1]);
*cosx = -__kernel_sinl (y[0], y[1], 1);
__kernel_sincosl (y[0], y[1], cosx, sinx, 1);
*cosx = -*cosx;
break;
case 2:
*sinx = -__kernel_sinl (y[0], y[1], 1);
*cosx = -__kernel_cosl (y[0], y[1]);
__kernel_sincosl (y[0], y[1], sinx, cosx, 1);
*sinx = -*sinx;
*cosx = -*cosx;
break;
default:
*sinx = -__kernel_cosl (y[0], y[1]);
*cosx = __kernel_sinl (y[0], y[1], 1);
__kernel_sincosl (y[0], y[1], cosx, sinx, 1);
*sinx = -*sinx;
break;
}
}