Split mantissa calculation loop and add branch prediction

This commit is contained in:
Siddhesh Poyarekar 2013-01-02 11:44:13 +05:30
parent 4d55b4e596
commit 44e0d4c20c
2 changed files with 44 additions and 22 deletions

View File

@ -1,5 +1,8 @@
2013-01-02 Siddhesh Poyarekar <siddhesh@redhat.com> 2013-01-02 Siddhesh Poyarekar <siddhesh@redhat.com>
* sysdeps/ieee754/dbl-64/mpa.c (__mul): Split mantissa
calculation loop and add branch prediction.
* sysdeps/ieee754/dbl-64/mpexp.c (__mpexp): Add assert to * sysdeps/ieee754/dbl-64/mpexp.c (__mpexp): Add assert to
check access beyond bounds of m1np. check access beyond bounds of m1np.

View File

@ -447,33 +447,52 @@ void
SECTION SECTION
__mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int i, i1, i2, j, k, k2; int i, j, k, k2;
double u; double u;
/* Is z=0? */ /* Is z=0? */
if (X[0]*Y[0]==ZERO) if (__glibc_unlikely (X[0] * Y[0] == ZERO))
{ Z[0]=ZERO; return; } {
Z[0]=ZERO;
return;
}
/* Multiply, add and carry */ /* Multiply, add and carry */
k2 = (p<3) ? p+p : p+3; k2 = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
Z[k2]=ZERO; Z[k2] = ZERO;
for (k=k2; k>1; ) {
if (k > p) {i1=k-p; i2=p+1; }
else {i1=1; i2=k; }
for (i=i1,j=i2-1; i<i2; i++,j--) Z[k] += X[i]*Y[j];
u = (Z[k] + CUTTER)-CUTTER; for (k = k2; k > p; )
if (u > Z[k]) u -= RADIX; {
Z[k] -= u; for (i = k - p, j = p; i < p + 1; i++, j--)
Z[--k] = u*RADIXI; Z[k] += X[i] * Y[j];
}
/* Is there a carry beyond the most significant digit? */ u = (Z[k] + CUTTER) - CUTTER;
if (Z[1] == ZERO) { if (u > Z[k])
for (i=1; i<=p; i++) Z[i]=Z[i+1]; u -= RADIX;
EZ = EX + EY - 1; } Z[k] -= u;
else Z[--k] = u * RADIXI;
EZ = EX + EY; }
while (k > 1)
{
for (i = 1,j = k - 1; i < k; i++, j--)
Z[k] += X[i] * Y[j];
u = (Z[k] + CUTTER) - CUTTER;
if (u > Z[k])
u -= RADIX;
Z[k] -= u;
Z[--k] = u * RADIXI;
}
EZ = EX + EY;
/* Is there a carry beyond the most significant digit? */
if (__glibc_unlikely (Z[1] == ZERO))
{
for (i = 1; i <= p; i++)
Z[i] = Z[i+1];
EZ--;
}
Z[0] = X[0] * Y[0]; Z[0] = X[0] * Y[0];
} }