PowerPC LE memchr and memrchr

http://sourceware.org/ml/libc-alpha/2013-08/msg00105.html

Like strnlen, memchr and memrchr had a number of defects fixed by this
patch as well as adding little-endian support.  The first one I
noticed was that the entry to the main loop needlessly checked for
"are we done yet?" when we know the size is large enough that we can't
be done.  The second defect I noticed was that the main loop count was
wrong, which in turn meant that the small loop needed to handle an
extra word.  Thirdly, there is nothing to say that the string can't
wrap around zero, except of course that we'd normally hit a segfault
on trying to read from address zero.  Fixing that simplified a number
of places:

-	/* Are we done already?  */
-	addi    r9,r8,8
-	cmpld	r9,r7
-	bge	L(null)

becomes

+	cmpld	r8,r7
+	beqlr

However, the exit gets an extra test because I test for being on the
last word then if so whether the byte offset is less than the end.
Overall, the change is a win.

Lastly, memrchr used the wrong cache hint.

	* sysdeps/powerpc/powerpc64/power7/memchr.S: Replace rlwimi with
	insrdi.  Make better use of reg selection to speed exit slightly.
	Schedule entry path a little better.  Remove useless "are we done"
	checks on entry to main loop.  Handle wrapping around zero address.
	Correct main loop count.  Handle single left-over word from main
	loop inline rather than by using loop_small.  Remove extra word
	case in loop_small caused by wrong loop count.  Add little-endian
	support.
	* sysdeps/powerpc/powerpc32/power7/memchr.S: Likewise.
	* sysdeps/powerpc/powerpc64/power7/memrchr.S: Likewise.  Use proper
	cache hint.
	* sysdeps/powerpc/powerpc32/power7/memrchr.S: Likewise.
	* sysdeps/powerpc/powerpc64/power7/rawmemchr.S: Add little-endian
	support.  Avoid rlwimi.
	* sysdeps/powerpc/powerpc32/power7/rawmemchr.S: Likewise.
This commit is contained in:
Alan Modra 2013-08-17 18:48:36 +09:30
parent 3be87c77d2
commit 466b039332
7 changed files with 422 additions and 382 deletions

View File

@ -1,3 +1,21 @@
2013-10-04 Alan Modra <amodra@gmail.com>
* sysdeps/powerpc/powerpc64/power7/memchr.S: Replace rlwimi with
insrdi. Make better use of reg selection to speed exit slightly.
Schedule entry path a little better. Remove useless "are we done"
checks on entry to main loop. Handle wrapping around zero address.
Correct main loop count. Handle single left-over word from main
loop inline rather than by using loop_small. Remove extra word
case in loop_small caused by wrong loop count. Add little-endian
support.
* sysdeps/powerpc/powerpc32/power7/memchr.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/memrchr.S: Likewise. Use proper
cache hint.
* sysdeps/powerpc/powerpc32/power7/memrchr.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/rawmemchr.S: Add little-endian
support. Avoid rlwimi.
* sysdeps/powerpc/powerpc32/power7/rawmemchr.S: Likewise.
2013-10-04 Alan Modra <amodra@gmail.com>
* sysdeps/powerpc/powerpc64/memset.S: Replace rlwimi with

View File

@ -25,107 +25,111 @@ ENTRY (__memchr)
CALL_MCOUNT
dcbt 0,r3
clrrwi r8,r3,2
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
insrdi r4,r4,8,48
add r7,r3,r5 /* Calculate the last acceptable address. */
insrdi r4,r4,16,32
cmplwi r5,16
li r9, -1
rlwinm r6,r3,3,27,28 /* Calculate padding. */
addi r7,r7,-1
#ifdef __LITTLE_ENDIAN__
slw r9,r9,r6
#else
srw r9,r9,r6
#endif
ble L(small_range)
cmplw cr7,r3,r7 /* Compare the starting address (r3) with the
ending address (r7). If (r3 >= r7), the size
passed in is zero or negative. */
ble cr7,L(proceed)
li r7,-1 /* Artificially set our ending address (r7)
such that we will exit early. */
L(proceed):
rlwinm r6,r3,3,27,28 /* Calculate padding. */
cmpli cr6,r6,0 /* cr6 == Do we have padding? */
lwz r12,0(r8) /* Load word from memory. */
cmpb r10,r12,r4 /* Check for BYTEs in WORD1. */
beq cr6,L(proceed_no_padding)
slw r10,r10,r6
srw r10,r10,r6
L(proceed_no_padding):
cmplwi cr7,r10,0 /* If r10 == 0, no BYTEs have been found. */
cmpb r3,r12,r4 /* Check for BYTEs in WORD1. */
and r3,r3,r9
clrlwi r5,r7,30 /* Byte count - 1 in last word. */
clrrwi r7,r7,2 /* Address of last word. */
cmplwi cr7,r3,0 /* If r3 == 0, no BYTEs have been found. */
bne cr7,L(done)
/* Are we done already? */
addi r9,r8,4
cmplw cr6,r9,r7
bge cr6,L(null)
mtcrf 0x01,r8
/* Are we now aligned to a doubleword boundary? If so, skip to
the main loop. Otherwise, go through the alignment code. */
bt 29,L(loop_setup)
/* Handle WORD2 of pair. */
lwzu r12,4(r8)
cmpb r10,r12,r4
cmplwi cr7,r10,0
cmpb r3,r12,r4
cmplwi cr7,r3,0
bne cr7,L(done)
/* Are we done already? */
addi r9,r8,4
cmplw cr6,r9,r7
bge cr6,L(null)
L(loop_setup):
sub r5,r7,r9
srwi r6,r5,3 /* Number of loop iterations. */
/* The last word we want to read in the loop below is the one
containing the last byte of the string, ie. the word at
(s + size - 1) & ~3, or r7. The first word read is at
r8 + 4, we read 2 * cnt words, so the last word read will
be at r8 + 4 + 8 * cnt - 4. Solving for cnt gives
cnt = (r7 - r8) / 8 */
sub r6,r7,r8
srwi r6,r6,3 /* Number of loop iterations. */
mtctr r6 /* Setup the counter. */
b L(loop)
/* Main loop to look for BYTE backwards in the string. Since
it's a small loop (< 8 instructions), align it to 32-bytes. */
.p2align 5
/* Main loop to look for BYTE in the string. Since
it's a small loop (8 instructions), align it to 32-bytes. */
.align 5
L(loop):
/* Load two words, compare and merge in a
single register for speed. This is an attempt
to speed up the byte-checking process for bigger strings. */
lwz r12,4(r8)
lwzu r11,8(r8)
cmpb r10,r12,r4
cmpb r3,r12,r4
cmpb r9,r11,r4
or r5,r9,r10 /* Merge everything in one word. */
cmplwi cr7,r5,0
or r6,r9,r3 /* Merge everything in one word. */
cmplwi cr7,r6,0
bne cr7,L(found)
bdnz L(loop)
/* We're here because the counter reached 0, and that means we
didn't have any matches for BYTE in the whole range. */
subi r11,r7,4
cmplw cr6,r8,r11
blt cr6,L(loop_small)
b L(null)
/* We may have one more dword to read. */
cmplw r8,r7
beqlr
lwzu r12,4(r8)
cmpb r3,r12,r4
cmplwi cr6,r3,0
bne cr6,L(done)
blr
.align 4
L(found):
/* OK, one (or both) of the words contains BYTE. Check
the first word and decrement the address in case the first
word really contains BYTE. */
.align 4
L(found):
cmplwi cr6,r10,0
cmplwi cr6,r3,0
addi r8,r8,-4
bne cr6,L(done)
/* BYTE must be in the second word. Adjust the address
again and move the result of cmpb to r10 so we can calculate the
again and move the result of cmpb to r3 so we can calculate the
pointer. */
mr r10,r9
mr r3,r9
addi r8,r8,4
/* r10 has the output of the cmpb instruction, that is, it contains
/* r3 has the output of the cmpb instruction, that is, it contains
0xff in the same position as BYTE in the original
word from the string. Use that to calculate the pointer.
We need to make sure BYTE is *before* the end of the range. */
L(done):
cntlzw r0,r10 /* Count leading zeroes before the match. */
srwi r0,r0,3 /* Convert leading zeroes to bytes. */
#ifdef __LITTLE_ENDIAN__
addi r0,r3,-1
andc r0,r0,r3
popcntw r0,r0 /* Count trailing zeros. */
#else
cntlzw r0,r3 /* Count leading zeros before the match. */
#endif
cmplw r8,r7 /* Are we on the last word? */
srwi r0,r0,3 /* Convert leading/trailing zeros to bytes. */
add r3,r8,r0
cmplw r3,r7
bge L(null)
cmplw cr7,r0,r5 /* If on the last dword, check byte offset. */
bnelr
blelr cr7
li r3,0
blr
.align 4
@ -137,67 +141,42 @@ L(null):
.align 4
L(small_range):
cmplwi r5,0
rlwinm r6,r3,3,27,28 /* Calculate padding. */
beq L(null) /* This branch is for the cmplwi r5,0 above */
beq L(null)
lwz r12,0(r8) /* Load word from memory. */
cmplwi cr6,r6,0 /* cr6 == Do we have padding? */
cmpb r10,r12,r4 /* Check for BYTE in DWORD1. */
beq cr6,L(small_no_padding)
slw r10,r10,r6
srw r10,r10,r6
L(small_no_padding):
cmplwi cr7,r10,0
cmpb r3,r12,r4 /* Check for BYTE in DWORD1. */
and r3,r3,r9
cmplwi cr7,r3,0
clrlwi r5,r7,30 /* Byte count - 1 in last word. */
clrrwi r7,r7,2 /* Address of last word. */
cmplw r8,r7 /* Are we done already? */
bne cr7,L(done)
/* Are we done already? */
addi r9,r8,4
cmplw r9,r7
bge L(null)
L(loop_small): /* loop_small has been unrolled. */
lwzu r12,4(r8)
cmpb r10,r12,r4
addi r9,r8,4
cmplwi cr6,r10,0
cmplw r9,r7
bne cr6,L(done)
bge L(null)
beqlr
lwzu r12,4(r8)
cmpb r10,r12,r4
addi r9,r8,4
cmplwi cr6,r10,0
cmplw r9,r7
cmpb r3,r12,r4
cmplwi cr6,r3,0
cmplw r8,r7
bne cr6,L(done)
bge L(null)
beqlr
lwzu r12,4(r8)
cmpb r10,r12,r4
addi r9,r8,4
cmplwi cr6,r10,0
cmplw r9,r7
cmpb r3,r12,r4
cmplwi cr6,r3,0
cmplw r8,r7
bne cr6,L(done)
bge L(null)
beqlr
lwzu r12,4(r8)
cmpb r10,r12,r4
addi r9,r8,4
cmplwi cr6,r10,0
cmplw r9,r7
cmpb r3,r12,r4
cmplwi cr6,r3,0
cmplw r8,r7
bne cr6,L(done)
bge L(null)
beqlr
/* For most cases we will never get here. Under some combinations of
padding + length there is a leftover word that still needs to be
checked. */
lwzu r12,4(r8)
cmpb r10,r12,r4
addi r9,r8,4
cmplwi cr6,r10,0
cmpb r3,r12,r4
cmplwi cr6,r3,0
bne cr6,L(done)
/* save a branch and exit directly */
li r3,0
blr
END (__memchr)

View File

@ -23,117 +23,131 @@
.machine power7
ENTRY (__memrchr)
CALL_MCOUNT
dcbt 0,r3
mr r7,r3
add r3,r7,r5 /* Calculate the last acceptable address. */
cmplw cr7,r3,r7 /* Is the address equal or less than r3? */
add r7,r3,r5 /* Calculate the last acceptable address. */
neg r0,r7
addi r7,r7,-1
mr r10,r3
clrrwi r6,r7,7
li r9,3<<5
dcbt r9,r6,16 /* Stream hint, decreasing addresses. */
/* Replicate BYTE to word. */
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
bge cr7,L(proceed)
li r3,-1 /* Make r11 the biggest if r4 <= 0. */
L(proceed):
rldimi r4,r4,8,48
rldimi r4,r4,16,32
li r6,-4
addi r9,r3,-1
clrrwi r8,r9,2
addi r8,r8,4
neg r0,r3
li r9,-1
rlwinm r0,r0,3,27,28 /* Calculate padding. */
clrrwi r8,r7,2
srw r9,r9,r0
cmplwi r5,16
clrrwi r0,r10,2
ble L(small_range)
lwbrx r12,r8,r6 /* Load reversed word from memory. */
cmpb r10,r12,r4 /* Check for BYTE in WORD1. */
slw r10,r10,r0
srw r10,r10,r0
cmplwi cr7,r10,0 /* If r10 == 0, no BYTEs have been found. */
#ifdef __LITTLE_ENDIAN__
lwzx r12,0,r8
#else
lwbrx r12,0,r8 /* Load reversed word from memory. */
#endif
cmpb r3,r12,r4 /* Check for BYTE in WORD1. */
and r3,r3,r9
cmplwi cr7,r3,0 /* If r3 == 0, no BYTEs have been found. */
bne cr7,L(done)
/* Are we done already? */
addi r9,r8,-4
cmplw cr6,r9,r7
ble cr6,L(null)
mtcrf 0x01,r8
/* Are we now aligned to a doubleword boundary? If so, skip to
the main loop. Otherwise, go through the alignment code. */
mr r8,r9
bt 29,L(loop_setup)
bf 29,L(loop_setup)
/* Handle WORD2 of pair. */
#ifdef __LITTLE_ENDIAN__
lwzx r12,r8,r6
#else
lwbrx r12,r8,r6
cmpb r10,r12,r4
cmplwi cr7,r10,0
#endif
addi r8,r8,-4
cmpb r3,r12,r4
cmplwi cr7,r3,0
bne cr7,L(done)
/* Are we done already? */
addi r8,r8,-4
cmplw cr6,r8,r7
ble cr6,L(null)
L(loop_setup):
li r0,-8
sub r5,r8,r7
srwi r9,r5,3 /* Number of loop iterations. */
/* The last word we want to read in the loop below is the one
containing the first byte of the string, ie. the word at
s & ~3, or r0. The first word read is at r8 - 4, we
read 2 * cnt words, so the last word read will be at
r8 - 4 - 8 * cnt + 4. Solving for cnt gives
cnt = (r8 - r0) / 8 */
sub r5,r8,r0
addi r8,r8,-4
srwi r9,r5,3 /* Number of loop iterations. */
mtctr r9 /* Setup the counter. */
b L(loop)
/* Main loop to look for BYTE backwards in the string. Since it's a
small loop (< 8 instructions), align it to 32-bytes. */
.p2align 5
/* Main loop to look for BYTE backwards in the string.
FIXME: Investigate whether 32 byte align helps with this
9 instruction loop. */
.align 5
L(loop):
/* Load two words, compare and merge in a
single register for speed. This is an attempt
to speed up the byte-checking process for bigger strings. */
lwbrx r12,r8,r6
lwbrx r11,r8,r0
addi r8,r8,-4
cmpb r10,r12,r4
#ifdef __LITTLE_ENDIAN__
lwzx r12,0,r8
lwzx r11,r8,r6
#else
lwbrx r12,0,r8
lwbrx r11,r8,r6
#endif
cmpb r3,r12,r4
cmpb r9,r11,r4
or r5,r9,r10 /* Merge everything in one word. */
or r5,r9,r3 /* Merge everything in one word. */
cmplwi cr7,r5,0
bne cr7,L(found)
addi r8,r8,-4
addi r8,r8,-8
bdnz L(loop)
/* We're here because the counter reached 0, and that means we
didn't have any matches for BYTE in the whole range. Just return
the original range. */
addi r8,r8,4
cmplw cr6,r8,r7
bgt cr6,L(loop_small)
b L(null)
/* OK, one (or both) of the words contains BYTE. Check
the first word and decrement the address in case the first
word really contains BYTE. */
/* We may have one more word to read. */
cmplw r8,r0
bnelr
#ifdef __LITTLE_ENDIAN__
lwzx r12,0,r8
#else
lwbrx r12,0,r8
#endif
cmpb r3,r12,r4
cmplwi cr7,r3,0
bne cr7,L(done)
blr
.align 4
L(found):
cmplwi cr6,r10,0
addi r8,r8,4
/* OK, one (or both) of the words contains BYTE. Check
the first word. */
cmplwi cr6,r3,0
bne cr6,L(done)
/* BYTE must be in the second word. Adjust the address
again and move the result of cmpb to r10 so we can calculate the
again and move the result of cmpb to r3 so we can calculate the
pointer. */
mr r10,r9
mr r3,r9
addi r8,r8,-4
/* r10 has the output of the cmpb instruction, that is, it contains
/* r3 has the output of the cmpb instruction, that is, it contains
0xff in the same position as BYTE in the original
word from the string. Use that to calculate the pointer.
We need to make sure BYTE is *before* the end of the
range. */
L(done):
cntlzw r0,r10 /* Count leading zeroes before the match. */
srwi r6,r0,3 /* Convert leading zeroes to bytes. */
addi r0,r6,1
cntlzw r9,r3 /* Count leading zeros before the match. */
cmplw r8,r0 /* Are we on the last word? */
srwi r6,r9,3 /* Convert leading zeros to bytes. */
addi r0,r6,-3
sub r3,r8,r0
cmplw r3,r7
blt L(null)
cmplw cr7,r3,r10
bnelr
bgelr cr7
li r3,0
blr
.align 4
@ -147,28 +161,35 @@ L(small_range):
cmplwi r5,0
beq L(null)
lwbrx r12,r8,r6 /* Load reversed word from memory. */
cmpb r10,r12,r4 /* Check for null bytes in WORD1. */
slw r10,r10,r0
srw r10,r10,r0
cmplwi cr7,r10,0
#ifdef __LITTLE_ENDIAN__
lwzx r12,0,r8
#else
lwbrx r12,0,r8 /* Load reversed word from memory. */
#endif
cmpb r3,r12,r4 /* Check for BYTE in WORD1. */
and r3,r3,r9
cmplwi cr7,r3,0
bne cr7,L(done)
/* Are we done already? */
cmplw r8,r0
addi r8,r8,-4
cmplw r8,r7
ble L(null)
b L(loop_small)
beqlr
.p2align 5
.align 5
L(loop_small):
lwbrx r12,r8,r6
cmpb r10,r12,r4
cmplwi cr6,r10,0
bne cr6,L(done)
#ifdef __LITTLE_ENDIAN__
lwzx r12,0,r8
#else
lwbrx r12,0,r8
#endif
cmpb r3,r12,r4
cmplw r8,r0
cmplwi cr7,r3,0
bne cr7,L(done)
addi r8,r8,-4
cmplw r8,r7
ble L(null)
b L(loop_small)
bne L(loop_small)
blr
END (__memrchr)
weak_alias (__memrchr, memrchr)

View File

@ -27,16 +27,21 @@ ENTRY (__rawmemchr)
clrrwi r8,r3,2 /* Align the address to word boundary. */
/* Replicate byte to word. */
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
rldimi r4,r4,8,48
rldimi r4,r4,16,32
/* Now r4 has a word of c bytes. */
rlwinm r6,r3,3,27,28 /* Calculate padding. */
lwz r12,0(r8) /* Load word from memory. */
cmpb r5,r12,r4 /* Compare each byte against c byte. */
#ifdef __LITTLE_ENDIAN__
srw r5,r5,r6
slw r5,r5,r6
#else
slw r5,r5,r6 /* Move left to discard ignored bits. */
srw r5,r5,r6 /* Bring the bits back as zeros. */
#endif
cmpwi cr7,r5,0 /* If r5 == 0, no c bytes have been found. */
bne cr7,L(done)
@ -90,8 +95,14 @@ L(loop):
word from the string. Use that fact to find out what is
the position of the byte inside the string. */
L(done):
#ifdef __LITTLE_ENDIAN__
addi r0,r5,-1
andc r0,r0,r5
popcntw r0,r0
#else
cntlzw r0,r5 /* Count leading zeros before the match. */
srwi r0,r0,3 /* Convert leading zeroes to bytes. */
#endif
srwi r0,r0,3 /* Convert leading zeros to bytes. */
add r3,r8,r0 /* Return address of the matching char. */
blr
END (__rawmemchr)

View File

@ -25,109 +25,112 @@ ENTRY (__memchr)
CALL_MCOUNT 2
dcbt 0,r3
clrrdi r8,r3,3
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
insrdi r4,r4,8,48
add r7,r3,r5 /* Calculate the last acceptable address. */
insrdi r4,r4,16,32
cmpldi r5,32
li r9, -1
rlwinm r6,r3,3,26,28 /* Calculate padding. */
insrdi r4,r4,32,0
addi r7,r7,-1
#ifdef __LITTLE_ENDIAN__
sld r9,r9,r6
#else
srd r9,r9,r6
#endif
ble L(small_range)
cmpld cr7,r3,r7 /* Compare the starting address (r3) with the
ending address (r7). If (r3 >= r7),
the size passed in was zero or negative. */
ble cr7,L(proceed)
li r7,-1 /* Artificially set our ending address (r7)
such that we will exit early. */
L(proceed):
rlwinm r6,r3,3,26,28 /* Calculate padding. */
cmpldi cr6,r6,0 /* cr6 == Do we have padding? */
ld r12,0(r8) /* Load doubleword from memory. */
cmpb r10,r12,r4 /* Check for BYTEs in DWORD1. */
beq cr6,L(proceed_no_padding)
sld r10,r10,r6
srd r10,r10,r6
L(proceed_no_padding):
cmpldi cr7,r10,0 /* Does r10 indicate we got a hit? */
cmpb r3,r12,r4 /* Check for BYTEs in DWORD1. */
and r3,r3,r9
clrldi r5,r7,61 /* Byte count - 1 in last dword. */
clrrdi r7,r7,3 /* Address of last doubleword. */
cmpldi cr7,r3,0 /* Does r3 indicate we got a hit? */
bne cr7,L(done)
/* See if we are at the last acceptable address yet. */
addi r9,r8,8
cmpld cr6,r9,r7
bge cr6,L(null)
mtcrf 0x01,r8
/* Are we now aligned to a quadword boundary? If so, skip to
the main loop. Otherwise, go through the alignment code. */
bt 28,L(loop_setup)
/* Handle DWORD2 of pair. */
ldu r12,8(r8)
cmpb r10,r12,r4
cmpldi cr7,r10,0
cmpb r3,r12,r4
cmpldi cr7,r3,0
bne cr7,L(done)
/* Are we done already? */
addi r9,r8,8
cmpld cr6,r9,r7
bge cr6,L(null)
L(loop_setup):
sub r5,r7,r9
srdi r6,r5,4 /* Number of loop iterations. */
/* The last dword we want to read in the loop below is the one
containing the last byte of the string, ie. the dword at
(s + size - 1) & ~7, or r7. The first dword read is at
r8 + 8, we read 2 * cnt dwords, so the last dword read will
be at r8 + 8 + 16 * cnt - 8. Solving for cnt gives
cnt = (r7 - r8) / 16 */
sub r6,r7,r8
srdi r6,r6,4 /* Number of loop iterations. */
mtctr r6 /* Setup the counter. */
b L(loop)
/* Main loop to look for BYTE backwards in the string. Since
it's a small loop (< 8 instructions), align it to 32-bytes. */
.p2align 5
/* Main loop to look for BYTE in the string. Since
it's a small loop (8 instructions), align it to 32-bytes. */
.align 5
L(loop):
/* Load two doublewords, compare and merge in a
single register for speed. This is an attempt
to speed up the byte-checking process for bigger strings. */
ld r12,8(r8)
ldu r11,16(r8)
cmpb r10,r12,r4
cmpb r3,r12,r4
cmpb r9,r11,r4
or r5,r9,r10 /* Merge everything in one doubleword. */
cmpldi cr7,r5,0
or r6,r9,r3 /* Merge everything in one doubleword. */
cmpldi cr7,r6,0
bne cr7,L(found)
bdnz L(loop)
/* We're here because the counter reached 0, and that means we
didn't have any matches for BYTE in the whole range. */
subi r11,r7,8
cmpld cr6,r8,r11
blt cr6,L(loop_small)
b L(null)
/* We may have one more dword to read. */
cmpld r8,r7
beqlr
ldu r12,8(r8)
cmpb r3,r12,r4
cmpldi cr6,r3,0
bne cr6,L(done)
blr
.align 4
L(found):
/* OK, one (or both) of the doublewords contains BYTE. Check
the first doubleword and decrement the address in case the first
doubleword really contains BYTE. */
.align 4
L(found):
cmpldi cr6,r10,0
cmpldi cr6,r3,0
addi r8,r8,-8
bne cr6,L(done)
/* BYTE must be in the second doubleword. Adjust the address
again and move the result of cmpb to r10 so we can calculate the
again and move the result of cmpb to r3 so we can calculate the
pointer. */
mr r10,r9
mr r3,r9
addi r8,r8,8
/* r10 has the output of the cmpb instruction, that is, it contains
/* r3 has the output of the cmpb instruction, that is, it contains
0xff in the same position as BYTE in the original
doubleword from the string. Use that to calculate the pointer.
We need to make sure BYTE is *before* the end of the range. */
L(done):
cntlzd r0,r10 /* Count leading zeroes before the match. */
srdi r0,r0,3 /* Convert leading zeroes to bytes. */
#ifdef __LITTLE_ENDIAN__
addi r0,r3,-1
andc r0,r0,r3
popcntd r0,r0 /* Count trailing zeros. */
#else
cntlzd r0,r3 /* Count leading zeros before the match. */
#endif
cmpld r8,r7 /* Are we on the last dword? */
srdi r0,r0,3 /* Convert leading/trailing zeros to bytes. */
add r3,r8,r0
cmpld r3,r7
bge L(null)
cmpld cr7,r0,r5 /* If on the last dword, check byte offset. */
bnelr
blelr cr7
li r3,0
blr
.align 4
@ -139,67 +142,44 @@ L(null):
.align 4
L(small_range):
cmpldi r5,0
rlwinm r6,r3,3,26,28 /* Calculate padding. */
beq L(null) /* This branch is for the cmpldi r5,0 above. */
beq L(null)
ld r12,0(r8) /* Load word from memory. */
cmpldi cr6,r6,0 /* cr6 == Do we have padding? */
cmpb r10,r12,r4 /* Check for BYTE in DWORD1. */
/* If no padding, skip the shifts. */
beq cr6,L(small_no_padding)
sld r10,r10,r6
srd r10,r10,r6
L(small_no_padding):
cmpldi cr7,r10,0
cmpb r3,r12,r4 /* Check for BYTE in DWORD1. */
and r3,r3,r9
cmpldi cr7,r3,0
clrldi r5,r7,61 /* Byte count - 1 in last dword. */
clrrdi r7,r7,3 /* Address of last doubleword. */
cmpld r8,r7 /* Are we done already? */
bne cr7,L(done)
beqlr
/* Are we done already? */
addi r9,r8,8
cmpld r9,r7
bge L(null)
/* If we're not done, drop through into loop_small. */
L(loop_small): /* loop_small has been unrolled. */
ldu r12,8(r8)
cmpb r10,r12,r4
addi r9,r8,8
cmpldi cr6,r10,0
cmpld r9,r7
cmpb r3,r12,r4
cmpldi cr6,r3,0
cmpld r8,r7
bne cr6,L(done) /* Found something. */
bge L(null) /* Hit end of string (length). */
beqlr /* Hit end of string (length). */
ldu r12,8(r8)
cmpb r10,r12,r4
addi r9,r8,8
cmpldi cr6,r10,0
cmpld r9,r7
bne cr6,L(done) /* Found something. */
bge L(null)
ldu r12,8(r8)
subi r11,r7,8
cmpb r10,r12,r4
cmpldi cr6,r10,0
ori r2,r2,0 /* Force a dispatch group. */
cmpb r3,r12,r4
cmpldi cr6,r3,0
cmpld r8,r7
bne cr6,L(done)
beqlr
cmpld r8,r11 /* At end of range? */
bge L(null)
/* For most cases we will never get here. Under some combinations of
padding + length there is a leftover double that still needs to be
checked. */
ldu r12,8(r8)
cmpb r10,r12,r4
addi r9,r8,8
cmpldi cr6,r10,0
cmpld r9,r7
bne cr6,L(done) /* Found something. */
cmpb r3,r12,r4
cmpldi cr6,r3,0
cmpld r8,r7
bne cr6,L(done)
beqlr
/* Save a branch and exit directly. */
li r3,0
ldu r12,8(r8)
cmpb r3,r12,r4
cmpldi cr6,r3,0
bne cr6,L(done)
blr
END (__memchr)
weak_alias (__memchr, memchr)
libc_hidden_builtin_def (memchr)

View File

@ -23,118 +23,132 @@
.machine power7
ENTRY (__memrchr)
CALL_MCOUNT
dcbt 0,r3
mr r7,r3
add r3,r7,r5 /* Calculate the last acceptable address. */
cmpld cr7,r3,r7 /* Is the address equal or less than r3? */
add r7,r3,r5 /* Calculate the last acceptable address. */
neg r0,r7
addi r7,r7,-1
mr r10,r3
clrrdi r6,r7,7
li r9,3<<5
dcbt r9,r6,16 /* Stream hint, decreasing addresses. */
/* Replicate BYTE to doubleword. */
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
insrdi r4,r4,8,48
insrdi r4,r4,16,32
insrdi r4,r4,32,0
bge cr7,L(proceed)
li r3,-1 /* Make r11 the biggest if r4 <= 0. */
L(proceed):
li r6,-8
addi r9,r3,-1
clrrdi r8,r9,3
addi r8,r8,8
neg r0,r3
li r9,-1
rlwinm r0,r0,3,26,28 /* Calculate padding. */
clrrdi r8,r7,3
srd r9,r9,r0
cmpldi r5,32
clrrdi r0,r10,3
ble L(small_range)
ldbrx r12,r8,r6 /* Load reversed doubleword from memory. */
cmpb r10,r12,r4 /* Check for BYTE in DWORD1. */
sld r10,r10,r0
srd r10,r10,r0
cmpldi cr7,r10,0 /* If r10 == 0, no BYTEs have been found. */
#ifdef __LITTLE_ENDIAN__
ldx r12,0,r8
#else
ldbrx r12,0,r8 /* Load reversed doubleword from memory. */
#endif
cmpb r3,r12,r4 /* Check for BYTE in DWORD1. */
and r3,r3,r9
cmpldi cr7,r3,0 /* If r3 == 0, no BYTEs have been found. */
bne cr7,L(done)
/* Are we done already? */
addi r9,r8,-8
cmpld cr6,r9,r7
ble cr6,L(null)
mtcrf 0x01,r8
/* Are we now aligned to a doubleword boundary? If so, skip to
/* Are we now aligned to a quadword boundary? If so, skip to
the main loop. Otherwise, go through the alignment code. */
mr r8,r9
bt 28,L(loop_setup)
bf 28,L(loop_setup)
/* Handle DWORD2 of pair. */
#ifdef __LITTLE_ENDIAN__
ldx r12,r8,r6
#else
ldbrx r12,r8,r6
cmpb r10,r12,r4
cmpldi cr7,r10,0
#endif
addi r8,r8,-8
cmpb r3,r12,r4
cmpldi cr7,r3,0
bne cr7,L(done)
/* Are we done already. */
addi r8,r8,-8
cmpld cr6,r8,r7
ble cr6,L(null)
L(loop_setup):
li r0,-16
sub r5,r8,r7
srdi r9,r5,4 /* Number of loop iterations. */
/* The last dword we want to read in the loop below is the one
containing the first byte of the string, ie. the dword at
s & ~7, or r0. The first dword read is at r8 - 8, we
read 2 * cnt dwords, so the last dword read will be at
r8 - 8 - 16 * cnt + 8. Solving for cnt gives
cnt = (r8 - r0) / 16 */
sub r5,r8,r0
addi r8,r8,-8
srdi r9,r5,4 /* Number of loop iterations. */
mtctr r9 /* Setup the counter. */
b L(loop)
/* Main loop to look for BYTE backwards in the string. Since it's a
small loop (< 8 instructions), align it to 32-bytes. */
.p2align 5
/* Main loop to look for BYTE backwards in the string.
FIXME: Investigate whether 32 byte align helps with this
9 instruction loop. */
.align 5
L(loop):
/* Load two doublewords, compare and merge in a
single register for speed. This is an attempt
to speed up the byte-checking process for bigger strings. */
ldbrx r12,r8,r6
ldbrx r11,r8,r0
addi r8,r8,-8
cmpb r10,r12,r4
#ifdef __LITTLE_ENDIAN__
ldx r12,0,r8
ldx r11,r8,r6
#else
ldbrx r12,0,r8
ldbrx r11,r8,r6
#endif
cmpb r3,r12,r4
cmpb r9,r11,r4
or r5,r9,r10 /* Merge everything in one doubleword. */
or r5,r9,r3 /* Merge everything in one doubleword. */
cmpldi cr7,r5,0
bne cr7,L(found)
addi r8,r8,-8
addi r8,r8,-16
bdnz L(loop)
/* We're here because the counter reached 0, and that means we
didn't have any matches for BYTE in the whole range. Just return
the original range. */
addi r8,r8,8
cmpld cr6,r8,r7
bgt cr6,L(loop_small)
b L(null)
/* OK, one (or both) of the words contains BYTE. Check
the first word and decrement the address in case the first
word really contains BYTE. */
/* We may have one more word to read. */
cmpld r8,r0
bnelr
#ifdef __LITTLE_ENDIAN__
ldx r12,0,r8
#else
ldbrx r12,0,r8
#endif
cmpb r3,r12,r4
cmpldi cr7,r3,0
bne cr7,L(done)
blr
.align 4
L(found):
cmpldi cr6,r10,0
addi r8,r8,8
/* OK, one (or both) of the dwords contains BYTE. Check
the first dword. */
cmpldi cr6,r3,0
bne cr6,L(done)
/* BYTE must be in the second word. Adjust the address
again and move the result of cmpb to r10 so we can calculate the
again and move the result of cmpb to r3 so we can calculate the
pointer. */
mr r10,r9
mr r3,r9
addi r8,r8,-8
/* r10 has the output of the cmpb instruction, that is, it contains
0xff in the same position as the BYTE in the original
/* r3 has the output of the cmpb instruction, that is, it contains
0xff in the same position as BYTE in the original
word from the string. Use that to calculate the pointer.
We need to make sure BYTE is *before* the end of the
range. */
L(done):
cntlzd r0,r10 /* Count leading zeroes before the match. */
srdi r6,r0,3 /* Convert leading zeroes to bytes. */
addi r0,r6,1
cntlzd r9,r3 /* Count leading zeros before the match. */
cmpld r8,r0 /* Are we on the last word? */
srdi r6,r9,3 /* Convert leading zeros to bytes. */
addi r0,r6,-7
sub r3,r8,r0
cmpld r3,r7
blt L(null)
cmpld cr7,r3,r10
bnelr
bgelr cr7
li r3,0
blr
.align 4
@ -148,29 +162,35 @@ L(small_range):
cmpldi r5,0
beq L(null)
ldbrx r12,r8,r6 /* Load reversed doubleword from memory. */
cmpb r10,r12,r4 /* Check for BYTE in DWORD1. */
sld r10,r10,r0
srd r10,r10,r0
cmpldi cr7,r10,0
#ifdef __LITTLE_ENDIAN__
ldx r12,0,r8
#else
ldbrx r12,0,r8 /* Load reversed doubleword from memory. */
#endif
cmpb r3,r12,r4 /* Check for BYTE in DWORD1. */
and r3,r3,r9
cmpldi cr7,r3,0
bne cr7,L(done)
/* Are we done already? */
cmpld r8,r0
addi r8,r8,-8
cmpld r8,r7
ble L(null)
b L(loop_small)
beqlr
.p2align 5
.align 5
L(loop_small):
ldbrx r12,r8,r6
cmpb r10,r12,r4
cmpldi cr6,r10,0
bne cr6,L(done)
#ifdef __LITTLE_ENDIAN__
ldx r12,0,r8
#else
ldbrx r12,0,r8
#endif
cmpb r3,r12,r4
cmpld r8,r0
cmpldi cr7,r3,0
bne cr7,L(done)
addi r8,r8,-8
cmpld r8,r7
ble L(null)
b L(loop_small)
bne L(loop_small)
blr
END (__memrchr)
weak_alias (__memrchr, memrchr)

View File

@ -27,8 +27,8 @@ ENTRY (__rawmemchr)
clrrdi r8,r3,3 /* Align the address to doubleword boundary. */
/* Replicate byte to doubleword. */
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
insrdi r4,r4,8,48
insrdi r4,r4,16,32
insrdi r4,r4,32,0
/* Now r4 has a doubleword of c bytes. */
@ -36,8 +36,13 @@ ENTRY (__rawmemchr)
rlwinm r6,r3,3,26,28 /* Calculate padding. */
ld r12,0(r8) /* Load doubleword from memory. */
cmpb r5,r12,r4 /* Compare each byte against c byte. */
#ifdef __LITTLE_ENDIAN__
srd r5,r5,r6
sld r5,r5,r6
#else
sld r5,r5,r6 /* Move left to discard ignored bits. */
srd r5,r5,r6 /* Bring the bits back as zeros. */
#endif
cmpdi cr7,r5,0 /* If r5 == 0, no c bytes have been found. */
bne cr7,L(done)
@ -91,8 +96,14 @@ L(loop):
doubleword from the string. Use that fact to find out what is
the position of the byte inside the string. */
L(done):
#ifdef __LITTLE_ENDIAN__
addi r0,r5,-1
andc r0,r0,r5
popcntd r0,r0 /* Count trailing zeros. */
#else
cntlzd r0,r5 /* Count leading zeros before the match. */
srdi r0,r0,3 /* Convert leading zeroes to bytes. */
#endif
srdi r0,r0,3 /* Convert leading zeros to bytes. */
add r3,r8,r0 /* Return address of the matching char. */
blr
END (__rawmemchr)