diff --git a/benchtests/Makefile b/benchtests/Makefile index 922e2a94b1..5cd211ee9a 100644 --- a/benchtests/Makefile +++ b/benchtests/Makefile @@ -31,7 +31,7 @@ ifneq (,$(filter yes,$(float128-fcts) $(float128-alias-fcts))) bench-math += expf128 powf128 sinf128 endif -bench-pthread := pthread_once thread_create +bench-pthread := pthread_once thread_create pthread-locks bench-string := ffs ffsll @@ -109,6 +109,7 @@ $(addprefix $(objpfx)bench-,$(bench-math)): $(libm) $(addprefix $(objpfx)bench-,$(math-benchset)): $(libm) $(addprefix $(objpfx)bench-,$(bench-pthread)): $(shared-thread-library) $(addprefix $(objpfx)bench-,$(bench-malloc)): $(shared-thread-library) +$(addprefix $(objpfx)bench-,pthread-locks): $(libm) diff --git a/benchtests/bench-pthread-locks.c b/benchtests/bench-pthread-locks.c new file mode 100644 index 0000000000..2bd49d8762 --- /dev/null +++ b/benchtests/bench-pthread-locks.c @@ -0,0 +1,554 @@ +/* Measure various lock acquisition times for empty critical sections. + Copyright (C) 2020 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + . */ + +#define TEST_MAIN +#define TEST_NAME "pthread-locks" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "bench-timing.h" +#include "json-lib.h" + +/* The point of this benchmark is to measure the overhead of an empty + critical section or a small critical section. This is never going + to be indicative of real application performance. Instead we are + trying to benchmark the effects of the compiler and the runtime + coupled with a particular set of hardware atomic operations. + The numbers from this benchmark should be taken with a massive gain + of salt and viewed through the eyes of expert reviewers. */ + +static pthread_mutex_t m; +static pthread_rwlock_t rw; +static pthread_cond_t cv; +static pthread_cond_t consumer_c, producer_c; +static int cv_done; +static pthread_spinlock_t sp; +static sem_t sem; + +typedef timing_t (*test_t)(long, int); + +#define START_ITERS 1000 + +#define FILLER_GOES_HERE \ + if (filler) \ + do_filler (); + +/* Everyone loves a good fibonacci series. This isn't quite one of + them because we need larger values in fewer steps, in a way that + won't be optimized away. We're looking to approximately double the + total time each test iteration takes, so as to not swamp the useful + timings. */ + +#pragma GCC push_options +#pragma GCC optimize(1) + +static int __attribute__((noinline)) +fibonacci (int i) +{ + asm(""); + if (i > 2) + return fibonacci (i-1) + fibonacci (i-2); + return 10+i; +} + +static void +do_filler (void) +{ + static char buf1[512], buf2[512]; + int f = fibonacci (5); + memcpy (buf1, buf2, f); +} + +#pragma GCC pop_options + +static timing_t +test_mutex (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_mutex_init (&m, NULL); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_mutex_lock (&m); + FILLER_GOES_HERE; + pthread_mutex_unlock (&m); + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + return cur; +} + +static timing_t +test_mutex_trylock (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_mutex_init (&m, NULL); + pthread_mutex_lock (&m); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_mutex_trylock (&m); + FILLER_GOES_HERE; + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + pthread_mutex_unlock (&m); + return cur; +} + +static timing_t +test_rwlock_read (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_rwlock_init (&rw, NULL); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_rwlock_rdlock (&rw); + FILLER_GOES_HERE; + pthread_rwlock_unlock (&rw); + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + return cur; +} + +static timing_t +test_rwlock_tryread (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_rwlock_init (&rw, NULL); + pthread_rwlock_wrlock (&rw); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_rwlock_tryrdlock (&rw); + FILLER_GOES_HERE; + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + pthread_rwlock_unlock (&rw); + return cur; +} + +static timing_t +test_rwlock_write (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_rwlock_init (&rw, NULL); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_rwlock_wrlock (&rw); + FILLER_GOES_HERE; + pthread_rwlock_unlock (&rw); + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + return cur; +} + +static timing_t +test_rwlock_trywrite (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_rwlock_init (&rw, NULL); + pthread_rwlock_rdlock (&rw); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_rwlock_trywrlock (&rw); + FILLER_GOES_HERE; + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + pthread_rwlock_unlock (&rw); + return cur; +} + +static timing_t +test_spin_lock (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_spin_init (&sp, PTHREAD_PROCESS_PRIVATE); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_spin_lock (&sp); + FILLER_GOES_HERE; + pthread_spin_unlock (&sp); + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + return cur; +} + +static timing_t +test_spin_trylock (long iters, int filler) +{ + timing_t start, stop, cur; + + pthread_spin_init (&sp, PTHREAD_PROCESS_PRIVATE); + pthread_spin_lock (&sp); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_spin_trylock (&sp); + FILLER_GOES_HERE; + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + pthread_spin_unlock (&sp); + return cur; +} + +static timing_t +test_sem_wait (long iters, int filler) +{ + timing_t start, stop, cur; + + sem_init (&sem, 0, 1); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + sem_post (&sem); + FILLER_GOES_HERE; + sem_wait (&sem); + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + return cur; +} + +static timing_t +test_sem_trywait (long iters, int filler) +{ + timing_t start, stop, cur; + + sem_init (&sem, 0, 0); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + sem_trywait (&sem); + FILLER_GOES_HERE; + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + return cur; +} + +static void * +test_condvar_helper (void *v) +{ + /* This is wasteful, but the alternative is to add the overhead of a + mutex lock/unlock to the overall iteration (both threads) and we + don't want that. Ideally, this thread would run on an + independent processing core anyway. The ONLY goal here is to + minimize the time the other thread spends waiting for us. */ + while (__atomic_load_n (&cv_done, __ATOMIC_RELAXED) == 0) + pthread_cond_signal (&cv); + + return NULL; +} + +static timing_t +test_condvar (long iters, int filler) +{ + timing_t start, stop, cur; + pthread_t helper_id; + + pthread_mutex_init (&m, NULL); + pthread_cond_init (&cv, NULL); + pthread_mutex_lock (&m); + + __atomic_store_n (&cv_done, 0, __ATOMIC_RELAXED); + pthread_create (&helper_id, NULL, test_condvar_helper, &iters); + + TIMING_NOW (start); + for (long j = iters; j >= 0; --j) + { + pthread_cond_wait (&cv, &m); + FILLER_GOES_HERE; + } + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + pthread_mutex_unlock (&m); + __atomic_store_n (&cv_done, 1, __ATOMIC_RELAXED); + + pthread_join (helper_id, NULL); + return cur; +} + +/* How many items are "queued" in our pretend queue. */ +static int queued = 0; + +typedef struct Producer_Params { + long iters; + int filler; +} Producer_Params; + +/* We only benchmark the consumer thread, but both threads are doing + essentially the same thing, and never run in parallel due to the + locks. Thus, even if they run on separate processing cores, we + count the time for both threads. */ +static void * +test_producer_thread (void *v) +{ + Producer_Params *p = (Producer_Params *) v; + long iters = p->iters; + int filler = p->filler; + long j; + + for (j = iters; j >= 0; --j) + { + /* Aquire lock on the queue. */ + pthread_mutex_lock (&m); + /* if something's already there, wait. */ + while (queued > 0) + pthread_cond_wait (&consumer_c, &m); + + /* Put something on the queue */ + FILLER_GOES_HERE; + ++ queued; + pthread_cond_signal (&producer_c); + + /* Give the other thread a chance to run. */ + pthread_mutex_unlock (&m); + } + + return NULL; +} + +static timing_t +test_consumer_producer (long iters, int filler) +{ + timing_t start, stop, cur; + pthread_t helper_id; + Producer_Params p; + + p.iters = iters; + p.filler = filler; + + pthread_mutex_init (&m, NULL); + pthread_cond_init (&cv, NULL); + + pthread_create (&helper_id, NULL, test_producer_thread, &p); + + TIMING_NOW (start); + + for (long j = iters; j >= 0; --j) + { + /* Aquire lock on the queue. */ + pthread_mutex_lock (&m); + /* Wait for something to be on the queue. */ + while (queued == 0) + pthread_cond_wait (&producer_c, &m); + + /* Take if off. */ + FILLER_GOES_HERE; + -- queued; + pthread_cond_signal (&consumer_c); + + /* Give the other thread a chance to run. */ + pthread_mutex_unlock (&m); + } + + TIMING_NOW (stop); + TIMING_DIFF (cur, start, stop); + + + pthread_join (helper_id, NULL); + return cur; +} + +/* Number of runs we use for computing mean and standard deviation. + We actually do two additional runs and discard the outliers. */ +#define RUN_COUNT 10 + +static int +do_bench_2 (const char *name, test_t func, int filler, json_ctx_t *js) +{ + timing_t cur; + struct timeval ts, te; + double tsd, ted, td; + long iters, iters_limit; + timing_t curs[RUN_COUNT + 2]; + int i, j; + double mean, stdev; + + iters = START_ITERS; + iters_limit = LONG_MAX / 100; + + while (1) { + gettimeofday (&ts, NULL); + cur = func(iters, filler); + gettimeofday (&te, NULL); + + /* We want a test to take at least 0.01 seconds, and try + increasingly larger iteration counts until it does. This + allows for approximately constant-time tests regardless of + hardware speed, without the overhead of checking the time + inside the test loop itself. We stop at a million iterations + as that should be precise enough. Once we determine a suitable + iteration count, we run the test multiple times to calculate + mean and standard deviation. */ + + /* Note that this also primes the CPU cache and triggers faster + MHz, we hope. */ + tsd = ts.tv_sec + ts.tv_usec / 1000000.0; + ted = te.tv_sec + te.tv_usec / 1000000.0; + td = ted - tsd; + if (td >= 0.01 + || iters >= iters_limit + || iters >= 1000000) + break; + + iters *= 10; + } + + curs[0] = cur; + for (i = 1; i < RUN_COUNT + 2; i ++) + curs[i] = func(iters, filler); + + /* We sort the results so we can discard the fastest and slowest + times as outliers. In theory we should keep the fastest time, + but IMHO this is more fair. A simple bubble sort suffices. */ + + for (i = 0; i < RUN_COUNT + 1; i ++) + for (j = i + 1; j < RUN_COUNT + 2; j ++) + if (curs[i] > curs[j]) + { + timing_t temp = curs[i]; + curs[i] = curs[j]; + curs[j] = temp; + } + + /* Now calculate mean and standard deviation, skipping the outliers. */ + mean = 0.0; + for (i = 1; i