mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
math: Remove slow paths from atan2 [BZ #15267]
Remove slow paths from atan2. Add ULP annotations. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
This commit is contained in:
parent
e898cd1593
commit
4e1a870b9a
@ -34,7 +34,7 @@
|
||||
#define MM 5
|
||||
#ifdef BIG_ENDI
|
||||
|
||||
static const number
|
||||
static const mynumber
|
||||
/* polynomial I */
|
||||
/**/ d3 = {{0xbfd55555, 0x55555555} }, /* -0.333... */
|
||||
/**/ d5 = {{0x3fc99999, 0x999997fd} }, /* 0.199... */
|
||||
@ -96,7 +96,7 @@
|
||||
#else
|
||||
#ifdef LITTLE_ENDI
|
||||
|
||||
static const number
|
||||
static const mynumber
|
||||
/* polynomial I */
|
||||
/**/ d3 = {{0x55555555, 0xbfd55555} }, /* -0.333... */
|
||||
/**/ d5 = {{0x999997fd, 0x3fc99999} }, /* 0.199... */
|
||||
|
@ -20,25 +20,14 @@
|
||||
/* MODULE_NAME: atnat2.c */
|
||||
/* */
|
||||
/* FUNCTIONS: uatan2 */
|
||||
/* atan2Mp */
|
||||
/* signArctan2 */
|
||||
/* normalized */
|
||||
/* */
|
||||
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */
|
||||
/* mpatan.c mpatan2.c mpsqrt.c */
|
||||
/* FILES NEEDED: dla.h endian.h mydefs.h atnat2.h */
|
||||
/* uatan.tbl */
|
||||
/* */
|
||||
/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/
|
||||
/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/
|
||||
/* */
|
||||
/* Assumption: Machine arithmetic operations are performed in */
|
||||
/* round to nearest mode of IEEE 754 standard. */
|
||||
/* */
|
||||
/************************************************************************/
|
||||
|
||||
#include <dla.h>
|
||||
#include "mpa.h"
|
||||
#include "MathLib.h"
|
||||
#include "mydefs.h"
|
||||
#include "uatan.tbl"
|
||||
#include "atnat2.h"
|
||||
@ -48,20 +37,15 @@
|
||||
#include <math-barriers.h>
|
||||
#include <math_private.h>
|
||||
#include <fenv_private.h>
|
||||
#include <stap-probe.h>
|
||||
#include <libm-alias-finite.h>
|
||||
|
||||
#ifndef SECTION
|
||||
# define SECTION
|
||||
#endif
|
||||
|
||||
/************************************************************************/
|
||||
/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */
|
||||
/* it computes the correctly rounded (to nearest) value of atan2(y,x). */
|
||||
/* Assumption: Machine arithmetic operations are performed in */
|
||||
/* round to nearest mode of IEEE 754 standard. */
|
||||
/************************************************************************/
|
||||
static double atan2Mp (double, double, const int[]);
|
||||
#define TWO52 0x1.0p52
|
||||
#define TWOM1022 0x1.0p-1022
|
||||
|
||||
/* Fix the sign and return after stage 1 or stage 2 */
|
||||
static double
|
||||
signArctan2 (double y, double z)
|
||||
@ -69,18 +53,15 @@ signArctan2 (double y, double z)
|
||||
return copysign (z, y);
|
||||
}
|
||||
|
||||
static double normalized (double, double, double, double);
|
||||
void __mpatan2 (mp_no *, mp_no *, mp_no *, int);
|
||||
|
||||
/* atan2 with max ULP of ~0.524 based on random sampling. */
|
||||
double
|
||||
SECTION
|
||||
__ieee754_atan2 (double y, double x)
|
||||
{
|
||||
int i, de, ux, dx, uy, dy;
|
||||
static const int pr[MM] = { 6, 8, 10, 20, 32 };
|
||||
double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3,
|
||||
z, zz, cor, s1, ss1, s2, ss2;
|
||||
number num;
|
||||
double ax, ay, u, du, v, vv, dv, t1, t2, t3,
|
||||
z, zz, cor;
|
||||
mynumber num;
|
||||
|
||||
static const int ep = 59768832, /* 57*16**5 */
|
||||
em = -59768832; /* -57*16**5 */
|
||||
@ -208,10 +189,8 @@ __ieee754_atan2 (double y, double x)
|
||||
if (x > 0)
|
||||
{
|
||||
double ret;
|
||||
if ((z = ay / ax) < TWOM1022)
|
||||
ret = normalized (ax, ay, y, z);
|
||||
else
|
||||
ret = signArctan2 (y, z);
|
||||
z = ay / ax;
|
||||
ret = signArctan2 (y, z);
|
||||
if (fabs (ret) < DBL_MIN)
|
||||
{
|
||||
double vret = ret ? ret : DBL_MIN;
|
||||
@ -270,30 +249,12 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (d11.d
|
||||
+ v * d13.d)))));
|
||||
|
||||
if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
MUL2 (u, du, u, du, v, vv, t1, t2);
|
||||
s1 = v * (f11.d + v * (f13.d
|
||||
+ v * (f15.d + v * (f17.d + v * f19.d))));
|
||||
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2);
|
||||
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
|
||||
|
||||
if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
return atan2Mp (x, y, pr);
|
||||
z = u + zz;
|
||||
/* Max ULP is 0.504. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
i = (TWO52 + TWO8 * u) - TWO52;
|
||||
i = (TWO52 + 256 * u) - TWO52;
|
||||
i -= 16;
|
||||
t3 = u - cij[i][0].d;
|
||||
EADD (t3, du, v, dv);
|
||||
@ -304,43 +265,9 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (cij[i][4].d
|
||||
+ v * (cij[i][5].d
|
||||
+ v * cij[i][6].d))));
|
||||
if (i < 112)
|
||||
{
|
||||
if (i < 48)
|
||||
u9 = u91.d; /* u < 1/4 */
|
||||
else
|
||||
u9 = u92.d;
|
||||
} /* 1/4 <= u < 1/2 */
|
||||
else
|
||||
{
|
||||
if (i < 176)
|
||||
u9 = u93.d; /* 1/2 <= u < 3/4 */
|
||||
else
|
||||
u9 = u94.d;
|
||||
} /* 3/4 <= u <= 1 */
|
||||
if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
t1 = u - hij[i][0].d;
|
||||
EADD (t1, du, v, vv);
|
||||
s1 = v * (hij[i][11].d
|
||||
+ v * (hij[i][12].d
|
||||
+ v * (hij[i][13].d
|
||||
+ v * (hij[i][14].d
|
||||
+ v * hij[i][15].d))));
|
||||
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
|
||||
|
||||
if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t1 + zz;
|
||||
/* Max ULP is 0.56. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
/* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */
|
||||
@ -355,31 +282,12 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * d13.d)))));
|
||||
ESUB (hpi.d, u, t2, cor);
|
||||
t3 = ((hpi1.d + cor) - du) - zz;
|
||||
if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
MUL2 (u, du, u, du, v, vv, t1, t2);
|
||||
s1 = v * (f11.d
|
||||
+ v * (f13.d
|
||||
+ v * (f15.d + v * (f17.d + v * f19.d))));
|
||||
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2);
|
||||
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
|
||||
SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2);
|
||||
|
||||
if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t2 + t3;
|
||||
/* Max ULP is 0.501. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
i = (TWO52 + TWO8 * u) - TWO52;
|
||||
i = (TWO52 + 256 * u) - TWO52;
|
||||
i -= 16;
|
||||
v = (u - cij[i][0].d) + du;
|
||||
|
||||
@ -389,36 +297,9 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (cij[i][5].d
|
||||
+ v * cij[i][6].d))));
|
||||
t1 = hpi.d - cij[i][1].d;
|
||||
if (i < 112)
|
||||
ua = ua1.d; /* w < 1/2 */
|
||||
else
|
||||
ua = ua2.d; /* w >= 1/2 */
|
||||
if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
t1 = u - hij[i][0].d;
|
||||
EADD (t1, du, v, vv);
|
||||
|
||||
s1 = v * (hij[i][11].d
|
||||
+ v * (hij[i][12].d
|
||||
+ v * (hij[i][13].d
|
||||
+ v * (hij[i][14].d
|
||||
+ v * hij[i][15].d))));
|
||||
|
||||
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
|
||||
SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2);
|
||||
|
||||
if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t1 + zz;
|
||||
/* Max ULP is 0.503. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
/* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */
|
||||
@ -434,30 +315,12 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (d11.d + v * d13.d)))));
|
||||
EADD (hpi.d, u, t2, cor);
|
||||
t3 = ((hpi1.d + cor) + du) + zz;
|
||||
if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
MUL2 (u, du, u, du, v, vv, t1, t2);
|
||||
s1 = v * (f11.d
|
||||
+ v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d))));
|
||||
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2);
|
||||
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2);
|
||||
|
||||
if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t2 + t3;
|
||||
/* Max ULP is 0.501. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
i = (TWO52 + TWO8 * u) - TWO52;
|
||||
i = (TWO52 + 256 * u) - TWO52;
|
||||
i -= 16;
|
||||
v = (u - cij[i][0].d) + du;
|
||||
zz = hpi1.d + v * (cij[i][2].d
|
||||
@ -466,34 +329,9 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (cij[i][5].d
|
||||
+ v * cij[i][6].d))));
|
||||
t1 = hpi.d + cij[i][1].d;
|
||||
if (i < 112)
|
||||
ua = ua1.d; /* w < 1/2 */
|
||||
else
|
||||
ua = ua2.d; /* w >= 1/2 */
|
||||
if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
t1 = u - hij[i][0].d;
|
||||
EADD (t1, du, v, vv);
|
||||
s1 = v * (hij[i][11].d
|
||||
+ v * (hij[i][12].d
|
||||
+ v * (hij[i][13].d
|
||||
+ v * (hij[i][14].d
|
||||
+ v * hij[i][15].d))));
|
||||
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
|
||||
ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2);
|
||||
|
||||
if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t1 + zz;
|
||||
/* Max ULP is 0.503. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
/* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */
|
||||
@ -506,29 +344,12 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (d9.d + v * (d11.d + v * d13.d)))));
|
||||
ESUB (opi.d, u, t2, cor);
|
||||
t3 = ((opi1.d + cor) - du) - zz;
|
||||
if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
MUL2 (u, du, u, du, v, vv, t1, t2);
|
||||
s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d))));
|
||||
ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
MUL2 (u, du, s1, ss1, s2, ss2, t1, t2);
|
||||
ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
|
||||
SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2);
|
||||
|
||||
if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t2 + t3;
|
||||
/* Max ULP is 0.501. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
i = (TWO52 + TWO8 * u) - TWO52;
|
||||
i = (TWO52 + 256 * u) - TWO52;
|
||||
i -= 16;
|
||||
v = (u - cij[i][0].d) + du;
|
||||
zz = opi1.d - v * (cij[i][2].d
|
||||
@ -536,86 +357,11 @@ __ieee754_atan2 (double y, double x)
|
||||
+ v * (cij[i][4].d
|
||||
+ v * (cij[i][5].d + v * cij[i][6].d))));
|
||||
t1 = opi.d - cij[i][1].d;
|
||||
if (i < 112)
|
||||
ua = ua1.d; /* w < 1/2 */
|
||||
else
|
||||
ua = ua2.d; /* w >= 1/2 */
|
||||
if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
|
||||
return signArctan2 (y, z);
|
||||
|
||||
t1 = u - hij[i][0].d;
|
||||
|
||||
EADD (t1, du, v, vv);
|
||||
|
||||
s1 = v * (hij[i][11].d
|
||||
+ v * (hij[i][12].d
|
||||
+ v * (hij[i][13].d
|
||||
+ v * (hij[i][14].d + v * hij[i][15].d))));
|
||||
|
||||
ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
|
||||
MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2);
|
||||
ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
|
||||
SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2);
|
||||
|
||||
if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
|
||||
return signArctan2 (y, z);
|
||||
return atan2Mp (x, y, pr);
|
||||
z = t1 + zz;
|
||||
/* Max ULP is 0.502. */
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
#ifndef __ieee754_atan2
|
||||
libm_alias_finite (__ieee754_atan2, __atan2)
|
||||
#endif
|
||||
|
||||
/* Treat the Denormalized case */
|
||||
static double
|
||||
SECTION
|
||||
normalized (double ax, double ay, double y, double z)
|
||||
{
|
||||
int p;
|
||||
mp_no mpx, mpy, mpz, mperr, mpz2, mpt1;
|
||||
p = 6;
|
||||
__dbl_mp (ax, &mpx, p);
|
||||
__dbl_mp (ay, &mpy, p);
|
||||
__dvd (&mpy, &mpx, &mpz, p);
|
||||
__dbl_mp (ue.d, &mpt1, p);
|
||||
__mul (&mpz, &mpt1, &mperr, p);
|
||||
__sub (&mpz, &mperr, &mpz2, p);
|
||||
__mp_dbl (&mpz2, &z, p);
|
||||
return signArctan2 (y, z);
|
||||
}
|
||||
|
||||
/* Stage 3: Perform a multi-Precision computation */
|
||||
static double
|
||||
SECTION
|
||||
atan2Mp (double x, double y, const int pr[])
|
||||
{
|
||||
double z1, z2;
|
||||
int i, p;
|
||||
mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1;
|
||||
for (i = 0; i < MM; i++)
|
||||
{
|
||||
p = pr[i];
|
||||
__dbl_mp (x, &mpx, p);
|
||||
__dbl_mp (y, &mpy, p);
|
||||
__mpatan2 (&mpy, &mpx, &mpz, p);
|
||||
__dbl_mp (ud[i].d, &mpt1, p);
|
||||
__mul (&mpz, &mpt1, &mperr, p);
|
||||
__add (&mpz, &mperr, &mpz1, p);
|
||||
__sub (&mpz, &mperr, &mpz2, p);
|
||||
__mp_dbl (&mpz1, &z1, p);
|
||||
__mp_dbl (&mpz2, &z2, p);
|
||||
if (z1 == z2)
|
||||
{
|
||||
LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1);
|
||||
return z1;
|
||||
}
|
||||
}
|
||||
LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1);
|
||||
return z1; /*if impossible to do exact computing */
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user