mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-25 22:40:05 +00:00
Better exp polynomial
The lesser the __mul calls, the better it is for performance.
This commit is contained in:
parent
909279a5cf
commit
4e92d59e26
@ -1,5 +1,8 @@
|
||||
2013-02-13 Siddhesh Poyarekar <siddhesh@redhat.com>
|
||||
|
||||
* sysdeps/ieee754/dbl-64/mpexp.c (__mpexp): Faster polynomial
|
||||
evaluation.
|
||||
|
||||
* sysdeps/ieee754/dbl-64/mpa.c (__mul): Don't bother with zero
|
||||
values in the mantissa.
|
||||
|
||||
|
@ -49,6 +49,15 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
0, 0, 0, 0, 3, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6,
|
||||
6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8
|
||||
};
|
||||
|
||||
/* Factorials for the values of np above. */
|
||||
static const double nfa[33] =
|
||||
{
|
||||
1.0, 1.0, 1.0, 1.0, 6.0, 6.0, 24.0, 24.0, 120.0, 24.0, 24.0,
|
||||
120.0, 120.0, 120.0, 720.0, 720.0, 720.0, 720.0, 720.0, 720.0,
|
||||
720.0, 720.0, 720.0, 720.0, 5040.0, 5040.0, 5040.0, 5040.0,
|
||||
40320.0, 40320.0, 40320.0, 40320.0, 40320.0
|
||||
};
|
||||
static const int m1p[33] =
|
||||
{
|
||||
0, 0, 0, 0,
|
||||
@ -71,16 +80,7 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
{0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 39, 43, 47, 51, 55, 59, 63},
|
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 43, 47, 50, 54}
|
||||
};
|
||||
mp_no mpk =
|
||||
{
|
||||
0,
|
||||
{
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
||||
}
|
||||
};
|
||||
mp_no mps, mpak, mpt1, mpt2;
|
||||
mp_no mps, mpk, mpt1, mpt2;
|
||||
|
||||
/* Choose m,n and compute a=2**(-m). */
|
||||
n = np[p];
|
||||
@ -115,24 +115,38 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
break;
|
||||
}
|
||||
|
||||
/* Compute s=x*2**(-m). Put result in mps. */
|
||||
/* Compute s=x*2**(-m). Put result in mps. This is the range-reduced input
|
||||
that we will use to compute e^s. For the final result, simply raise it
|
||||
to 2^m. */
|
||||
__pow_mp (-m, &mpt1, p);
|
||||
__mul (x, &mpt1, &mps, p);
|
||||
|
||||
/* Evaluate the polynomial. Put result in mpt2. */
|
||||
mpk.e = 1;
|
||||
mpk.d[0] = ONE;
|
||||
mpk.d[1] = n;
|
||||
__dvd (&mps, &mpk, &mpt1, p);
|
||||
__add (&mpone, &mpt1, &mpak, p);
|
||||
for (k = n - 1; k > 1; k--)
|
||||
/* Compute the Taylor series for e^s:
|
||||
|
||||
1 + x/1! + x^2/2! + x^3/3! ...
|
||||
|
||||
for N iterations. We compute this as:
|
||||
|
||||
e^x = 1 + (x * n!/1! + x^2 * n!/2! + x^3 * n!/3!) / n!
|
||||
= 1 + (x * (n!/1! + x * (n!/2! + x * (n!/3! + x ...)))) / n!
|
||||
|
||||
n! is pre-computed and saved while k! is computed on the fly. */
|
||||
__cpy (&mps, &mpt2, p);
|
||||
|
||||
double kf = 1.0;
|
||||
|
||||
/* Evaluate the rest. The result will be in mpt2. */
|
||||
for (k = n - 1; k > 0; k--)
|
||||
{
|
||||
__mul (&mps, &mpak, &mpt1, p);
|
||||
mpk.d[1] = k;
|
||||
__dvd (&mpt1, &mpk, &mpt2, p);
|
||||
__add (&mpone, &mpt2, &mpak, p);
|
||||
/* n! / k! = n * (n - 1) ... * (n - k + 1) */
|
||||
kf *= k + 1;
|
||||
|
||||
__dbl_mp (kf, &mpk, p);
|
||||
__add (&mpt2, &mpk, &mpt1, p);
|
||||
__mul (&mps, &mpt1, &mpt2, p);
|
||||
}
|
||||
__mul (&mps, &mpak, &mpt1, p);
|
||||
__dbl_mp (nfa[p], &mpk, p);
|
||||
__dvd (&mpt2, &mpk, &mpt1, p);
|
||||
__add (&mpone, &mpt1, &mpt2, p);
|
||||
|
||||
/* Raise polynomial value to the power of 2**m. Put result in y. */
|
||||
|
Loading…
Reference in New Issue
Block a user