Use integral constants

The compiler is smart enough to convert those into double for powerpc,
but if we put them as doubles, it adds overhead by performing those
operations in floating point mode.
This commit is contained in:
Siddhesh Poyarekar 2013-03-26 20:24:04 +05:30
parent e375e83d17
commit 5739f705ee
2 changed files with 90 additions and 76 deletions

View File

@ -1,5 +1,19 @@
2013-03-26 Siddhesh Poyarekar <siddhesh@redhat.com>
* sysdeps/ieee754/dbl-64/mpa.c (__acr): Use integral
constants.
(norm): Likewise.
(denorm): Likewise.
(__dbl_mp): Likewise.
(add_magnitudes): Likewise.
(sub_magnitudes): Likewise.
(__add): Likewise.
(__sub): Likewise.
(__mul): Likewise.
(__sqr): Likewise.
(__inv): Likewise.
(__dvd): Likewise.
* sysdeps/ieee754/dbl-64/branred.c (__branred): Remove
commented code.
* sysdeps/ieee754/dbl-64/dosincos.c (__dubsin): Likewise.

View File

@ -80,14 +80,14 @@ __acr (const mp_no *x, const mp_no *y, int p)
{
long i;
if (X[0] == ZERO)
if (X[0] == 0)
{
if (Y[0] == ZERO)
if (Y[0] == 0)
i = 0;
else
i = -1;
}
else if (Y[0] == ZERO)
else if (Y[0] == 0)
i = 1;
else
{
@ -140,10 +140,10 @@ norm (const mp_no *x, double *y, int p)
}
else
{
for (a = ONE, z[1] = X[1]; z[1] < TWO23;)
for (a = 1, z[1] = X[1]; z[1] < TWO23;)
{
a *= TWO;
z[1] *= TWO;
a *= 2;
z[1] *= 2;
}
for (i = 2; i < 5; i++)
@ -160,21 +160,21 @@ norm (const mp_no *x, double *y, int p)
if (v == TWO18)
{
if (z[4] == ZERO)
if (z[4] == 0)
{
for (i = 5; i <= p; i++)
{
if (X[i] == ZERO)
if (X[i] == 0)
continue;
else
{
z[3] += ONE;
z[3] += 1;
break;
}
}
}
else
z[3] += ONE;
z[3] += 1;
}
c = (z[1] + R * (z[2] + R * z[3])) / a;
@ -204,7 +204,7 @@ denorm (const mp_no *x, double *y, int p)
#define R RADIXI
if (EX < -44 || (EX == -44 && X[1] < TWO5))
{
*y = ZERO;
*y = 0;
return;
}
@ -213,21 +213,21 @@ denorm (const mp_no *x, double *y, int p)
if (EX == -42)
{
z[1] = X[1] + TWO10;
z[2] = ZERO;
z[3] = ZERO;
z[2] = 0;
z[3] = 0;
k = 3;
}
else if (EX == -43)
{
z[1] = TWO10;
z[2] = X[1];
z[3] = ZERO;
z[3] = 0;
k = 2;
}
else
{
z[1] = TWO10;
z[2] = ZERO;
z[2] = 0;
z[3] = X[1];
k = 1;
}
@ -238,7 +238,7 @@ denorm (const mp_no *x, double *y, int p)
{
z[1] = X[1] + TWO10;
z[2] = X[2];
z[3] = ZERO;
z[3] = 0;
k = 3;
}
else if (EX == -43)
@ -251,7 +251,7 @@ denorm (const mp_no *x, double *y, int p)
else
{
z[1] = TWO10;
z[2] = ZERO;
z[2] = 0;
z[3] = X[1];
k = 1;
}
@ -273,7 +273,7 @@ denorm (const mp_no *x, double *y, int p)
else
{
z[1] = TWO10;
z[2] = ZERO;
z[2] = 0;
k = 1;
}
z[3] = X[k];
@ -285,11 +285,11 @@ denorm (const mp_no *x, double *y, int p)
{
for (i = k + 1; i <= p2; i++)
{
if (X[i] == ZERO)
if (X[i] == 0)
continue;
else
{
z[3] += ONE;
z[3] += 1;
break;
}
}
@ -306,9 +306,9 @@ denorm (const mp_no *x, double *y, int p)
void
__mp_dbl (const mp_no *x, double *y, int p)
{
if (X[0] == ZERO)
if (X[0] == 0)
{
*y = ZERO;
*y = 0;
return;
}
@ -329,23 +329,23 @@ __dbl_mp (double x, mp_no *y, int p)
long p2 = p;
/* Sign. */
if (x == ZERO)
if (x == 0)
{
Y[0] = ZERO;
Y[0] = 0;
return;
}
else if (x > ZERO)
Y[0] = ONE;
else if (x > 0)
Y[0] = 1;
else
{
Y[0] = MONE;
Y[0] = -1;
x = -x;
}
/* Exponent. */
for (EY = ONE; x >= RADIX; EY += ONE)
for (EY = 1; x >= RADIX; EY += 1)
x *= RADIXI;
for (; x < ONE; EY -= ONE)
for (; x < 1; EY -= 1)
x *= RADIX;
/* Digits. */
@ -356,7 +356,7 @@ __dbl_mp (double x, mp_no *y, int p)
x *= RADIX;
}
for (; i <= p2; i++)
Y[i] = ZERO;
Y[i] = 0;
}
/* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The
@ -383,7 +383,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
return;
}
zk = ZERO;
zk = 0;
for (; j > 0; i--, j--)
{
@ -391,12 +391,12 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
if (zk >= RADIX)
{
Z[k--] = zk - RADIX;
zk = ONE;
zk = 1;
}
else
{
Z[k--] = zk;
zk = ZERO;
zk = 0;
}
}
@ -406,16 +406,16 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
if (zk >= RADIX)
{
Z[k--] = zk - RADIX;
zk = ONE;
zk = 1;
}
else
{
Z[k--] = zk;
zk = ZERO;
zk = 0;
}
}
if (zk == ZERO)
if (zk == 0)
{
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
@ -423,7 +423,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
else
{
Z[1] = zk;
EZ += ONE;
EZ += 1;
}
}
@ -453,27 +453,27 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
/* The relevant least significant digit in Y is non-zero, so we factor it in
to enhance accuracy. */
if (j < p2 && Y[j + 1] > ZERO)
if (j < p2 && Y[j + 1] > 0)
{
Z[k + 1] = RADIX - Y[j + 1];
zk = MONE;
zk = -1;
}
else
zk = Z[k + 1] = ZERO;
zk = Z[k + 1] = 0;
/* Subtract and borrow. */
for (; j > 0; i--, j--)
{
zk += (X[i] - Y[j]);
if (zk < ZERO)
if (zk < 0)
{
Z[k--] = zk + RADIX;
zk = MONE;
zk = -1;
}
else
{
Z[k--] = zk;
zk = ZERO;
zk = 0;
}
}
@ -481,25 +481,25 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
for (; i > 0; i--)
{
zk += X[i];
if (zk < ZERO)
if (zk < 0)
{
Z[k--] = zk + RADIX;
zk = MONE;
zk = -1;
}
else
{
Z[k--] = zk;
zk = ZERO;
zk = 0;
}
}
/* Normalize. */
for (i = 1; Z[i] == ZERO; i++);
for (i = 1; Z[i] == 0; i++);
EZ = EZ - i + 1;
for (k = 1; i <= p2 + 1;)
Z[k++] = Z[i++];
for (; k <= p2;)
Z[k++] = ZERO;
Z[k++] = 0;
}
/* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X
@ -511,12 +511,12 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int n;
if (X[0] == ZERO)
if (X[0] == 0)
{
__cpy (y, z, p);
return;
}
else if (Y[0] == ZERO)
else if (Y[0] == 0)
{
__cpy (x, z, p);
return;
@ -548,7 +548,7 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p)
Z[0] = Y[0];
}
else
Z[0] = ZERO;
Z[0] = 0;
}
}
@ -561,13 +561,13 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int n;
if (X[0] == ZERO)
if (X[0] == 0)
{
__cpy (y, z, p);
Z[0] = -Z[0];
return;
}
else if (Y[0] == ZERO)
else if (Y[0] == 0)
{
__cpy (x, z, p);
return;
@ -599,7 +599,7 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
Z[0] = -Y[0];
}
else
Z[0] = ZERO;
Z[0] = 0;
}
}
@ -618,23 +618,23 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
mantissa_store_t *diag;
/* Is z=0? */
if (__glibc_unlikely (X[0] * Y[0] == ZERO))
if (__glibc_unlikely (X[0] * Y[0] == 0))
{
Z[0] = ZERO;
Z[0] = 0;
return;
}
/* We need not iterate through all X's and Y's since it's pointless to
multiply zeroes. Here, both are zero... */
for (ip2 = p2; ip2 > 0; ip2--)
if (X[ip2] != ZERO || Y[ip2] != ZERO)
if (X[ip2] != 0 || Y[ip2] != 0)
break;
a = X[ip2] != ZERO ? y : x;
a = X[ip2] != 0 ? y : x;
/* ... and here, at least one of them is still zero. */
for (ip = ip2; ip > 0; ip--)
if (a->d[ip] != ZERO)
if (a->d[ip] != 0)
break;
/* The product looks like this for p = 3 (as an example):
@ -661,19 +661,19 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
Another thing that becomes evident is that only the most significant
ip+ip2 digits of the result are non-zero, where ip and ip2 are the
'internal precision' of the input numbers, i.e. digits after ip and ip2
are all ZERO. */
are all 0. */
k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
while (k > ip + ip2 + 1)
Z[k--] = ZERO;
Z[k--] = 0;
zk = ZERO;
zk = 0;
/* Precompute sums of diagonal elements so that we can directly use them
later. See the next comment to know we why need them. */
diag = alloca (k * sizeof (mantissa_store_t));
mantissa_store_t d = ZERO;
mantissa_store_t d = 0;
for (i = 1; i <= ip; i++)
{
d += X[i] * (mantissa_store_t) Y[i];
@ -738,7 +738,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
int e = EX + EY;
/* Is there a carry beyond the most significant digit? */
if (__glibc_unlikely (Z[1] == ZERO))
if (__glibc_unlikely (Z[1] == 0))
{
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
@ -763,24 +763,24 @@ __sqr (const mp_no *x, mp_no *y, int p)
mantissa_store_t yk;
/* Is z=0? */
if (__glibc_unlikely (X[0] == ZERO))
if (__glibc_unlikely (X[0] == 0))
{
Y[0] = ZERO;
Y[0] = 0;
return;
}
/* We need not iterate through all X's since it's pointless to
multiply zeroes. */
for (ip = p; ip > 0; ip--)
if (X[ip] != ZERO)
if (X[ip] != 0)
break;
k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
while (k > 2 * ip + 1)
Y[k--] = ZERO;
Y[k--] = 0;
yk = ZERO;
yk = 0;
while (k > p)
{
@ -802,7 +802,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
for (i = k - p, j = p; i < j; i++, j--)
yk2 += X[i] * (mantissa_store_t) X[j];
yk += 2.0 * yk2;
yk += 2 * yk2;
DIV_RADIX (yk, Y[k]);
k--;
@ -820,7 +820,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
for (i = 1, j = k - 1; i < j; i++, j--)
yk2 += X[i] * (mantissa_store_t) X[j];
yk += 2.0 * yk2;
yk += 2 * yk2;
DIV_RADIX (yk, Y[k]);
k--;
@ -828,7 +828,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
Y[k] = yk;
/* Squares are always positive. */
Y[0] = 1.0;
Y[0] = 1;
/* Get the exponent sum into an intermediate variable. This is a subtle
optimization, where given enough registers, all operations on the exponent
@ -836,7 +836,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
int e = EX * 2;
/* Is there a carry beyond the most significant digit? */
if (__glibc_unlikely (Y[1] == ZERO))
if (__glibc_unlikely (Y[1] == 0))
{
for (i = 1; i <= p; i++)
Y[i] = Y[i + 1];
@ -868,7 +868,7 @@ __inv (const mp_no *x, mp_no *y, int p)
__cpy (x, &z, p);
z.e = 0;
__mp_dbl (&z, &t, p);
t = ONE / t;
t = 1 / t;
__dbl_mp (t, y, p);
EY -= EX;
@ -894,8 +894,8 @@ __dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
mp_no w;
if (X[0] == ZERO)
Z[0] = ZERO;
if (X[0] == 0)
Z[0] = 0;
else
{
__inv (y, &w, p);