x86: Improve large memset perf with non-temporal stores [RHEL-29312]

Previously we use `rep stosb` for all medium/large memsets. This is
notably worse than non-temporal stores for large (above a
few MBs) memsets.
See:
https://docs.google.com/spreadsheets/d/1opzukzvum4n6-RUVHTGddV6RjAEil4P2uMjjQGLbLcU/edit?usp=sharing
For data using different stategies for large memset on ICX and SKX.

Using non-temporal stores can be up to 3x faster on ICX and 2x faster
on SKX. Historically, these numbers would not have been so good
because of the zero-over-zero writeback optimization that `rep stosb`
is able to do. But, the zero-over-zero writeback optimization has been
removed as a potential side-channel attack, so there is no longer any
good reason to only rely on `rep stosb` for large memsets. On the flip
size, non-temporal writes can avoid data in their RFO requests saving
memory bandwidth.

All of the other changes to the file are to re-organize the
code-blocks to maintain "good" alignment given the new code added in
the `L(stosb_local)` case.

The results from running the GLIBC memset benchmarks on TGL-client for
N=20 runs:

Geometric Mean across the suite New / Old EXEX256: 0.979
Geometric Mean across the suite New / Old EXEX512: 0.979
Geometric Mean across the suite New / Old AVX2   : 0.986
Geometric Mean across the suite New / Old SSE2   : 0.979

Most of the cases are essentially unchanged, this is mostly to show
that adding the non-temporal case didn't add any regressions to the
other cases.

The results on the memset-large benchmark suite on TGL-client for N=20
runs:

Geometric Mean across the suite New / Old EXEX256: 0.926
Geometric Mean across the suite New / Old EXEX512: 0.925
Geometric Mean across the suite New / Old AVX2   : 0.928
Geometric Mean across the suite New / Old SSE2   : 0.924

So roughly a 7.5% speedup. This is lower than what we see on servers
(likely because clients typically have faster single-core bandwidth so
saving bandwidth on RFOs is less impactful), but still advantageous.

Full test-suite passes on x86_64 w/ and w/o multiarch.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
This commit is contained in:
Noah Goldstein 2024-05-24 12:38:50 -05:00
parent 53f9d74322
commit 5bf0ab8057

View File

@ -21,10 +21,13 @@
2. If size is less than VEC, use integer register stores.
3. If size is from VEC_SIZE to 2 * VEC_SIZE, use 2 VEC stores.
4. If size is from 2 * VEC_SIZE to 4 * VEC_SIZE, use 4 VEC stores.
5. On machines ERMS feature, if size is greater or equal than
__x86_rep_stosb_threshold then REP STOSB will be used.
6. If size is more to 4 * VEC_SIZE, align to 4 * VEC_SIZE with
4 VEC stores and store 4 * VEC at a time until done. */
5. If size is more to 4 * VEC_SIZE, align to 1 * VEC_SIZE with
4 VEC stores and store 4 * VEC at a time until done.
6. On machines ERMS feature, if size is range
[__x86_rep_stosb_threshold, __x86_shared_non_temporal_threshold)
then REP STOSB will be used.
7. If size >= __x86_shared_non_temporal_threshold, use a
non-temporal stores. */
#include <sysdep.h>
@ -147,6 +150,41 @@ L(entry_from_wmemset):
VMOVU %VMM(0), -VEC_SIZE(%rdi,%rdx)
VMOVU %VMM(0), (%rdi)
VZEROUPPER_RETURN
/* If have AVX512 mask instructions put L(less_vec) close to
entry as it doesn't take much space and is likely a hot target. */
#ifdef USE_LESS_VEC_MASK_STORE
/* Align to ensure the L(less_vec) logic all fits in 1x cache lines. */
.p2align 6,, 47
.p2align 4
L(less_vec):
L(less_vec_from_wmemset):
/* Less than 1 VEC. */
# if VEC_SIZE != 16 && VEC_SIZE != 32 && VEC_SIZE != 64
# error Unsupported VEC_SIZE!
# endif
/* Clear high bits from edi. Only keeping bits relevant to page
cross check. Note that we are using rax which is set in
MEMSET_VDUP_TO_VEC0_AND_SET_RETURN as ptr from here on out. */
andl $(PAGE_SIZE - 1), %edi
/* Check if VEC_SIZE store cross page. Mask stores suffer
serious performance degradation when it has to fault suppress. */
cmpl $(PAGE_SIZE - VEC_SIZE), %edi
/* This is generally considered a cold target. */
ja L(cross_page)
# if VEC_SIZE > 32
movq $-1, %rcx
bzhiq %rdx, %rcx, %rcx
kmovq %rcx, %k1
# else
movl $-1, %ecx
bzhil %edx, %ecx, %ecx
kmovd %ecx, %k1
# endif
vmovdqu8 %VMM(0), (%rax){%k1}
VZEROUPPER_RETURN
#endif
#if defined USE_MULTIARCH && IS_IN (libc)
END (MEMSET_SYMBOL (__memset, unaligned))
@ -185,54 +223,6 @@ L(last_2x_vec):
#endif
VZEROUPPER_RETURN
/* If have AVX512 mask instructions put L(less_vec) close to
entry as it doesn't take much space and is likely a hot target.
*/
#ifdef USE_LESS_VEC_MASK_STORE
.p2align 4,, 10
L(less_vec):
L(less_vec_from_wmemset):
/* Less than 1 VEC. */
# if VEC_SIZE != 16 && VEC_SIZE != 32 && VEC_SIZE != 64
# error Unsupported VEC_SIZE!
# endif
/* Clear high bits from edi. Only keeping bits relevant to page
cross check. Note that we are using rax which is set in
MEMSET_VDUP_TO_VEC0_AND_SET_RETURN as ptr from here on out. */
andl $(PAGE_SIZE - 1), %edi
/* Check if VEC_SIZE store cross page. Mask stores suffer
serious performance degradation when it has to fault suppress.
*/
cmpl $(PAGE_SIZE - VEC_SIZE), %edi
/* This is generally considered a cold target. */
ja L(cross_page)
# if VEC_SIZE > 32
movq $-1, %rcx
bzhiq %rdx, %rcx, %rcx
kmovq %rcx, %k1
# else
movl $-1, %ecx
bzhil %edx, %ecx, %ecx
kmovd %ecx, %k1
# endif
vmovdqu8 %VMM(0), (%rax){%k1}
VZEROUPPER_RETURN
# if defined USE_MULTIARCH && IS_IN (libc)
/* Include L(stosb_local) here if including L(less_vec) between
L(stosb_more_2x_vec) and ENTRY. This is to cache align the
L(stosb_more_2x_vec) target. */
.p2align 4,, 10
L(stosb_local):
movzbl %sil, %eax
mov %RDX_LP, %RCX_LP
mov %RDI_LP, %RDX_LP
rep stosb
mov %RDX_LP, %RAX_LP
VZEROUPPER_RETURN
# endif
#endif
#if defined USE_MULTIARCH && IS_IN (libc)
.p2align 4
L(stosb_more_2x_vec):
@ -318,21 +308,33 @@ L(return_vzeroupper):
ret
#endif
.p2align 4,, 10
#ifndef USE_LESS_VEC_MASK_STORE
# if defined USE_MULTIARCH && IS_IN (libc)
#ifdef USE_WITH_AVX2
.p2align 4
#else
.p2align 4,, 4
#endif
#if defined USE_MULTIARCH && IS_IN (libc)
/* If no USE_LESS_VEC_MASK put L(stosb_local) here. Will be in
range for 2-byte jump encoding. */
L(stosb_local):
cmp __x86_shared_non_temporal_threshold(%rip), %RDX_LP
jae L(nt_memset)
movzbl %sil, %eax
mov %RDX_LP, %RCX_LP
mov %RDI_LP, %RDX_LP
rep stosb
# if (defined USE_WITH_SSE2) || (defined USE_WITH_AVX512)
/* Use xchg to save 1-byte (this helps align targets below). */
xchg %RDX_LP, %RAX_LP
# else
mov %RDX_LP, %RAX_LP
VZEROUPPER_RETURN
# endif
VZEROUPPER_RETURN
#endif
#ifndef USE_LESS_VEC_MASK_STORE
/* Define L(less_vec) only if not otherwise defined. */
.p2align 4
.p2align 4,, 12
L(less_vec):
/* Broadcast esi to partial register (i.e VEC_SIZE == 32 broadcast to
xmm). This is only does anything for AVX2. */
@ -423,4 +425,35 @@ L(between_2_3):
movb %SET_REG8, -1(%LESS_VEC_REG, %rdx)
#endif
ret
END (MEMSET_SYMBOL (__memset, unaligned_erms))
#if defined USE_MULTIARCH && IS_IN (libc)
# ifdef USE_WITH_AVX512
/* Force align so the loop doesn't cross a cache-line. */
.p2align 4
# endif
.p2align 4,, 7
/* Memset using non-temporal stores. */
L(nt_memset):
VMOVU %VMM(0), (VEC_SIZE * 0)(%rdi)
leaq (VEC_SIZE * -4)(%rdi, %rdx), %rdx
/* Align DST. */
orq $(VEC_SIZE * 1 - 1), %rdi
incq %rdi
.p2align 4,, 7
L(nt_loop):
VMOVNT %VMM(0), (VEC_SIZE * 0)(%rdi)
VMOVNT %VMM(0), (VEC_SIZE * 1)(%rdi)
VMOVNT %VMM(0), (VEC_SIZE * 2)(%rdi)
VMOVNT %VMM(0), (VEC_SIZE * 3)(%rdi)
subq $(VEC_SIZE * -4), %rdi
cmpq %rdx, %rdi
jb L(nt_loop)
sfence
VMOVU %VMM(0), (VEC_SIZE * 0)(%rdx)
VMOVU %VMM(0), (VEC_SIZE * 1)(%rdx)
VMOVU %VMM(0), (VEC_SIZE * 2)(%rdx)
VMOVU %VMM(0), (VEC_SIZE * 3)(%rdx)
VZEROUPPER_RETURN
#endif
END(MEMSET_SYMBOL(__memset, unaligned_erms))