ieee754: provide gcc builtins based generic fma functions

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
This commit is contained in:
Vineet Gupta 2020-05-29 15:58:33 -07:00
parent 3374868668
commit 628d90c5f9
7 changed files with 34 additions and 0 deletions

View File

@ -63,4 +63,9 @@
#define USE_SQRT_BUILTIN 0
#define USE_SQRTF_BUILTIN 0
#define USE_FMA_BUILTIN 0
#define USE_FMAF_BUILTIN 0
#define USE_FMAL_BUILTIN 0
#define USE_FMAF128_BUILTIN 0
#endif /* math-use-builtins.h */

View File

@ -25,6 +25,7 @@
#include <fenv_private.h>
#include <libm-alias-double.h>
#include <tininess.h>
#include <math-use-builtins.h>
/* This implementation uses rounding to odd to avoid problems with
double rounding. See a paper by Boldo and Melquiond:
@ -33,6 +34,10 @@
double
__fma (double x, double y, double z)
{
#if USE_FMA_BUILTIN
return __builtin_fma (x, y, z);
#else
/* Use generic implementation. */
union ieee754_double u, v, w;
int adjust = 0;
u.d = x;
@ -292,6 +297,7 @@ __fma (double x, double y, double z)
v.ieee.mantissa1 |= j;
return v.d * 0x1p-108;
}
#endif /* ! USE_FMA_BUILTIN */
}
#ifndef __fma
libm_alias_double (__fma, fma)

View File

@ -23,6 +23,7 @@
#include <math-barriers.h>
#include <fenv_private.h>
#include <libm-alias-float.h>
#include <math-use-builtins.h>
/* This implementation relies on double being more than twice as
precise as float and uses rounding to odd in order to avoid problems
@ -33,6 +34,10 @@
float
__fmaf (float x, float y, float z)
{
#if USE_FMAF_BUILTIN
return __builtin_fmaf (x, y, z);
#else
/* Use generic implementation. */
fenv_t env;
/* Multiplication is always exact. */
@ -60,6 +65,7 @@ __fmaf (float x, float y, float z)
/* And finally truncation with round to nearest. */
return (float) u.d;
#endif /* ! USE_FMAF_BUILTIN */
}
#ifndef __fmaf
libm_alias_float (__fma, fma)

View File

@ -154,6 +154,8 @@
#define USE_ROUNDL_BUILTIN USE_ROUNDF128_BUILTIN
#undef USE_COPYSIGNL_BUILTIN
#define USE_COPYSIGNL_BUILTIN USE_COPYSIGNF128_BUILTIN
#undef USE_FMAL_BUILTIN
#define USE_FMAL_BUILTIN USE_FMAF128_BUILTIN
/* IEEE function renames. */
#define __ieee754_acoshl __ieee754_acoshf128

View File

@ -21,6 +21,7 @@
#include <fenv.h>
#include <ieee754.h>
#include <libm-alias-double.h>
#include <math-use-builtins.h>
/* This implementation relies on long double being more than twice as
precise as double and uses rounding to odd in order to avoid problems
@ -31,6 +32,9 @@
double
__fma (double x, double y, double z)
{
#if USE_FMA_BUILTIN
return __builtin_fma (x, y, z);
#else
fenv_t env;
/* Multiplication is always exact. */
long double temp = (long double) x * (long double) y;
@ -50,6 +54,7 @@ __fma (double x, double y, double z)
feupdateenv (&env);
/* And finally truncation with round to nearest. */
return (double) u.d;
#endif /* ! USE_FMA_BUILTIN */
}
#ifndef __fma
libm_alias_double (__fma, fma)

View File

@ -25,6 +25,7 @@
#include <math_private.h>
#include <libm-alias-ldouble.h>
#include <tininess.h>
#include <math-use-builtins.h>
/* This implementation uses rounding to odd to avoid problems with
double rounding. See a paper by Boldo and Melquiond:
@ -33,6 +34,9 @@
_Float128
__fmal (_Float128 x, _Float128 y, _Float128 z)
{
#if USE_FMAL_BUILTIN
return __builtin_fmal (x, y, z);
#else
union ieee854_long_double u, v, w;
int adjust = 0;
u.d = x;
@ -296,5 +300,6 @@ __fmal (_Float128 x, _Float128 y, _Float128 z)
v.ieee.mantissa3 |= j;
return v.d * L(0x1p-228);
}
#endif /* ! USE_FMAL_BUILTIN */
}
libm_alias_ldouble (__fma, fma)

View File

@ -111,4 +111,9 @@
#define USE_SQRT_BUILTIN 0
#define USE_SQRTF_BUILTIN 0
#define USE_FMA_BUILTIN 0
#define USE_FMAF_BUILTIN 0
#define USE_FMAL_BUILTIN 0
#define USE_FMAF128_BUILTIN 0
#endif /* math-use-builtins.h */