mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 05:50:14 +00:00
math: Add new exp10 implementation
New implementation is based on the existing exp/exp2, with different reduction constants and polynomial. Worst-case error in round-to- nearest is 0.513 ULP. The exp/exp2 shared table is reused for exp10 - .rodata size of e_exp_data increases by 64 bytes. As for exp/exp2, targets with single-instruction rounding/conversion intrinsics can use them by toggling TOINT_INTRINSICS=1 and adding the necessary code to their math_private.h. Improvements on Neoverse V1 compared to current GLIBC master: exp10 thruput: 3.3x in [-0x1.439b746e36b52p+8 0x1.34413509f79ffp+8] exp10 latency: 1.8x in [-0x1.439b746e36b52p+8 0x1.34413509f79ffp+8] Tested on: aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This commit is contained in:
parent
8e755f5bc8
commit
63d0a35d5f
@ -16,36 +16,132 @@
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#include <math.h>
|
||||
#include <math-barriers.h>
|
||||
#include <math-narrow-eval.h>
|
||||
#include <math_private.h>
|
||||
#include <float.h>
|
||||
#include <libm-alias-finite.h>
|
||||
#include "math_config.h"
|
||||
|
||||
static const double log10_high = 0x2.4d7637p0;
|
||||
static const double log10_low = 0x7.6aaa2b05ba95cp-28;
|
||||
#define N (1 << EXP_TABLE_BITS)
|
||||
#define IndexMask (N - 1)
|
||||
#define OFlowBound 0x1.34413509f79ffp8 /* log10(DBL_MAX). */
|
||||
#define UFlowBound -0x1.5ep+8 /* -350. */
|
||||
#define SmallTop 0x3c6 /* top12(0x1p-57). */
|
||||
#define BigTop 0x407 /* top12(0x1p8). */
|
||||
#define Thresh 0x41 /* BigTop - SmallTop. */
|
||||
#define Shift __exp_data.shift
|
||||
#define C(i) __exp_data.exp10_poly[i]
|
||||
|
||||
double
|
||||
__ieee754_exp10 (double arg)
|
||||
static double
|
||||
special_case (uint64_t sbits, double_t tmp, uint64_t ki)
|
||||
{
|
||||
int32_t lx;
|
||||
double arg_high, arg_low;
|
||||
double exp_high, exp_low;
|
||||
double_t scale, y;
|
||||
|
||||
if (!isfinite (arg))
|
||||
return __ieee754_exp (arg);
|
||||
if (arg < DBL_MIN_10_EXP - DBL_DIG - 10)
|
||||
return DBL_MIN * DBL_MIN;
|
||||
else if (arg > DBL_MAX_10_EXP + 1)
|
||||
return DBL_MAX * DBL_MAX;
|
||||
else if (fabs (arg) < 0x1p-56)
|
||||
return 1.0;
|
||||
if (ki - (1ull << 16) < 0x80000000)
|
||||
{
|
||||
/* The exponent of scale might have overflowed by 1. */
|
||||
sbits -= 1ull << 52;
|
||||
scale = asdouble (sbits);
|
||||
y = 2 * (scale + scale * tmp);
|
||||
return check_oflow (y);
|
||||
}
|
||||
|
||||
GET_LOW_WORD (lx, arg);
|
||||
lx &= 0xf8000000;
|
||||
arg_high = arg;
|
||||
SET_LOW_WORD (arg_high, lx);
|
||||
arg_low = arg - arg_high;
|
||||
exp_high = arg_high * log10_high;
|
||||
exp_low = arg_high * log10_low + arg_low * M_LN10;
|
||||
return __ieee754_exp (exp_high) * __ieee754_exp (exp_low);
|
||||
/* n < 0, need special care in the subnormal range. */
|
||||
sbits += 1022ull << 52;
|
||||
scale = asdouble (sbits);
|
||||
y = scale + scale * tmp;
|
||||
|
||||
if (y < 1.0)
|
||||
{
|
||||
/* Round y to the right precision before scaling it into the subnormal
|
||||
range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
||||
E is the worst-case ulp error outside the subnormal range. So this
|
||||
is only useful if the goal is better than 1 ulp worst-case error. */
|
||||
double_t lo = scale - y + scale * tmp;
|
||||
double_t hi = 1.0 + y;
|
||||
lo = 1.0 - hi + y + lo;
|
||||
y = math_narrow_eval (hi + lo) - 1.0;
|
||||
/* Avoid -0.0 with downward rounding. */
|
||||
if (WANT_ROUNDING && y == 0.0)
|
||||
y = 0.0;
|
||||
/* The underflow exception needs to be signaled explicitly. */
|
||||
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
|
||||
}
|
||||
y = 0x1p-1022 * y;
|
||||
|
||||
return check_uflow (y);
|
||||
}
|
||||
|
||||
/* Double-precision 10^x approximation. Largest observed error is ~0.513 ULP. */
|
||||
double
|
||||
__ieee754_exp10 (double x)
|
||||
{
|
||||
uint64_t ix = asuint64 (x);
|
||||
uint32_t abstop = (ix >> 52) & 0x7ff;
|
||||
|
||||
if (__glibc_unlikely (abstop - SmallTop >= Thresh))
|
||||
{
|
||||
if (abstop - SmallTop >= 0x80000000)
|
||||
/* Avoid spurious underflow for tiny x.
|
||||
Note: 0 is common input. */
|
||||
return x + 1;
|
||||
if (abstop == 0x7ff)
|
||||
return ix == asuint64 (-INFINITY) ? 0.0 : x + 1.0;
|
||||
if (x >= OFlowBound)
|
||||
return __math_oflow (0);
|
||||
if (x < UFlowBound)
|
||||
return __math_uflow (0);
|
||||
|
||||
/* Large x is special-cased below. */
|
||||
abstop = 0;
|
||||
}
|
||||
|
||||
/* Reduce x: z = x * N / log10(2), k = round(z). */
|
||||
double_t z = __exp_data.invlog10_2N * x;
|
||||
double_t kd;
|
||||
int64_t ki;
|
||||
#if TOINT_INTRINSICS
|
||||
kd = roundtoint (z);
|
||||
ki = converttoint (z);
|
||||
#else
|
||||
kd = math_narrow_eval (z + Shift);
|
||||
kd -= Shift;
|
||||
ki = kd;
|
||||
#endif
|
||||
|
||||
/* r = x - k * log10(2), r in [-0.5, 0.5]. */
|
||||
double_t r = x;
|
||||
r = __exp_data.neglog10_2hiN * kd + r;
|
||||
r = __exp_data.neglog10_2loN * kd + r;
|
||||
|
||||
/* exp10(x) = 2^(k/N) * 2^(r/N).
|
||||
Approximate the two components separately. */
|
||||
|
||||
/* s = 2^(k/N), using lookup table. */
|
||||
uint64_t e = ki << (52 - EXP_TABLE_BITS);
|
||||
uint64_t i = (ki & IndexMask) * 2;
|
||||
uint64_t u = __exp_data.tab[i + 1];
|
||||
uint64_t sbits = u + e;
|
||||
|
||||
double_t tail = asdouble (__exp_data.tab[i]);
|
||||
|
||||
/* 2^(r/N) ~= 1 + r * Poly(r). */
|
||||
double_t r2 = r * r;
|
||||
double_t p = C (0) + r * C (1);
|
||||
double_t y = C (2) + r * C (3);
|
||||
y = y + r2 * C (4);
|
||||
y = p + r2 * y;
|
||||
y = tail + y * r;
|
||||
|
||||
if (__glibc_unlikely (abstop == 0))
|
||||
return special_case (sbits, y, ki);
|
||||
|
||||
/* Assemble components:
|
||||
y = 2^(r/N) * 2^(k/N)
|
||||
~= (y + 1) * s. */
|
||||
double_t s = asdouble (sbits);
|
||||
return s * y + s;
|
||||
}
|
||||
|
||||
libm_alias_finite (__ieee754_exp10, __exp10)
|
||||
|
@ -58,6 +58,17 @@ const struct exp_data __exp_data = {
|
||||
0x1.5d7e09b4e3a84p-10,
|
||||
#endif
|
||||
},
|
||||
.invlog10_2N = 0x1.a934f0979a371p1 * N,
|
||||
.neglog10_2hiN = -0x1.3441350ap-2 / N,
|
||||
.neglog10_2loN = 0x1.0c0219dc1da99p-39 / N,
|
||||
.exp10_poly = {
|
||||
/* Coeffs generated using Remez in [-log10(2)/256, log10(2)/256 ]. */
|
||||
0x1.26bb1bbb55516p1,
|
||||
0x1.53524c73ce9fep1,
|
||||
0x1.0470591ce4b26p1,
|
||||
0x1.2bd76577fe684p0,
|
||||
0x1.1446eeccd0efbp-1
|
||||
},
|
||||
// 2^(k/N) ~= H[k]*(1 + T[k]) for int k in [0,N)
|
||||
// tab[2*k] = asuint64(T[k])
|
||||
// tab[2*k+1] = asuint64(H[k]) - (k << 52)/N
|
||||
|
@ -201,6 +201,10 @@ extern const struct exp_data
|
||||
double poly[4]; /* Last four coefficients. */
|
||||
double exp2_shift;
|
||||
double exp2_poly[EXP2_POLY_ORDER];
|
||||
double invlog10_2N;
|
||||
double neglog10_2hiN;
|
||||
double neglog10_2loN;
|
||||
double exp10_poly[5];
|
||||
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
|
||||
} __exp_data attribute_hidden;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user