aarch64: MTE compatible strrchr

Add support for MTE to strrchr. Regression tested with xcheck and benchmarked
with glibc's benchtests on the Cortex-A53, Cortex-A72, and Neoverse N1.

The existing implementation assumes that any access to the pages in which the
string resides is safe. This assumption is not true when MTE is enabled. This
patch updates the algorithm to ensure that accesses remain within the bounds
of an MTE tag (16-byte chunks) and improves overall performance.

Co-authored-by: Wilco Dijkstra <wilco.dijkstra@arm.com>
This commit is contained in:
Alex Butler 2020-06-09 16:09:36 +00:00 committed by Szabolcs Nagy
parent df06b0d90f
commit 79160c06c7

View File

@ -24,142 +24,119 @@
*
* ARMv8-a, AArch64
* Neon Available.
* MTE compatible.
*/
/* Arguments and results. */
#define srcin x0
#define chrin w1
#define result x0
#define src x2
#define tmp1 x3
#define wtmp2 w4
#define tmp3 x5
#define src_match x6
#define src_offset x7
#define const_m1 x8
#define tmp4 x9
#define nul_match x10
#define chr_match x11
#define tmp x3
#define wtmp w3
#define synd x3
#define shift x4
#define src_match x4
#define nul_match x5
#define chr_match x6
#define vrepchr v0
#define vdata1 v1
#define vdata2 v2
#define vhas_nul1 v3
#define vhas_nul2 v4
#define vhas_chr1 v5
#define vhas_chr2 v6
#define vrepmask_0 v7
#define vrepmask_c v16
#define vend1 v17
#define vend2 v18
#define vdata v1
#define vhas_nul v2
#define vhas_chr v3
#define vrepmask v4
#define vrepmask2 v5
#define vend v5
#define dend d5
/* Core algorithm.
For each 32-byte hunk we calculate a 64-bit syndrome value, with
two bits per byte (LSB is always in bits 0 and 1, for both big
and little-endian systems). For each tuple, bit 0 is set iff
the relevant byte matched the requested character; bit 1 is set
iff the relevant byte matched the NUL end of string (we trigger
off bit0 for the special case of looking for NUL). Since the bits
in the syndrome reflect exactly the order in which things occur
in the original string a count_trailing_zeros() operation will
identify exactly which byte is causing the termination, and why. */
For each 16-byte chunk we calculate a 64-bit syndrome value, with
four bits per byte (LSB is always in bits 0 and 1, for both big
and little-endian systems). For each tuple, bits 0-1 are set if
the relevant byte matched the requested character; bits 2-3 are set
if the relevant byte matched the NUL end of string. */
ENTRY(strrchr)
DELOUSE (0)
cbz x1, L(null_search)
/* Magic constant 0x40100401 to allow us to identify which lane
matches the requested byte. Magic constant 0x80200802 used
similarly for NUL termination. */
mov wtmp2, #0x0401
movk wtmp2, #0x4010, lsl #16
bic src, srcin, 15
dup vrepchr.16b, chrin
bic src, srcin, #31 /* Work with aligned 32-byte hunks. */
dup vrepmask_c.4s, wtmp2
mov src_offset, #0
ands tmp1, srcin, #31
add vrepmask_0.4s, vrepmask_c.4s, vrepmask_c.4s /* equiv: lsl #1 */
b.eq L(aligned)
mov wtmp, 0x3003
dup vrepmask.8h, wtmp
tst srcin, 15
beq L(loop1)
/* Input string is not 32-byte aligned. Rather than forcing
the padding bytes to a safe value, we calculate the syndrome
for all the bytes, but then mask off those bits of the
syndrome that are related to the padding. */
ld1 {vdata1.16b, vdata2.16b}, [src], #32
neg tmp1, tmp1
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
and vhas_nul1.16b, vhas_nul1.16b, vrepmask_0.16b
and vhas_chr1.16b, vhas_chr1.16b, vrepmask_c.16b
and vhas_nul2.16b, vhas_nul2.16b, vrepmask_0.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask_c.16b
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul2.16b // 256->128
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr2.16b // 256->128
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul1.16b // 128->64
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr1.16b // 128->64
mov nul_match, vhas_nul1.2d[0]
lsl tmp1, tmp1, #1
mov const_m1, #~0
mov chr_match, vhas_chr1.2d[0]
lsr tmp3, const_m1, tmp1
ld1 {vdata.16b}, [src], 16
cmeq vhas_nul.16b, vdata.16b, 0
cmeq vhas_chr.16b, vdata.16b, vrepchr.16b
mov wtmp, 0xf00f
dup vrepmask2.8h, wtmp
bit vhas_nul.16b, vhas_chr.16b, vrepmask.16b
and vhas_nul.16b, vhas_nul.16b, vrepmask2.16b
addp vend.16b, vhas_nul.16b, vhas_nul.16b
lsl shift, srcin, 2
fmov synd, dend
lsr synd, synd, shift
lsl synd, synd, shift
ands nul_match, synd, 0xcccccccccccccccc
bne L(tail)
cbnz synd, L(loop2)
bic nul_match, nul_match, tmp3 // Mask padding bits.
bic chr_match, chr_match, tmp3 // Mask padding bits.
cbnz nul_match, L(tail)
.p2align 5
L(loop1):
ld1 {vdata.16b}, [src], 16
cmeq vhas_chr.16b, vdata.16b, vrepchr.16b
cmhs vhas_nul.16b, vhas_chr.16b, vdata.16b
umaxp vend.16b, vhas_nul.16b, vhas_nul.16b
fmov synd, dend
cbz synd, L(loop1)
L(loop):
cmp chr_match, #0
csel src_match, src, src_match, ne
csel src_offset, chr_match, src_offset, ne
L(aligned):
ld1 {vdata1.16b, vdata2.16b}, [src], #32
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
addp vend1.16b, vhas_nul1.16b, vhas_nul2.16b // 256->128
and vhas_chr1.16b, vhas_chr1.16b, vrepmask_c.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask_c.16b
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr2.16b // 256->128
addp vend1.16b, vend1.16b, vend1.16b // 128->64
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr1.16b // 128->64
mov nul_match, vend1.2d[0]
mov chr_match, vhas_chr1.2d[0]
cbz nul_match, L(loop)
and vhas_nul1.16b, vhas_nul1.16b, vrepmask_0.16b
and vhas_nul2.16b, vhas_nul2.16b, vrepmask_0.16b
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul2.16b
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul1.16b
mov nul_match, vhas_nul1.2d[0]
cmeq vhas_nul.16b, vdata.16b, 0
bit vhas_nul.16b, vhas_chr.16b, vrepmask.16b
bic vhas_nul.8h, 0x0f, lsl 8
addp vend.16b, vhas_nul.16b, vhas_nul.16b
fmov synd, dend
ands nul_match, synd, 0xcccccccccccccccc
beq L(loop2)
L(tail):
/* Work out exactly where the string ends. */
sub tmp4, nul_match, #1
eor tmp4, tmp4, nul_match
ands chr_match, chr_match, tmp4
/* And pick the values corresponding to the last match. */
csel src_match, src, src_match, ne
csel src_offset, chr_match, src_offset, ne
/* Count down from the top of the syndrome to find the last match. */
clz tmp3, src_offset
/* Src_match points beyond the word containing the match, so we can
simply subtract half the bit-offset into the syndrome. Because
we are counting down, we need to go back one more character. */
add tmp3, tmp3, #2
sub result, src_match, tmp3, lsr #1
/* But if the syndrome shows no match was found, then return NULL. */
cmp src_offset, #0
sub nul_match, nul_match, 1
and chr_match, synd, 0x3333333333333333
ands chr_match, chr_match, nul_match
sub result, src, 1
clz tmp, chr_match
sub result, result, tmp, lsr 2
csel result, result, xzr, ne
ret
L(null_search):
b __strchrnul
.p2align 4
L(loop2):
cmp synd, 0
csel src_match, src, src_match, ne
csel chr_match, synd, chr_match, ne
ld1 {vdata.16b}, [src], 16
cmeq vhas_nul.16b, vdata.16b, 0
cmeq vhas_chr.16b, vdata.16b, vrepchr.16b
bit vhas_nul.16b, vhas_chr.16b, vrepmask.16b
umaxp vend.16b, vhas_nul.16b, vhas_nul.16b
fmov synd, dend
tst synd, 0xcccccccccccccccc
beq L(loop2)
bic vhas_nul.8h, 0x0f, lsl 8
addp vend.16b, vhas_nul.16b, vhas_nul.16b
fmov synd, dend
and nul_match, synd, 0xcccccccccccccccc
sub nul_match, nul_match, 1
and tmp, synd, 0x3333333333333333
ands tmp, tmp, nul_match
csel chr_match, tmp, chr_match, ne
csel src_match, src, src_match, ne
sub src_match, src_match, 1
clz tmp, chr_match
sub result, src_match, tmp, lsr 2
ret
END(strrchr)
weak_alias (strrchr, rindex)