mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-09 02:40:08 +00:00
[PATCH 2/7] sin/cos slow paths: remove large range reduction
This patch removes the large range reduction code and defers to the huge range reduction code. The first level range reducer supports inputs up to 2^27, which is way too large given that inputs for sin/cos are typically small (< 10), and optimizing for a smaller range would give a significant speedup. Input values above 2^27 are practically never used, so there is no reason for supporting range reduction between 2^27 and 2^48. Removing it significantly simplifies code and enables further speedups. There is about a 2.3x slowdown in this range due to __branred being extremely slow (a better algorithm could easily more than double performance). * sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_2): Remove function. (do_sincos_2): Likewise. (__sin): Remove middle range reduction case. (__cos): Likewise. * sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Remove middle range reduction case.
This commit is contained in:
parent
19a8b9a300
commit
7a5640f23a
@ -1,3 +1,12 @@
|
||||
2018-04-03 Wilco Dijkstra <wdijkstr@arm.com>
|
||||
|
||||
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_2): Remove function.
|
||||
(do_sincos_2): Likewise.
|
||||
(__sin): Remove middle range reduction case.
|
||||
(__cos): Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Remove middle range
|
||||
reduction case.
|
||||
|
||||
2018-04-03 Wilco Dijkstra <wdijkstr@arm.com>
|
||||
|
||||
* sysdeps/aarch64/libm-test-ulps: Update ULP for sin, cos, sincos.
|
||||
|
@ -362,80 +362,6 @@ do_sincos_1 (double a, double da, double x, int4 n, bool shift_quadrant)
|
||||
return retval;
|
||||
}
|
||||
|
||||
static inline int4
|
||||
__always_inline
|
||||
reduce_sincos_2 (double x, double *a, double *da)
|
||||
{
|
||||
mynumber v;
|
||||
|
||||
double t = (x * hpinv + toint);
|
||||
double xn = t - toint;
|
||||
v.x = t;
|
||||
double xn1 = (xn + 8.0e22) - 8.0e22;
|
||||
double xn2 = xn - xn1;
|
||||
double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
|
||||
int4 n = v.i[LOW_HALF] & 3;
|
||||
double db = xn1 * pp3;
|
||||
t = y - db;
|
||||
db = (y - t) - db;
|
||||
db = (db - xn2 * pp3) - xn * pp4;
|
||||
double b = t + db;
|
||||
db = (t - b) + db;
|
||||
|
||||
*a = b;
|
||||
*da = db;
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/* Compute sin (A + DA). cos can be computed by passing SHIFT_QUADRANT as
|
||||
true, which results in shifting the quadrant N clockwise. */
|
||||
static double
|
||||
__always_inline
|
||||
do_sincos_2 (double a, double da, double x, int4 n, bool shift_quadrant)
|
||||
{
|
||||
double res, retval, cor, xx;
|
||||
|
||||
double eps = 1.0e-24;
|
||||
|
||||
int4 k = (n + shift_quadrant) & 3;
|
||||
|
||||
switch (k)
|
||||
{
|
||||
case 2:
|
||||
a = -a;
|
||||
da = -da;
|
||||
/* Fall through. */
|
||||
case 0:
|
||||
xx = a * a;
|
||||
if (xx < 0.01588)
|
||||
{
|
||||
/* Taylor series. */
|
||||
res = TAYLOR_SIN (xx, a, da, cor);
|
||||
cor = 1.02 * cor + __copysign (eps, cor);
|
||||
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
|
||||
}
|
||||
else
|
||||
{
|
||||
res = do_sin (a, da, &cor);
|
||||
cor = 1.035 * cor + __copysign (eps, cor);
|
||||
retval = ((res == res + cor) ? __copysign (res, a)
|
||||
: bsloww1 (a, da, x, n));
|
||||
}
|
||||
break;
|
||||
|
||||
case 1:
|
||||
case 3:
|
||||
res = do_cos (a, da, &cor);
|
||||
cor = 1.025 * cor + __copysign (eps, cor);
|
||||
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
|
||||
: bsloww2 (a, da, x, n));
|
||||
break;
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
/*******************************************************************/
|
||||
/* An ultimate sin routine. Given an IEEE double machine number x */
|
||||
/* it computes the correctly rounded (to nearest) value of sin(x) */
|
||||
@ -498,16 +424,7 @@ __sin (double x)
|
||||
retval = do_sincos_1 (a, da, x, n, false);
|
||||
} /* else if (k < 0x419921FB ) */
|
||||
|
||||
/*---------------------105414350 <|x|< 281474976710656 --------------------*/
|
||||
else if (k < 0x42F00000)
|
||||
{
|
||||
double a, da;
|
||||
|
||||
int4 n = reduce_sincos_2 (x, &a, &da);
|
||||
retval = do_sincos_2 (a, da, x, n, false);
|
||||
} /* else if (k < 0x42F00000 ) */
|
||||
|
||||
/* -----------------281474976710656 <|x| <2^1024----------------------------*/
|
||||
/* --------------------105414350 <|x| <2^1024------------------------------*/
|
||||
else if (k < 0x7ff00000)
|
||||
retval = reduce_and_compute (x, false);
|
||||
|
||||
@ -584,15 +501,7 @@ __cos (double x)
|
||||
retval = do_sincos_1 (a, da, x, n, true);
|
||||
} /* else if (k < 0x419921FB ) */
|
||||
|
||||
else if (k < 0x42F00000)
|
||||
{
|
||||
double a, da;
|
||||
|
||||
int4 n = reduce_sincos_2 (x, &a, &da);
|
||||
retval = do_sincos_2 (a, da, x, n, true);
|
||||
} /* else if (k < 0x42F00000 ) */
|
||||
|
||||
/* 281474976710656 <|x| <2^1024 */
|
||||
/* 105414350 <|x| <2^1024 */
|
||||
else if (k < 0x7ff00000)
|
||||
retval = reduce_and_compute (x, true);
|
||||
|
||||
|
@ -84,16 +84,6 @@ __sincos (double x, double *sinx, double *cosx)
|
||||
*sinx = do_sincos_1 (a, da, x, n, false);
|
||||
*cosx = do_sincos_1 (a, da, x, n, true);
|
||||
|
||||
return;
|
||||
}
|
||||
if (k < 0x42F00000)
|
||||
{
|
||||
double a, da;
|
||||
int4 n = reduce_sincos_2 (x, &a, &da);
|
||||
|
||||
*sinx = do_sincos_2 (a, da, x, n, false);
|
||||
*cosx = do_sincos_2 (a, da, x, n, true);
|
||||
|
||||
return;
|
||||
}
|
||||
if (k < 0x7ff00000)
|
||||
|
Loading…
Reference in New Issue
Block a user