Unify hp-timing implementations

Provide an hp-timing-common.h for ports to use.
This commit is contained in:
Richard Henderson 2014-06-25 13:58:59 -07:00
parent 428dd03f5a
commit 86e1a7ff92
10 changed files with 82 additions and 344 deletions

View File

@ -20,42 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
/* The macros defined here use the timestamp counter in IA-64. They
provide a very accurate way to measure the time with very little
overhead. The time values themself have no real meaning, only
differences are interesting.
The list of macros we need includes the following:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
- HP_TIMING_DIFF: compute difference between two times and store it
in a third. Source and destination might overlap.
- HP_TIMING_ACCUM_NT: add time difference to another variable, without
being thread-safe.
- HP_TIMING_PRINT: write decimal representation of the timing value into
the given string. This operation need not be inline even though
HP_TIMING_INLINE is specified.
*/
/* We always have the timestamp register, but it's got only a 4 second
range. Use it for ld.so profiling only. */
#define HP_TIMING_AVAIL (0)
@ -77,21 +41,6 @@ typedef unsigned int hp_timing_t;
(VAR) = (int) (x_) - (int) (x_ >> 32); \
} while (0)
/* It's simple arithmetic for us. */
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
/* Print the time value. */
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa_word (Val, __buf + sizeof (__buf), 10, 0); \
int __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " clock cycles", MIN (__len, sizeof (" clock cycles"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -0,0 +1,62 @@
/* High precision, low overhead timing functions. Generic version.
Copyright (C) 1998-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* In case a platform supports timers in the hardware the following macros
and types must be defined:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values. This type must be integral.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
*/
/* The target supports hp-timing. Share the common infrastructure. */
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
/* Compute the difference between START and END, storing into DIFF. */
#define HP_TIMING_DIFF(Diff, Start, End) ((Diff) = (End) - (Start))
/* Accumulate ADD into SUM. No attempt is made to be thread-safe. */
#define HP_TIMING_ACCUM_NT(Sum, Diff) ((Sum) += (Diff))
/* Write a decimal representation of the timing value into the given string. */
#define HP_TIMING_PRINT(Dest, Len, Val) \
do { \
char __buf[20]; \
char *__dest = (Dest); \
size_t __len = (Len); \
char *__cp = _itoa ((Val), __buf + sizeof (__buf), 10, 0); \
size_t __cp_len = MIN (__buf + sizeof (__buf) - __cp, __len); \
memcpy (__dest, __cp, __cp_len); \
memcpy (__dest + __cp_len, " cycles", \
MIN (__len - __cp_len, sizeof (" cycles"))); \
__dest[__len - 1] = '\0'; \
} while (0)

View File

@ -20,39 +20,9 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
/* There are no generic definitions for the times. We could write something
using the `gettimeofday' system call where available but the overhead of
the system call might be too high.
In case a platform supports timers in the hardware the following macros
and types must be defined:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
- HP_TIMING_DIFF: compute difference between two times and store it
in a third. Source and destination might overlap.
- HP_TIMING_ACCUM_NT: add time difference to another variable, without
being thread-safe.
- HP_TIMING_PRINT: write decimal representation of the timing value into
the given string. This operation need not be inline even though
HP_TIMING_INLINE is specified.
*/
the system call might be too high. */
/* Provide dummy definitions. */
#define HP_TIMING_AVAIL (0)

View File

@ -20,50 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
/* The macros defined here use the timestamp counter in i586 and up versions
of the x86 processors. They provide a very accurate way to measure the
time with very little overhead. The time values themself have no real
meaning, only differences are interesting.
This version is for the i686 processors. The difference to the i586
version is that the timerstamp register is unconditionally used. This is
not the case for the i586 version where we have to perform runtime test
whether the processor really has this capability. We have to make this
distinction since the sysdeps/i386/i586 code is supposed to work on all
platforms while the i686 already contains i686-specific code.
The list of macros we need includes the following:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
- HP_TIMING_DIFF: compute difference between two times and store it
in a third. Source and destination might overlap.
- HP_TIMING_ACCUM_NT: add time difference to another variable, without
being thread-safe.
- HP_TIMING_PRINT: write decimal representation of the timing value into
the given string. This operation need not be inline even though
HP_TIMING_INLINE is specified.
*/
/* We always assume having the timestamp register. */
#define HP_TIMING_AVAIL (1)
@ -80,21 +36,6 @@ typedef unsigned long long int hp_timing_t;
in accurate clock cycles here so we don't do this. */
#define HP_TIMING_NOW(Var) __asm__ __volatile__ ("rdtsc" : "=A" (Var))
/* It's simple arithmetic for us. */
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
/* Print the time value. */
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa (Val, __buf + sizeof (__buf), 10, 0); \
size_t __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " clock cycles", MIN (__len, sizeof (" clock cycles"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -20,44 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
#include <ia64intrin.h>
/* The macros defined here use the timestamp counter in IA-64. They
provide a very accurate way to measure the time with very little
overhead. The time values themself have no real meaning, only
differences are interesting.
The list of macros we need includes the following:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
- HP_TIMING_DIFF: compute difference between two times and store it
in a third. Source and destination might overlap.
- HP_TIMING_ACCUM_NT: add time difference to another variable, without
being thread-safe.
- HP_TIMING_PRINT: write decimal representation of the timing value into
the given string. This operation need not be inline even though
HP_TIMING_INLINE is specified.
*/
/* We always assume having the timestamp register. */
#define HP_TIMING_AVAIL (1)
@ -81,22 +43,6 @@ typedef unsigned long int hp_timing_t;
while (REPEAT_READ (__itc)); \
Var = __itc; })
/* It's simple arithmetic for us. */
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
/* Print the time value. */
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa_word (Val, __buf + sizeof (__buf), 10, 0); \
int __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " clock cycles", MIN (__len, \
(int) sizeof (" clock cycles"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -20,43 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
#include <atomic.h>
/* The macros defined here use the powerpc 64-bit time base register.
The time base is nominally clocked at 1/8th the CPU clock, but this
can vary.
The list of macros we need includes the following:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
- HP_TIMING_DIFF: compute difference between two times and store it
in a third. Source and destination might overlap.
- HP_TIMING_ACCUM_NT: add time difference to another variable, without
being thread-safe.
- HP_TIMING_PRINT: write decimal representation of the timing value into
the given string. This operation need not be inline even though
HP_TIMING_INLINE is specified.
*/
/* We always assume having the timestamp register. */
#define HP_TIMING_AVAIL (1)
@ -85,21 +48,6 @@ typedef unsigned long long int hp_timing_t;
Var = ((hp_timing_t) hi << 32) | lo; \
} while (0)
/* It's simple arithmetic in 64-bit. */
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
/* Print the time value. */
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa (Val, __buf + sizeof (__buf), 10, 0); \
size_t __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " ticks", MIN (__len, sizeof (" ticks"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -20,43 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
#include <atomic.h>
/* The macros defined here use the powerpc 64-bit time base register.
The time base is nominally clocked at 1/8th the CPU clock, but this
can vary.
The list of macros we need includes the following:
- HP_TIMING_AVAIL: test for availability.
- HP_TIMING_INLINE: this macro is non-zero if the functionality is not
implemented using function calls but instead uses some inlined code
which might simply consist of a few assembler instructions. We have to
know this since we might want to use the macros here in places where we
cannot make function calls.
- hp_timing_t: This is the type for variables used to store the time
values.
- HP_TIMING_NOW: place timestamp for current time in variable given as
parameter.
- HP_TIMING_DIFF: compute difference between two times and store it
in a third. Source and destination might overlap.
- HP_TIMING_ACCUM_NT: add time difference to another variable, without
being thread-safe.
- HP_TIMING_PRINT: write decimal representation of the timing value into
the given string. This operation need not be inline even though
HP_TIMING_INLINE is specified.
*/
/* We always assume having the timestamp register. */
#define HP_TIMING_AVAIL (1)
@ -77,21 +40,6 @@ typedef unsigned long long int hp_timing_t;
#define HP_TIMING_NOW(Var) __asm__ __volatile__ ("mftb %0" : "=r" (Var))
#endif
/* It's simple arithmetic in 64-bit. */
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
/* Print the time value. */
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa (Val, __buf + sizeof (__buf), 10, 0); \
size_t __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " ticks", MIN (__len, sizeof (" ticks"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -20,10 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
#define HP_TIMING_AVAIL (1)
#define HP_TIMING_INLINE (1)
@ -34,19 +30,6 @@ typedef unsigned long long int hp_timing_t;
"srlx %L0, 32, %H0" \
: "=r" (Var))
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa (Val, __buf + sizeof (__buf), 10, 0); \
int __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " clock cycles", MIN (__len, sizeof (" clock cycles"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -20,10 +20,6 @@
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
#include <string.h>
#include <sys/param.h>
#include <_itoa.h>
#define HP_TIMING_AVAIL (1)
#define HP_TIMING_INLINE (1)
@ -31,19 +27,6 @@ typedef unsigned long int hp_timing_t;
#define HP_TIMING_NOW(Var) __asm__ __volatile__ ("rd %%tick, %0" : "=r" (Var))
#define HP_TIMING_DIFF(Diff, Start, End) (Diff) = ((End) - (Start))
#define HP_TIMING_ACCUM_NT(Sum, Diff) (Sum) += (Diff)
#define HP_TIMING_PRINT(Buf, Len, Val) \
do { \
char __buf[20]; \
char *__cp = _itoa (Val, __buf + sizeof (__buf), 10, 0); \
int __len = (Len); \
char *__dest = (Buf); \
while (__len-- > 0 && __cp < __buf + sizeof (__buf)) \
*__dest++ = *__cp++; \
memcpy (__dest, " clock cycles", MIN (__len, sizeof (" clock cycles"))); \
} while (0)
#include <hp-timing-common.h>
#endif /* hp-timing.h */

View File

@ -17,15 +17,23 @@
<http://www.gnu.org/licenses/>. */
#ifndef _HP_TIMING_H
#define _HP_TIMING_H 1
/* We can use some of the i686 implementation without changes. */
# include <sysdeps/i386/i686/hp-timing.h>
/* We always assume having the timestamp register. */
#define HP_TIMING_AVAIL (1)
/* We indeed have inlined functions. */
#define HP_TIMING_INLINE (1)
/* We use 64bit values for the times. */
typedef unsigned long long int hp_timing_t;
/* The "=A" constraint used in 32-bit mode does not work in 64-bit mode. */
# undef HP_TIMING_NOW
# define HP_TIMING_NOW(Var) \
#define HP_TIMING_NOW(Var) \
({ unsigned int _hi, _lo; \
asm volatile ("rdtsc" : "=a" (_lo), "=d" (_hi)); \
(Var) = ((unsigned long long int) _hi << 32) | _lo; })
#include <hp-timing-common.h>
#endif /* hp-timing.h */