C2x semantics for <tgmath.h>

<tgmath.h> implements semantics for integer generic arguments that
handle cases involving _FloatN / _FloatNx types as specified in TS
18661-3 plus some defect fixes.

C2x has further changes to the semantics for <tgmath.h> macros with
such types, which should also be considered defect fixes (although
handled through the integration of TS 18661-3 in C2x rather than
through an issue tracking process).  Specifically, the rules were
changed because of problems raised with using the macros with the
evaluation format types such as float_t and _Float32_t: the older
version of the rules didn't allow passing _FloatN / _FloatNx types to
the narrowing macros returning float or double, or passing float /
double / long double to the narrowing macros returning _FloatN /
_FloatNx, which was a problem with the evaluation format types which
could be either kind of type depending on the value of
FLT_EVAL_METHOD.

Thus the new rules allow cases of mixing types which were not allowed
before, and, as part of the changes, the handling of integer arguments
was also changed: if there is any _FloatNx generic argument, integer
generic arguments are treated as _Float32x (not double), while the
rule about treating integer arguments to narrowing macros returning
_FloatN or _FloatNx as _Float64 not double was removed (no longer
needed now double is a valid argument to such macros).

I've implemented the changes in GCC's __builtin_tgmath, which thus
requires updates to glibc's test expectations so that the tests
continue to build with GCC 13 (the test is also updated to test the
argument types that weren't allowed before but are now valid under C2x
rules).

Given those test changes, it's then also necessary to fix the
implementations in <tgmath.h> to have appropriate semantics with older
GCC so that the tests pass with GCC versions before GCC 13 as well.
For some cases (non-narrowing macros with two or three generic
arguments; narrowing macros returning _Float32x), the older version of
__builtin_tgmath doesn't correspond sufficiently well to C2x
semantics, so in those cases <tgmath.h> is adjusted to use the older
macro implementation instead of __builtin_tgmath.  The older macro
implementation is itself adjusted to give the desired semantics, with
GCC 7 and later.  (It's not possible to get the right semantics in all
cases for the narrowing macros with GCC 6 and before when the _FloatN
/ _FloatNx names are typedefs rather than distinct types.)

Tested as follows: with the full glibc testsuite for x86_64, GCC 6, 7,
11, 13; with execution of the math/tests for aarch64, arm, powerpc and
powerpc64le, GCC 6, 7, 12 and 13 (powerpc64le only with GCC 12 and
13); with build-many-glibcs.py with GCC 6, 7, 12 and 13.
This commit is contained in:
Joseph Myers 2023-01-06 19:33:29 +00:00
parent 35141f304e
commit 8a78f833d6
2 changed files with 296 additions and 161 deletions

View File

@ -19,14 +19,13 @@
# As glibc does not support decimal floating point, the types to
# consider for generic parameters are standard and binary
# floating-point types, and integer types which are treated as double.
# The corresponding complex types may also be used (including complex
# integer types, which are a GNU extension, but are currently disabled
# here because they do not work properly with tgmath.h).
# floating-point types, and integer types which are treated as
# _Float32x if any argument has a _FloatNx type and otherwise as
# double. The corresponding complex types may also be used (including
# complex integer types, which are a GNU extension, but are currently
# disabled here because they do not work properly with tgmath.h).
# The proposed resolution to TS 18661-1 DR#9
# <http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2149.htm#dr_9>
# makes the <tgmath.h> rules for selecting a function to call
# C2x makes the <tgmath.h> rules for selecting a function to call
# correspond to the usual arithmetic conversions (applied successively
# to the arguments for generic parameters in order), which choose the
# type whose set of values contains that of the other type (undefined
@ -69,10 +68,6 @@ class Type(object):
# Real argument types that correspond to a standard floating type
# (float, double or long double; not _FloatN or _FloatNx).
standard_real_argument_types_list = []
# Real argument types other than float, double and long double
# (i.e., those that are valid as arguments to narrowing macros
# returning _FloatN or _FloatNx).
non_standard_real_argument_types_list = []
# The real floating types by their order properties (which are
# tuples giving the positions in both the possible orders above).
real_types_order = {}
@ -86,13 +81,16 @@ class Type(object):
float64_type = None
# The type _Complex _Float64.
complex_float64_type = None
# The type _Float32x.
float32x_type = None
# The type _Complex _Float32x.
complex_float32x_type = None
# The type _Float64x.
float64x_type = None
# The type _Float64x if available, otherwise _Float64.
float32x_ext_type = None
def __init__(self, name, suffix=None, mant_dig=None, condition='1',
order=None, integer=False, complex=False, real_type=None):
order=None, integer=False, complex=False, real_type=None,
floatnx=False):
"""Initialize a Type object, creating any corresponding complex type
in the process."""
self.name = name
@ -102,6 +100,7 @@ class Type(object):
self.order = order
self.integer = integer
self.complex = complex
self.floatnx = floatnx
if complex:
self.complex_type = self
self.real_type = real_type
@ -119,8 +118,6 @@ class Type(object):
Type.real_argument_types_list.append(self)
if not self.name.startswith('_Float'):
Type.standard_real_argument_types_list.append(self)
if self.name not in ('float', 'double', 'long double'):
Type.non_standard_real_argument_types_list.append(self)
if self.order is not None:
Type.real_types_order[self.order] = self
if self.name == 'double':
@ -133,26 +130,28 @@ class Type(object):
Type.float64_type = self
if self.name == '_Complex _Float64':
Type.complex_float64_type = self
if self.name == '_Float32x':
Type.float32x_type = self
if self.name == '_Complex _Float32x':
Type.complex_float32x_type = self
if self.name == '_Float64x':
Type.float64x_type = self
if self.name == 'Float32x_ext':
Type.float32x_ext_type = self
@staticmethod
def create_type(name, suffix=None, mant_dig=None, condition='1', order=None,
integer=False, complex_name=None, complex_ok=True,
internal=False):
floatnx=False, internal=False):
"""Create and register a Type object for a real type, creating any
corresponding complex type in the process."""
real_type = Type(name, suffix=suffix, mant_dig=mant_dig,
condition=condition, order=order, integer=integer,
complex=False)
complex=False, floatnx=floatnx)
if complex_ok:
if complex_name is None:
complex_name = '_Complex %s' % name
complex_type = Type(complex_name, condition=condition,
integer=integer, complex=True,
real_type=real_type)
real_type=real_type, floatnx=floatnx)
else:
complex_type = None
real_type.complex_type = complex_type
@ -160,13 +159,13 @@ class Type(object):
if complex_type is not None:
complex_type.register_type(internal)
def floating_type(self, floatn):
def floating_type(self, integer_float32x):
"""Return the corresponding floating type."""
if self.integer:
if floatn:
return (Type.complex_float64_type
if integer_float32x:
return (Type.complex_float32x_type
if self.complex
else Type.float64_type)
else Type.float32x_type)
else:
return (Type.complex_double_type
if self.complex
@ -174,9 +173,9 @@ class Type(object):
else:
return self
def real_floating_type(self, floatn):
def real_floating_type(self, integer_float32x):
"""Return the corresponding real floating type."""
return self.real_type.floating_type(floatn)
return self.real_type.floating_type(integer_float32x)
def __str__(self):
"""Return string representation of a type."""
@ -194,7 +193,8 @@ class Type(object):
condition='defined HUGE_VAL_F32', order=(2, 2))
Type.create_type('_Float32x', 'f32x', 'FLT32X_MANT_DIG',
complex_name='__CFLOAT32X',
condition='defined HUGE_VAL_F32X', order=(3, 3))
condition='defined HUGE_VAL_F32X', order=(3, 3),
floatnx=True)
Type.create_type('double', '', 'DBL_MANT_DIG', order=(4, 4))
Type.create_type('long double', 'l', 'LDBL_MANT_DIG', order=(5, 7))
Type.create_type('_Float64', 'f64', 'FLT64_MANT_DIG',
@ -202,7 +202,8 @@ class Type(object):
condition='defined HUGE_VAL_F64', order=(6, 5))
Type.create_type('_Float64x', 'f64x', 'FLT64X_MANT_DIG',
complex_name='__CFLOAT64X',
condition='defined HUGE_VAL_F64X', order=(7, 6))
condition='defined HUGE_VAL_F64X', order=(7, 6),
floatnx=True)
Type.create_type('_Float128', 'f128', 'FLT128_MANT_DIG',
complex_name='__CFLOAT128',
condition='defined HUGE_VAL_F128', order=(8, 8))
@ -235,21 +236,16 @@ class Type(object):
complex_name='complex_long_double_Float64x',
condition='defined HUGE_VAL_F64X', order=(7, 7),
internal=True)
# An internal type for the argument type used by f32x*
# narrowing macros (_Float64x if available, otherwise
# _Float64).
Type.create_type('Float32x_ext', None, 'FLT32X_EXT_MANT_DIG',
complex_name='complex_Float32x_ext',
condition='1', internal=True)
@staticmethod
def can_combine_types(types, floatn):
def can_combine_types(types):
"""Return a C preprocessor conditional for whether the given list of
types can be used together as type-generic macro arguments."""
have_long_double = False
have_float128 = False
integer_float32x = any(t.floatnx for t in types)
for t in types:
t = t.real_floating_type(floatn)
t = t.real_floating_type(integer_float32x)
if t.name == 'long double':
have_long_double = True
if t.name == '_Float128' or t.name == '_Float64x':
@ -262,14 +258,15 @@ class Type(object):
return '1'
@staticmethod
def combine_types(types, floatn):
def combine_types(types):
"""Return the result of combining a set of types."""
have_complex = False
combined = None
integer_float32x = any(t.floatnx for t in types)
for t in types:
if t.complex:
have_complex = True
t = t.real_floating_type(floatn)
t = t.real_floating_type(integer_float32x)
if combined is None:
combined = t
else:
@ -375,18 +372,8 @@ class Tests(object):
'# endif\n')
float64x_text = if_cond_text([Type.float64x_type.condition],
float64x_text)
float32x_ext_text = ('#ifdef HUGE_VAL_F64X\n'
'typedef _Float64x Float32x_ext;\n'
'typedef __CFLOAT64X complex_Float32x_ext;\n'
'# define FLT32X_EXT_MANT_DIG FLT64X_MANT_DIG\n'
'#else\n'
'typedef _Float64 Float32x_ext;\n'
'typedef __CFLOAT64 complex_Float32x_ext;\n'
'# define FLT32X_EXT_MANT_DIG FLT64_MANT_DIG\n'
'#endif\n')
self.header_list.append(float64_text)
self.header_list.append(float64x_text)
self.header_list.append(float32x_ext_text)
self.types_seen = set()
for t in Type.all_types_list:
self.add_type_var(t.name, t.condition)
@ -439,39 +426,33 @@ class Tests(object):
narrowing_std = True
narrow_cond = '1'
narrow_args = [Type.double_type, Type.long_double_type]
narrow_fallback = Type.double_type
elif ret == 'double':
narrowing = True
narrowing_std = True
narrow_cond = '1'
narrow_args = [Type.long_double_type]
narrow_fallback = Type.long_double_type
elif ret.startswith('_Float'):
narrowing = True
narrow_args = []
narrow_args_1 = []
narrow_args_2 = []
nret_type = None
narrow_fallback = None
for order, real_type in sorted(Type.real_types_order.items()):
if real_type.name == ret:
nret_type = real_type
elif nret_type and real_type.name.startswith('_Float'):
narrow_args.append(real_type)
if (narrow_fallback is None
and ret.endswith('x') == real_type.name.endswith('x')):
narrow_fallback = real_type
if ret.endswith('x') == real_type.name.endswith('x'):
narrow_args_1.append(real_type)
else:
narrow_args_2.append(real_type)
narrow_args = narrow_args_1 + narrow_args_2
if narrow_args:
narrow_cond = ('(%s && (%s))'
% (nret_type.condition,
' || '.join(t.condition
for t in narrow_args)))
if narrow_fallback is None:
narrow_fallback = narrow_args[0]
if ret == '_Float32x':
narrow_fallback = Type.float32x_ext_type
else:
# No possible argument types, even conditionally.
narrow_cond = '0'
narrowing_nonstd = narrowing and not narrowing_std
types = [ret] + args
for t in types:
if t != 'c' and t != 'g' and t != 'r' and t != 's':
@ -530,19 +511,13 @@ class Tests(object):
if t == 'g' or t == 'c':
arg_types.append(Type.argument_types_list)
elif t == 'r':
if narrowing_std:
arg_types.append(Type.standard_real_argument_types_list)
elif narrowing:
arg_types.append(
Type.non_standard_real_argument_types_list)
else:
arg_types.append(Type.real_argument_types_list)
arg_types.append(Type.real_argument_types_list)
elif t == 's':
arg_types.append(Type.standard_real_argument_types_list)
arg_types_product = list_product(arg_types)
test_num = 0
for this_args in arg_types_product:
comb_type = Type.combine_types(this_args, narrowing_nonstd)
comb_type = Type.combine_types(this_args)
if narrowing:
# As long as there are no integer arguments, and as
# long as the chosen argument type is as wide as all
@ -550,22 +525,22 @@ class Tests(object):
# of the macro call do not depend on the exact
# function chosen. In particular, for f32x functions
# when _Float64x exists, the chosen type should differ
# for _Float32x and _Float64 arguments, but it is not
# always possible to distinguish those types before
# GCC 7 and the implementation does not attempt to do
# so before GCC 8.
# for double / _Float32x and _Float64 arguments, but
# it is not always possible to distinguish those types
# before GCC 7 (resulting in some cases - only real
# arguments - where a wider argument type is used,
# which is semantically OK, and others - integer
# arguments present - where it may not be OK, but is
# unavoidable).
narrow_mant_dig = comb_type.real_type.mant_dig
for arg_type in this_args:
if arg_type.integer:
narrow_mant_dig = 0
else:
narrow_mant_dig = 0
if (narrowing
and comb_type not in narrow_args
and narrow_fallback is not None):
comb_type = narrow_fallback
can_comb = Type.can_combine_types(this_args, narrowing_nonstd)
can_comb = Type.can_combine_types(this_args)
all_conds = [t.condition for t in this_args]
narrow_args_cond = '(%s)' % ' && '.join(sorted(set(all_conds)))
all_conds.append(can_comb)
if narrowing:
all_conds.append(narrow_cond)
@ -579,10 +554,69 @@ class Tests(object):
test_func_name = 'test_%s_%d' % (macro, test_num)
test_num += 1
mant_dig = comb_type.real_type.mant_dig
test_mant_dig_comp = ''
if (narrowing
and comb_type not in narrow_args):
# The expected argument type is the first in
# narrow_args that can represent all the values of
# comb_type (which, for the supported cases, means the
# first with mant_dig at least as large as that for
# comb_type, provided this isn't the case of an IBM
# long double argument with binary128 type from
# narrow_args).
narrow_extra_conds = []
test_mant_dig_list = ['#undef NARROW_MANT_DIG\n#if 0\n']
for t in narrow_args:
t_cond = '(%s && %s && %s <= %s && %s)' % (
narrow_args_cond, t.condition, mant_dig, t.mant_dig,
Type.can_combine_types(this_args + [t]))
narrow_extra_conds.append(t_cond)
test_mant_dig_list.append('#elif %s\n'
'#define NARROW_MANT_DIG %s\n'
% (t_cond, t.mant_dig))
test_mant_dig_list.append('#endif\n')
test_mant_dig_comp = ''.join(test_mant_dig_list)
all_conds.append('(%s)' % ' || '.join(narrow_extra_conds))
# A special case where this logic isn't correct is
# where comb_type is the internal long_double_Float64
# or long_double_Float64x, which will be detected as
# not in narrow_args even if the actual type chosen in
# a particular configuration would have been in
# narrow_args, so check for that case and handle it
# appropriately. In particular, if long double has
# the same format as double and there are long double
# and _Float64 arguments, and the macro returns
# _Float32x, the function called should be one for
# _Float64 arguments, not one for _Float64x arguments
# that would arise from this logic.
if comb_type.real_type.name == 'long_double_Float64':
comb_type_1 = Type.long_double_type
comb_type_2 = Type.float64_type
comb_type_is_2_cond = 'LDBL_MANT_DIG <= FLT64_MANT_DIG'
elif comb_type.real_type.name == 'long_double_Float64x':
comb_type_1 = Type.long_double_type
comb_type_2 = Type.float64x_type
comb_type_is_2_cond = 'LDBL_MANT_DIG < FLT64X_MANT_DIG'
else:
comb_type_1 = None
comb_type_2 = None
if comb_type_1 is None:
mant_dig = 'NARROW_MANT_DIG'
else:
mant_dig = ''
if comb_type_1 in narrow_args:
mant_dig += '!(%s) ? %s : ' % (comb_type_is_2_cond,
comb_type_1.mant_dig)
if comb_type_2 in narrow_args:
mant_dig += '%s ? %s : ' % (comb_type_is_2_cond,
comb_type_2.mant_dig)
mant_dig += 'NARROW_MANT_DIG'
if narrow_mant_dig != 0:
narrow_mant_dig = mant_dig
test_text = '%s, "%s", "%s", %s, %s' % (test_func_name, func_name,
test_name, mant_dig,
narrow_mant_dig)
test_text = ' { %s },\n' % test_text
test_text = '%s { %s },\n' % (test_mant_dig_comp, test_text)
test_text = if_cond_text(all_conds, test_text)
self.test_array_list.append(test_text)
call_args = []
@ -742,7 +776,7 @@ class Tests(object):
' && strcmp (called_func_name,\n'
' tests[i].func_name) == 0)\n'
' num_pass++;\n'
'#if !__GNUC_PREREQ (8, 0)\n'
'#if !__GNUC_PREREQ (7, 0)\n'
' else if (tests[i].narrow_mant_dig > 0\n'
' && (called_mant_dig\n'
' >= tests[i].narrow_mant_dig)\n'
@ -759,6 +793,21 @@ class Tests(object):
' tests[i].mant_dig,\n'
' called_func_name, called_mant_dig);\n'
' }\n'
' else if (tests[i].narrow_mant_dig == 0\n'
' && strcmp (called_func_name,\n'
' tests[i].func_name) == 0)\n'
' {\n'
' num_pass++;\n'
' printf ("Test %zu (%s):\\n"\n'
' " Expected: %s precision %d\\n"\n'
' " Actual: %s precision %d\\n"\n'
' " (unavoidable with old GCC)'
'\\n\\n",\n'
' i, tests[i].test_name,\n'
' tests[i].func_name,\n'
' tests[i].mant_dig,\n'
' called_func_name, called_mant_dig);\n'
' }\n'
'#endif\n'
' else\n'
' {\n'

View File

@ -37,9 +37,17 @@
for older GCC, using other compiler extensions but with macros
expanding their arguments many times (so resulting in exponential
blowup of the size of expansions when calls to such macros are
nested inside arguments to such macros). */
nested inside arguments to such macros). Because of a long series
of defect fixes made after the initial release of TS 18661-1, GCC
versions before GCC 13 have __builtin_tgmath semantics that, when
integer arguments are passed to narrowing macros returning
_Float32x, or non-narrowing macros with at least two generic
arguments, do not always correspond to the C2X semantics, so more
complicated macro definitions are also used in some cases for
versions from GCC 8 to GCC 12. */
#define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0)
#define __HAVE_BUILTIN_TGMATH_C2X __GNUC_PREREQ (13, 0)
#if __GNUC_PREREQ (2, 7)
@ -163,7 +171,7 @@
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y))
# define __TGMATH_3_NARROW_F64(F, X, Y, Z) \
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y), (Z))
# if __HAVE_FLOAT128
# if __HAVE_FLOAT128 && __HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_1_NARROW_F32X(F, X) \
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X))
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
@ -172,8 +180,9 @@
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y), (Z))
# endif
# else /* !__HAVE_BUILTIN_TGMATH. */
# endif
# if !__HAVE_BUILTIN_TGMATH_C2X
# ifdef __NO_LONG_DOUBLE_MATH
# define __tgml(fct) fct
# else
@ -213,13 +222,17 @@
/* Whether an expression (of arithmetic type) has a real type. */
# define __expr_is_real(E) (__builtin_classify_type (E) != 9)
/* Type T1 if E is 1, type T2 is E is 0. */
# define __tgmath_type_if(T1, T2, E) \
__typeof__ (*(0 ? (__typeof__ (0 ? (T2 *) 0 : (void *) (E))) 0 \
: (__typeof__ (0 ? (T1 *) 0 : (void *) (!(E)))) 0))
/* The tgmath real type for T, where E is 0 if T is an integer type
and 1 for a floating type. If T has a complex type, it is
unspecified whether the return type is real or complex (but it has
the correct corresponding real type). */
# define __tgmath_real_type_sub(T, E) \
__typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
__tgmath_type_if (T, double, E)
/* The tgmath real type of EXPR. */
# define __tgmath_real_type(expr) \
@ -247,6 +260,56 @@
__real_integer_type (__typeof__ (+(expr))), \
__complex_integer_type (__typeof__ (+(expr))))
/* The tgmath real type of EXPR1 combined with EXPR2, without handling
the C2X rule of interpreting integer arguments as _Float32x if any
argument is _FloatNx. */
# define __tgmath_real_type2_base(expr1, expr2) \
__typeof ((__tgmath_real_type (expr1)) 0 + (__tgmath_real_type (expr2)) 0)
/* The tgmath complex type of EXPR1 combined with EXPR2, without
handling the C2X rule of interpreting integer arguments as
_Float32x if any argument is _FloatNx. */
# define __tgmath_complex_type2_base(expr1, expr2) \
__typeof ((__tgmath_complex_type (expr1)) 0 \
+ (__tgmath_complex_type (expr2)) 0)
/* The tgmath real type of EXPR1 combined with EXPR2 and EXPR3,
without handling the C2X rule of interpreting integer arguments as
_Float32x if any argument is _FloatNx. */
# define __tgmath_real_type3_base(expr1, expr2, expr3) \
__typeof ((__tgmath_real_type (expr1)) 0 \
+ (__tgmath_real_type (expr2)) 0 \
+ (__tgmath_real_type (expr3)) 0)
/* The tgmath real or complex type of EXPR1 combined with EXPR2 (and
EXPR3 if applicable). */
# if __HAVE_FLOATN_NOT_TYPEDEF
# define __tgmath_real_type2(expr1, expr2) \
__tgmath_type_if (_Float32x, __tgmath_real_type2_base (expr1, expr2), \
_Generic ((expr1) + (expr2), _Float32x: 1, default: 0))
# define __tgmath_complex_type2(expr1, expr2) \
__tgmath_type_if (_Float32x, \
__tgmath_type_if (_Complex _Float32x, \
__tgmath_complex_type2_base (expr1, \
expr2), \
_Generic ((expr1) + (expr2), \
_Complex _Float32x: 1, \
default: 0)), \
_Generic ((expr1) + (expr2), _Float32x: 1, default: 0))
# define __tgmath_real_type3(expr1, expr2, expr3) \
__tgmath_type_if (_Float32x, \
__tgmath_real_type3_base (expr1, expr2, expr3), \
_Generic ((expr1) + (expr2) + (expr3), \
_Float32x: 1, default: 0))
# else
# define __tgmath_real_type2(expr1, expr2) \
__tgmath_real_type2_base (expr1, expr2)
# define __tgmath_complex_type2(expr1, expr2) \
__tgmath_complex_type2_base (expr1, expr2)
# define __tgmath_real_type3(expr1, expr2, expr3) \
__tgmath_real_type3_base (expr1, expr2, expr3)
# endif
# if (__HAVE_DISTINCT_FLOAT16 \
|| __HAVE_DISTINCT_FLOAT32 \
|| __HAVE_DISTINCT_FLOAT64 \
@ -258,7 +321,10 @@
/* Expand to text that checks if ARG_COMB has type _Float128, and if
so calls the appropriately suffixed FCT (which may include a cast),
or FCT and CFCT for complex functions, with arguments ARG_CALL. */
or FCT and CFCT for complex functions, with arguments ARG_CALL.
__TGMATH_F128LD (only used in the __HAVE_FLOAT64X_LONG_DOUBLE case,
for narrowing macros) handles long double the same as
_Float128. */
# if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# if (!__HAVE_FLOAT64X \
|| __HAVE_FLOAT64X_LONG_DOUBLE \
@ -266,6 +332,10 @@
# define __TGMATH_F128(arg_comb, fct, arg_call) \
__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
? fct ## f128 arg_call :
# define __TGMATH_F128LD(arg_comb, fct, arg_call) \
(__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|| __builtin_types_compatible_p (__typeof (+(arg_comb)), long double)) \
? fct ## f128 arg_call :
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
? (__expr_is_real (arg_comb) \
@ -291,7 +361,7 @@
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */
# endif
# endif /* !__HAVE_BUILTIN_TGMATH. */
# endif /* !__HAVE_BUILTIN_TGMATH_C2X. */
/* We have two kinds of generic macros: to support functions which are
only defined on real valued parameters and those which are defined
@ -304,14 +374,18 @@
__TGMATH_2 (Fct, (Val1), (Val2))
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
__TGMATH_2STD (Fct, (Val1), (Val2))
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
# if __HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
__TGMATH_2 (Fct, (Val1), (Val2))
# endif
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
__TGMATH_2STD (Fct, (Val1), (Val2))
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
# if __HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
# endif
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
@ -321,11 +395,14 @@
__TGMATH_1C (Fct, Cfct, (Val))
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
__TGMATH_1 (Cfct, (Val))
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
# if __HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
__TGMATH_2C (Fct, Cfct, (Val1), (Val2))
# endif
# else /* !__HAVE_BUILTIN_TGMATH. */
# endif
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
@ -362,29 +439,28 @@
: (sizeof (+(Val1)) == sizeof (float)) \
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
: (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
# endif
# if !__HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? __TGMATH_F128 ((Val1) + (Val2), \
(__typeof \
((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) Fct, \
(__tgmath_real_type2 (Val1, Val2)) Fct, \
(Val1, Val2)) \
(__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
(__tgmath_real_type2 (Val1, Val2)) \
__tgml(Fct) (Val1, Val2) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
? (__tgmath_real_type2 (Val1, Val2)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
: (__tgmath_real_type2 (Val1, Val2)) \
Fct##f (Val1, Val2)))
# endif
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
@ -401,27 +477,24 @@
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2)))
# endif
# if !__HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? __TGMATH_F128 ((Val1) + (Val2), \
(__typeof \
((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) Fct, \
(__tgmath_real_type2 (Val1, Val2)) Fct, \
(Val1, Val2, Val3)) \
(__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
(__tgmath_real_type2 (Val1, Val2)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
? (__tgmath_real_type2 (Val1, Val2)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
: (__tgmath_real_type2 (Val1, Val2)) \
Fct##f (Val1, Val2, Val3)))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
@ -429,14 +502,10 @@
&& __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
== 8) \
? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \
(__typeof \
((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) Fct, \
(__tgmath_real_type3 (Val1, Val2, \
Val3)) Fct, \
(Val1, Val2, Val3)) \
(__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
(__tgmath_real_type3 (Val1, Val2, Val3)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
@ -444,15 +513,13 @@
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8 \
|| __builtin_classify_type (Val3) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
? (__tgmath_real_type3 (Val1, Val2, Val3)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
: (__tgmath_real_type3 (Val1, Val2, Val3)) \
Fct##f (Val1, Val2, Val3)))
# endif
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
@ -528,7 +595,9 @@
__tgml(Cfct) (Val))))
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
__TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct)
# endif
# if !__HAVE_BUILTIN_TGMATH_C2X
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
@ -537,41 +606,33 @@
&& __builtin_classify_type (__real__ (Val1) \
+ __real__ (Val2)) == 8) \
? __TGMATH_CF128 ((Val1) + (Val2), \
(__typeof \
((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
(__tgmath_complex_type2 (Val1, Val2)) \
Fct, \
(__typeof \
((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
(__tgmath_complex_type2 (Val1, Val2)) \
Cfct, \
(Val1, Val2)) \
(__expr_is_real ((Val1) + (Val2)) \
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
? (__tgmath_complex_type2 (Val1, Val2)) \
__tgml(Fct) (Val1, Val2) \
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
: (__tgmath_complex_type2 (Val1, Val2)) \
__tgml(Cfct) (Val1, Val2)) \
: (sizeof (+__real__ (Val1)) == sizeof (double) \
|| sizeof (+__real__ (Val2)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val1)) != 8 \
|| __builtin_classify_type (__real__ (Val2)) != 8) \
? (__expr_is_real ((Val1) + (Val2)) \
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
? (__tgmath_complex_type2 (Val1, Val2)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
: (__tgmath_complex_type2 (Val1, Val2)) \
Cfct (Val1, Val2)) \
: (__expr_is_real ((Val1) + (Val2)) \
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
? (__tgmath_complex_type2 (Val1, Val2)) \
Fct##f (Val1, Val2) \
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
: (__tgmath_complex_type2 (Val1, Val2)) \
Cfct##f (Val1, Val2))))
# endif
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_1_NARROW_F(F, X) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (double) \
? F ## l (X) \
@ -587,6 +648,7 @@
+ (__tgmath_real_type (Z)) 0) > sizeof (double) \
? F ## l (X, Y, Z) \
: F (X, Y, Z)))
# endif
/* In most cases, these narrowing macro definitions based on sizeof
ensure that the function called has the right argument format, as
for other <tgmath.h> macros for compilers before GCC 8, but may not
@ -595,60 +657,74 @@
In the case of macros for _Float32x return type, when _Float64x
exists, _Float64 arguments should result in the *f64 function being
called while _Float32x arguments should result in the *f64x
function being called. These cases cannot be distinguished using
sizeof (or at all if the types are typedefs rather than different
types). However, for these functions it is OK (does not affect the
final result) to call a function with any argument format at least
as wide as all the floating-point arguments, unless that affects
rounding of integer arguments. Integer arguments are considered to
have type _Float64, so the *f64 functions are preferred for f32x*
macros when no argument has a wider floating-point type. */
# if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128
called while _Float32x, float and double arguments should result in
the *f64x function being called (and integer arguments are
considered to have type _Float32x if any argument has type
_FloatNx, or double otherwise). These cases cannot be
distinguished using sizeof (or at all if the types are typedefs
rather than different types, in which case we err on the side of
using the wider type if unsure). */
# if !__HAVE_BUILTIN_TGMATH_C2X
# if __HAVE_FLOATN_NOT_TYPEDEF
# define __TGMATH_NARROW_F32X_USE_F64X(X) \
!__builtin_types_compatible_p (__typeof (+(X)), _Float64)
# else
# define __TGMATH_NARROW_F32X_USE_F64X(X) \
(__builtin_types_compatible_p (__typeof (+(X)), double) \
|| __builtin_types_compatible_p (__typeof (+(X)), float) \
|| !__floating_type (__typeof (+(X))))
# endif
# endif
# if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_1_NARROW_F32(F, X) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
? __TGMATH_F128 ((X), F, (X)) \
? __TGMATH_F128LD ((X), F, (X)) \
F ## f64x (X) \
: F ## f64 (X)))
# define __TGMATH_2_NARROW_F32(F, X, Y) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
? __TGMATH_F128LD ((X) + (Y), F, (X, Y)) \
F ## f64x (X, Y) \
: F ## f64 (X, Y)))
# define __TGMATH_3_NARROW_F32(F, X, Y, Z) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0 \
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
? __TGMATH_F128 ((X) + (Y) + (Z), F, (X, Y, Z)) \
? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z)) \
F ## f64x (X, Y, Z) \
: F ## f64 (X, Y, Z)))
# define __TGMATH_1_NARROW_F64(F, X) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
? __TGMATH_F128 ((X), F, (X)) \
? __TGMATH_F128LD ((X), F, (X)) \
F ## f64x (X) \
: F ## f128 (X)))
# define __TGMATH_2_NARROW_F64(F, X, Y) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
? __TGMATH_F128LD ((X) + (Y), F, (X, Y)) \
F ## f64x (X, Y) \
: F ## f128 (X, Y)))
# define __TGMATH_3_NARROW_F64(F, X, Y, Z) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0 \
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
? __TGMATH_F128 ((X) + (Y) + (Z), F, (X, Y, Z)) \
? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z)) \
F ## f64x (X, Y, Z) \
: F ## f128 (X, Y, Z)))
# endif
# if !__HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_1_NARROW_F32X(F, X) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|| __TGMATH_NARROW_F32X_USE_F64X (X) \
? __TGMATH_F128 ((X), F, (X)) \
F ## f64x (X) \
: F ## f64 (X)))
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y)) \
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
F ## f64x (X, Y) \
: F ## f64 (X, Y)))
@ -656,10 +732,13 @@
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0 \
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z)) \
? __TGMATH_F128 ((X) + (Y) + (Z), F, (X, Y, Z)) \
F ## f64x (X, Y, Z) \
: F ## f64 (X, Y, Z)))
# elif __HAVE_FLOAT128
# endif
# elif __HAVE_FLOAT128
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_1_NARROW_F32(F, X) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
? F ## f128 (X) \
@ -681,22 +760,29 @@
(F ## f128 (X, Y))
# define __TGMATH_3_NARROW_F64(F, X, Y, Z) \
(F ## f128 (X, Y, Z))
# endif
# if !__HAVE_BUILTIN_TGMATH_C2X
# define __TGMATH_1_NARROW_F32X(F, X) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float32x) \
|| __TGMATH_NARROW_F32X_USE_F64X (X) \
? F ## f64x (X) \
: F ## f64 (X)))
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y)) \
? F ## f64x (X, Y) \
: F ## f64 (X, Y)))
# define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
+ (__tgmath_real_type (Y)) 0 \
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float32x) \
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z)) \
? F ## f64x (X, Y, Z) \
: F ## f64 (X, Y, Z)))
# else
# endif
# else
# if !__HAVE_BUILTIN_TGMATH
# define __TGMATH_1_NARROW_F32(F, X) \
(F ## f64 (X))
# define __TGMATH_2_NARROW_F32(F, X, Y) \
@ -704,7 +790,7 @@
# define __TGMATH_3_NARROW_F32(F, X, Y, Z) \
(F ## f64 (X, Y, Z))
# endif
# endif /* !__HAVE_BUILTIN_TGMATH. */
# endif
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif