Convert TEST_extra tests from code to data.

This commit is contained in:
Joseph Myers 2013-05-16 15:53:40 +00:00
parent e6e49e59c1
commit 8c75f67421
2 changed files with 95 additions and 61 deletions

View File

@ -1,3 +1,10 @@
2013-05-16 Joseph Myers <joseph@codesourcery.com>
* math/libm-test.inc (struct test_sincos_data): New type.
(RUN_TEST_LOOP_sincos): New macro.
(sincos_test_data): New variable.
(sincos_test): Run tests with RUN_TEST_LOOP_sincos.
2013-05-16 Richard Henderson <rth@redhat.com>
* math/atest-exp2.c (LIMB64): New macro.

View File

@ -1030,6 +1030,17 @@ struct test_f_L_data
long long int max_ulp;
int exceptions;
};
struct test_sincos_data
{
FLOAT arg;
const char *test_name_sin;
FLOAT expected_sin;
FLOAT max_ulp_sin;
const char *test_name_cos;
FLOAT expected_cos;
FLOAT max_ulp_cos;
int exceptions;
};
/* Set the rounding mode, or restore the saved value. */
#define IF_ROUND_INIT_ /* Empty. */
@ -1330,6 +1341,17 @@ struct test_f_L_data
EXPECTED_COS, MAX_ULP_COS, 0); \
} \
while (0)
#define RUN_TEST_LOOP_sincos(ARRAY, ROUNDING_MODE, SIN_RES_VAR, \
COS_RES_VAR) \
IF_ROUND_INIT_ ## ROUNDING_MODE \
for (size_t i = 0; i < sizeof (ARRAY) / sizeof (ARRAY)[0]; i++) \
RUN_TEST_sincos ((ARRAY)[i].arg, (ARRAY)[i].test_name_sin, \
SIN_RES_VAR, (ARRAY)[i].expected_sin, \
(ARRAY)[i].max_ulp_sin, \
(ARRAY)[i].test_name_cos, COS_RES_VAR, \
(ARRAY)[i].expected_cos, (ARRAY)[i].max_ulp_cos, \
(ARRAY)[i].exceptions); \
ROUND_RESTORE_ ## ROUNDING_MODE
@ -13753,6 +13775,71 @@ sin_test_upward (void)
}
static const struct test_sincos_data sincos_test_data[] =
{
START_DATA (sincos),
/* sincos is treated differently because it returns void. */
TEST_extra (sincos, 0, 0, 1),
TEST_extra (sincos, minus_zero, minus_zero, 1),
TEST_extra (sincos, plus_infty, qnan_value, qnan_value, INVALID_EXCEPTION),
TEST_extra (sincos, minus_infty, qnan_value, qnan_value, INVALID_EXCEPTION),
TEST_extra (sincos, qnan_value, qnan_value, qnan_value),
/* The value of M_PI_2l is never exactly PI/2, and therefore the
answer is never exactly zero. The answer is equal to the error
in rounding PI/2 for the type used. Thus the answer is unique
to each type. */
#ifdef TEST_FLOAT
/* 32-bit float. */
TEST_extra (sincos, M_PI_2l, 1, -0x1.777a5cp-25L),
#endif
#if defined TEST_DOUBLE || (defined TEST_LDOUBLE && LDBL_MANT_DIG == 53)
/* 64-bit double or 64-bit long double. */
TEST_extra (sincos, M_PI_2l, 1, 0x1.1a62633145c07p-54L),
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG == 64
/* 96-bit long double. */
TEST_extra (sincos, M_PI_2l, 1, -0xe.ce675d1fc8f8cbbp-69L),
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG == 106
/* 128-bit IBM long double. */
TEST_extra (sincos, M_PI_2l, 1, 0x1.c1cd129024e088a67cc74020bcp-107L),
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG == 113
/* 128-bit long double. */
TEST_extra (sincos, M_PI_2l, 1, 0x1.cd129024e088a67cc74020bbea64p-115L),
#endif
TEST_extra (sincos, M_PI_6l, 0.5, 0.86602540378443864676372317075293616L),
TEST_extra (sincos, M_PI_6l*2.0, 0.86602540378443864676372317075293616L, 0.5),
TEST_extra (sincos, 0.75L, 0.681638760023334166733241952779893935L, 0.731688868873820886311838753000084544L),
TEST_extra (sincos, 0x1p65, -0.047183876212354673805106149805700013943218L, 0.99888622066058013610642172179340364209972L),
TEST_extra (sincos, -0x1p65, 0.047183876212354673805106149805700013943218L, 0.99888622066058013610642172179340364209972L),
#ifdef TEST_DOUBLE
TEST_extra (sincos, 0.80190127184058835, 0.71867942238767868, 0.69534156199418473),
#endif
#ifndef TEST_FLOAT
TEST_extra (sincos, 1e22, -0.8522008497671888017727058937530293682618L, 0.5232147853951389454975944733847094921409L),
TEST_extra (sincos, 0x1p1023, 0.5631277798508840134529434079444683477104L, -0.826369834614147994500785680811743734805L),
#endif
#if defined TEST_LDOUBLE && LDBL_MAX_EXP >= 16384
TEST_extra (sincos, 0x1p16383L, 0.3893629985894208126948115852610595405563L, 0.9210843909921906206874509522505756251609L),
#endif
TEST_extra (sincos, 0x1p+120, 3.77820109360752022655548470056922991960587e-01L, -9.25879022854837867303861764107414946730833e-01L),
TEST_extra (sincos, 0x1p+127, 6.23385512955870240370428801097126489001833e-01L, 7.81914638714960072263910298466369236613162e-01L),
TEST_extra (sincos, 0x1.fffff8p+127, 4.85786063130487339701113680434728152037092e-02L, 9.98819362551949040703862043664101081064641e-01L),
TEST_extra (sincos, 0x1.fffffep+127, -5.21876523333658540551505357019806722935726e-01L, 8.53021039830304158051791467692161107353094e-01L),
TEST_extra (sincos, 0x1p+50, 4.96396515208940840876821859865411368093356e-01L, 8.68095904660550604334592502063501320395739e-01L),
TEST_extra (sincos, 0x1p+28, -9.86198211836975655703110310527108292055548e-01L, -1.65568979490578758865468278195361551113358e-01L),
END_DATA (sincos)
};
static void
sincos_test (void)
{
@ -13765,67 +13852,7 @@ sincos_test (void)
return;
START (sincos);
/* sincos is treated differently because it returns void. */
TEST_extra (sincos, 0, 0, 1);
TEST_extra (sincos, minus_zero, minus_zero, 1);
TEST_extra (sincos, plus_infty, qnan_value, qnan_value, INVALID_EXCEPTION);
TEST_extra (sincos, minus_infty, qnan_value, qnan_value, INVALID_EXCEPTION);
TEST_extra (sincos, qnan_value, qnan_value, qnan_value);
/* The value of M_PI_2l is never exactly PI/2, and therefore the
answer is never exactly zero. The answer is equal to the error
in rounding PI/2 for the type used. Thus the answer is unique
to each type. */
#ifdef TEST_FLOAT
/* 32-bit float. */
TEST_extra (sincos, M_PI_2l, 1, -0x1.777a5cp-25L);
#endif
#if defined TEST_DOUBLE || (defined TEST_LDOUBLE && LDBL_MANT_DIG == 53)
/* 64-bit double or 64-bit long double. */
TEST_extra (sincos, M_PI_2l, 1, 0x1.1a62633145c07p-54L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG == 64
/* 96-bit long double. */
TEST_extra (sincos, M_PI_2l, 1, -0xe.ce675d1fc8f8cbbp-69L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG == 106
/* 128-bit IBM long double. */
TEST_extra (sincos, M_PI_2l, 1, 0x1.c1cd129024e088a67cc74020bcp-107L);
#endif
#if defined TEST_LDOUBLE && LDBL_MANT_DIG == 113
/* 128-bit long double. */
TEST_extra (sincos, M_PI_2l, 1, 0x1.cd129024e088a67cc74020bbea64p-115L);
#endif
TEST_extra (sincos, M_PI_6l, 0.5, 0.86602540378443864676372317075293616L);
TEST_extra (sincos, M_PI_6l*2.0, 0.86602540378443864676372317075293616L, 0.5);
TEST_extra (sincos, 0.75L, 0.681638760023334166733241952779893935L, 0.731688868873820886311838753000084544L);
TEST_extra (sincos, 0x1p65, -0.047183876212354673805106149805700013943218L, 0.99888622066058013610642172179340364209972L);
TEST_extra (sincos, -0x1p65, 0.047183876212354673805106149805700013943218L, 0.99888622066058013610642172179340364209972L);
#ifdef TEST_DOUBLE
TEST_extra (sincos, 0.80190127184058835, 0.71867942238767868, 0.69534156199418473);
#endif
#ifndef TEST_FLOAT
TEST_extra (sincos, 1e22, -0.8522008497671888017727058937530293682618L, 0.5232147853951389454975944733847094921409L);
TEST_extra (sincos, 0x1p1023, 0.5631277798508840134529434079444683477104L, -0.826369834614147994500785680811743734805L);
#endif
#if defined TEST_LDOUBLE && LDBL_MAX_EXP >= 16384
TEST_extra (sincos, 0x1p16383L, 0.3893629985894208126948115852610595405563L, 0.9210843909921906206874509522505756251609L);
#endif
TEST_extra (sincos, 0x1p+120, 3.77820109360752022655548470056922991960587e-01L, -9.25879022854837867303861764107414946730833e-01L);
TEST_extra (sincos, 0x1p+127, 6.23385512955870240370428801097126489001833e-01L, 7.81914638714960072263910298466369236613162e-01L);
TEST_extra (sincos, 0x1.fffff8p+127, 4.85786063130487339701113680434728152037092e-02L, 9.98819362551949040703862043664101081064641e-01L);
TEST_extra (sincos, 0x1.fffffep+127, -5.21876523333658540551505357019806722935726e-01L, 8.53021039830304158051791467692161107353094e-01L);
TEST_extra (sincos, 0x1p+50, 4.96396515208940840876821859865411368093356e-01L, 8.68095904660550604334592502063501320395739e-01L);
TEST_extra (sincos, 0x1p+28, -9.86198211836975655703110310527108292055548e-01L, -1.65568979490578758865468278195361551113358e-01L);
RUN_TEST_LOOP_sincos (sincos_test_data, , sin_res, cos_res);
END (sincos);
}