mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-08 14:20:07 +00:00
New generic sincosf
This implementation is based on generic s_sinf.c and s_cosf.c. Tested on s390x, powerpc64le and powerpc32.
This commit is contained in:
parent
93930ea935
commit
984ae9967b
10
ChangeLog
10
ChangeLog
@ -1,3 +1,13 @@
|
||||
2017-12-16 Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
|
||||
|
||||
* sysdeps/ieee754/flt-32/s_cosf.c: Move reduced() and
|
||||
constants to s_sincosf.h file.
|
||||
* sysdeps/ieee754/flt-32/s_sinf.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/s_sincosf.c: New
|
||||
implementation.
|
||||
* sysdeps/ieee754/flt-32/s_sincosf.h:
|
||||
New file.
|
||||
|
||||
2017-12-12 Carlos O'Donell <carlos@redhat.com>
|
||||
|
||||
[BZ #14681]
|
||||
|
@ -20,6 +20,7 @@
|
||||
#include <math.h>
|
||||
#include <math_private.h>
|
||||
#include <libm-alias-float.h>
|
||||
#include "s_sincosf.h"
|
||||
|
||||
#ifndef COSF
|
||||
# define COSF_FUNC __cosf
|
||||
@ -27,95 +28,6 @@
|
||||
# define COSF_FUNC COSF
|
||||
#endif
|
||||
|
||||
/* Chebyshev constants for cos, range -PI/4 - PI/4. */
|
||||
static const double C0 = -0x1.ffffffffe98aep-2;
|
||||
static const double C1 = 0x1.55555545c50c7p-5;
|
||||
static const double C2 = -0x1.6c16b348b6874p-10;
|
||||
static const double C3 = 0x1.a00eb9ac43ccp-16;
|
||||
static const double C4 = -0x1.23c97dd8844d7p-22;
|
||||
|
||||
/* Chebyshev constants for sin, range -PI/4 - PI/4. */
|
||||
static const double S0 = -0x1.5555555551cd9p-3;
|
||||
static const double S1 = 0x1.1111110c2688bp-7;
|
||||
static const double S2 = -0x1.a019f8b4bd1f9p-13;
|
||||
static const double S3 = 0x1.71d7264e6b5b4p-19;
|
||||
static const double S4 = -0x1.a947e1674b58ap-26;
|
||||
|
||||
/* Chebyshev constants for cos, range 2^-27 - 2^-5. */
|
||||
static const double CC0 = -0x1.fffffff5cc6fdp-2;
|
||||
static const double CC1 = 0x1.55514b178dac5p-5;
|
||||
|
||||
/* PI/2 with 98 bits of accuracy. */
|
||||
static const double PI_2_hi = 0x1.921fb544p+0;
|
||||
static const double PI_2_lo = 0x1.0b4611a626332p-34;
|
||||
|
||||
static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */
|
||||
|
||||
#define FLOAT_EXPONENT_SHIFT 23
|
||||
#define FLOAT_EXPONENT_BIAS 127
|
||||
|
||||
static const double pio2_table[] = {
|
||||
0 * M_PI_2,
|
||||
1 * M_PI_2,
|
||||
2 * M_PI_2,
|
||||
3 * M_PI_2,
|
||||
4 * M_PI_2,
|
||||
5 * M_PI_2
|
||||
};
|
||||
|
||||
static const double invpio4_table[] = {
|
||||
0x0p+0,
|
||||
0x1.45f306cp+0,
|
||||
0x1.c9c882ap-28,
|
||||
0x1.4fe13a8p-58,
|
||||
0x1.f47d4dp-85,
|
||||
0x1.bb81b6cp-112,
|
||||
0x1.4acc9ep-142,
|
||||
0x1.0e4107cp-169
|
||||
};
|
||||
|
||||
static const double ones[] = { 1.0, -1.0 };
|
||||
|
||||
/* Compute the cosine value using Chebyshev polynomials where
|
||||
THETA is the range reduced absolute value of the input
|
||||
and it is less than Pi/4,
|
||||
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
|
||||
whether a sine or cosine approximation is more accurate and
|
||||
the sign of the result. */
|
||||
static inline float
|
||||
reduced (double theta, unsigned int n)
|
||||
{
|
||||
double sign, cx;
|
||||
const double theta2 = theta * theta;
|
||||
|
||||
/* Determine positive or negative primary interval. */
|
||||
n += 2;
|
||||
sign = ones[(n >> 2) & 1];
|
||||
|
||||
/* Are we in the primary interval of sin or cos? */
|
||||
if ((n & 2) == 0)
|
||||
{
|
||||
/* Here cosf() is calculated using sin Chebyshev polynomial:
|
||||
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
|
||||
cx = S3 + theta2 * S4;
|
||||
cx = S2 + theta2 * cx;
|
||||
cx = S1 + theta2 * cx;
|
||||
cx = S0 + theta2 * cx;
|
||||
cx = theta + theta * theta2 * cx;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Here cosf() is calculated using cos Chebyshev polynomial:
|
||||
1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
|
||||
cx = C3 + theta2 * C4;
|
||||
cx = C2 + theta2 * cx;
|
||||
cx = C1 + theta2 * cx;
|
||||
cx = C0 + theta2 * cx;
|
||||
cx = 1. + theta2 * cx;
|
||||
}
|
||||
return sign * cx;
|
||||
}
|
||||
|
||||
float
|
||||
COSF_FUNC (float x)
|
||||
{
|
||||
@ -161,7 +73,7 @@ COSF_FUNC (float x)
|
||||
pio2_table must go to 5 (9 / 2 + 1). */
|
||||
unsigned int n = (abstheta * inv_PI_4) + 1;
|
||||
theta = abstheta - pio2_table[n / 2];
|
||||
return reduced (theta, n);
|
||||
return reduced_cos (theta, n);
|
||||
}
|
||||
else if (isless (abstheta, INFINITY))
|
||||
{
|
||||
@ -171,7 +83,7 @@ COSF_FUNC (float x)
|
||||
double x = n / 2;
|
||||
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
|
||||
/* Argument reduction needed. */
|
||||
return reduced (theta, n);
|
||||
return reduced_cos (theta, n);
|
||||
}
|
||||
else /* |theta| >= 2^23. */
|
||||
{
|
||||
@ -199,7 +111,7 @@ COSF_FUNC (float x)
|
||||
e += c;
|
||||
e += d;
|
||||
e *= M_PI_4;
|
||||
return reduced (e, l + 1);
|
||||
return reduced_cos (e, l + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -209,14 +121,14 @@ COSF_FUNC (float x)
|
||||
if (e <= 1.0)
|
||||
{
|
||||
e *= M_PI_4;
|
||||
return reduced (e, l + 1);
|
||||
return reduced_cos (e, l + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
l++;
|
||||
e -= 2.0;
|
||||
e *= M_PI_4;
|
||||
return reduced (e, l + 1);
|
||||
return reduced_cos (e, l + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,6 @@
|
||||
/* Compute sine and cosine of argument.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
Copyright (C) 2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -19,9 +18,9 @@
|
||||
|
||||
#include <errno.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <math_private.h>
|
||||
#include <libm-alias-float.h>
|
||||
#include "s_sincosf.h"
|
||||
|
||||
#ifndef SINCOSF
|
||||
# define SINCOSF_FUNC __sincosf
|
||||
@ -32,50 +31,137 @@
|
||||
void
|
||||
SINCOSF_FUNC (float x, float *sinx, float *cosx)
|
||||
{
|
||||
int32_t ix;
|
||||
|
||||
/* High word of x. */
|
||||
GET_FLOAT_WORD (ix, x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if (ix <= 0x3f490fd8)
|
||||
double cx;
|
||||
double theta = x;
|
||||
double abstheta = fabs (theta);
|
||||
/* If |x|< Pi/4. */
|
||||
if (isless (abstheta, M_PI_4))
|
||||
{
|
||||
*sinx = __kernel_sinf (x, 0.0, 0);
|
||||
*cosx = __kernel_cosf (x, 0.0);
|
||||
}
|
||||
else if (ix>=0x7f800000)
|
||||
{
|
||||
/* sin(Inf or NaN) is NaN */
|
||||
*sinx = *cosx = x - x;
|
||||
if (ix == 0x7f800000)
|
||||
__set_errno (EDOM);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Argument reduction needed. */
|
||||
float y[2];
|
||||
int n;
|
||||
|
||||
n = __ieee754_rem_pio2f (x, y);
|
||||
switch (n & 3)
|
||||
if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */
|
||||
{
|
||||
case 0:
|
||||
*sinx = __kernel_sinf (y[0], y[1], 1);
|
||||
*cosx = __kernel_cosf (y[0], y[1]);
|
||||
break;
|
||||
case 1:
|
||||
*sinx = __kernel_cosf (y[0], y[1]);
|
||||
*cosx = -__kernel_sinf (y[0], y[1], 1);
|
||||
break;
|
||||
case 2:
|
||||
*sinx = -__kernel_sinf (y[0], y[1], 1);
|
||||
*cosx = -__kernel_cosf (y[0], y[1]);
|
||||
break;
|
||||
default:
|
||||
*sinx = -__kernel_cosf (y[0], y[1]);
|
||||
*cosx = __kernel_sinf (y[0], y[1], 1);
|
||||
break;
|
||||
const double theta2 = theta * theta;
|
||||
/* Chebyshev polynomial of the form for sin and cos. */
|
||||
cx = C3 + theta2 * C4;
|
||||
cx = C2 + theta2 * cx;
|
||||
cx = C1 + theta2 * cx;
|
||||
cx = C0 + theta2 * cx;
|
||||
cx = 1.0 + theta2 * cx;
|
||||
*cosx = cx;
|
||||
cx = S3 + theta2 * S4;
|
||||
cx = S2 + theta2 * cx;
|
||||
cx = S1 + theta2 * cx;
|
||||
cx = S0 + theta2 * cx;
|
||||
cx = theta + theta * theta2 * cx;
|
||||
*sinx = cx;
|
||||
}
|
||||
else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */
|
||||
{
|
||||
/* A simpler Chebyshev approximation is close enough for this range:
|
||||
for sin: x+x^3*(SS0+x^2*SS1)
|
||||
for cos: 1.0+x^2*(CC0+x^3*CC1). */
|
||||
const double theta2 = theta * theta;
|
||||
cx = CC0 + theta * theta2 * CC1;
|
||||
cx = 1.0 + theta2 * cx;
|
||||
*cosx = cx;
|
||||
cx = SS0 + theta2 * SS1;
|
||||
cx = theta + theta * theta2 * cx;
|
||||
*sinx = cx;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Handle some special cases. */
|
||||
if (theta)
|
||||
*sinx = theta - (theta * SMALL);
|
||||
else
|
||||
*sinx = theta;
|
||||
*cosx = 1.0 - abstheta;
|
||||
}
|
||||
}
|
||||
else /* |x| >= Pi/4. */
|
||||
{
|
||||
unsigned int signbit = isless (x, 0);
|
||||
if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */
|
||||
{
|
||||
/* There are cases where FE_UPWARD rounding mode can
|
||||
produce a result of abstheta * inv_PI_4 == 9,
|
||||
where abstheta < 9pi/4, so the domain for
|
||||
pio2_table must go to 5 (9 / 2 + 1). */
|
||||
unsigned int n = (abstheta * inv_PI_4) + 1;
|
||||
theta = abstheta - pio2_table[n / 2];
|
||||
*sinx = reduced_sin (theta, n, signbit);
|
||||
*cosx = reduced_cos (theta, n);
|
||||
}
|
||||
else if (isless (abstheta, INFINITY))
|
||||
{
|
||||
if (abstheta < 0x1p+23) /* |x| < 2^23. */
|
||||
{
|
||||
unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
|
||||
double x = n / 2;
|
||||
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
|
||||
/* Argument reduction needed. */
|
||||
*sinx = reduced_sin (theta, n, signbit);
|
||||
*cosx = reduced_cos (theta, n);
|
||||
}
|
||||
else /* |x| >= 2^23. */
|
||||
{
|
||||
x = fabsf (x);
|
||||
int exponent;
|
||||
GET_FLOAT_WORD (exponent, x);
|
||||
exponent
|
||||
= (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
|
||||
exponent += 3;
|
||||
exponent /= 28;
|
||||
double a = invpio4_table[exponent] * x;
|
||||
double b = invpio4_table[exponent + 1] * x;
|
||||
double c = invpio4_table[exponent + 2] * x;
|
||||
double d = invpio4_table[exponent + 3] * x;
|
||||
uint64_t l = a;
|
||||
l &= ~0x7;
|
||||
a -= l;
|
||||
double e = a + b;
|
||||
l = e;
|
||||
e = a - l;
|
||||
if (l & 1)
|
||||
{
|
||||
e -= 1.0;
|
||||
e += b;
|
||||
e += c;
|
||||
e += d;
|
||||
e *= M_PI_4;
|
||||
*sinx = reduced_sin (e, l + 1, signbit);
|
||||
*cosx = reduced_cos (e, l + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
e += b;
|
||||
e += c;
|
||||
e += d;
|
||||
if (e <= 1.0)
|
||||
{
|
||||
e *= M_PI_4;
|
||||
*sinx = reduced_sin (e, l + 1, signbit);
|
||||
*cosx = reduced_cos (e, l + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
l++;
|
||||
e -= 2.0;
|
||||
e *= M_PI_4;
|
||||
*sinx = reduced_sin (e, l + 1, signbit);
|
||||
*cosx = reduced_cos (e, l + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int32_t ix;
|
||||
/* High word of x. */
|
||||
GET_FLOAT_WORD (ix, abstheta);
|
||||
/* sin/cos(Inf or NaN) is NaN. */
|
||||
*sinx = *cosx = x - x;
|
||||
if (ix == 0x7f800000)
|
||||
__set_errno (EDOM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
155
sysdeps/ieee754/flt-32/s_sincosf.h
Normal file
155
sysdeps/ieee754/flt-32/s_sincosf.h
Normal file
@ -0,0 +1,155 @@
|
||||
/* Used by sinf, cosf and sincosf functions.
|
||||
Copyright (C) 2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Chebyshev constants for cos, range -PI/4 - PI/4. */
|
||||
static const double C0 = -0x1.ffffffffe98aep-2;
|
||||
static const double C1 = 0x1.55555545c50c7p-5;
|
||||
static const double C2 = -0x1.6c16b348b6874p-10;
|
||||
static const double C3 = 0x1.a00eb9ac43ccp-16;
|
||||
static const double C4 = -0x1.23c97dd8844d7p-22;
|
||||
|
||||
/* Chebyshev constants for sin, range -PI/4 - PI/4. */
|
||||
static const double S0 = -0x1.5555555551cd9p-3;
|
||||
static const double S1 = 0x1.1111110c2688bp-7;
|
||||
static const double S2 = -0x1.a019f8b4bd1f9p-13;
|
||||
static const double S3 = 0x1.71d7264e6b5b4p-19;
|
||||
static const double S4 = -0x1.a947e1674b58ap-26;
|
||||
|
||||
/* Chebyshev constants for sin, range 2^-27 - 2^-5. */
|
||||
static const double SS0 = -0x1.555555543d49dp-3;
|
||||
static const double SS1 = 0x1.110f475cec8c5p-7;
|
||||
|
||||
/* Chebyshev constants for cos, range 2^-27 - 2^-5. */
|
||||
static const double CC0 = -0x1.fffffff5cc6fdp-2;
|
||||
static const double CC1 = 0x1.55514b178dac5p-5;
|
||||
|
||||
/* PI/2 with 98 bits of accuracy. */
|
||||
static const double PI_2_hi = 0x1.921fb544p+0;
|
||||
static const double PI_2_lo = 0x1.0b4611a626332p-34;
|
||||
|
||||
static const double SMALL = 0x1p-50; /* 2^-50. */
|
||||
static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */
|
||||
|
||||
#define FLOAT_EXPONENT_SHIFT 23
|
||||
#define FLOAT_EXPONENT_BIAS 127
|
||||
|
||||
static const double pio2_table[] = {
|
||||
0 * M_PI_2,
|
||||
1 * M_PI_2,
|
||||
2 * M_PI_2,
|
||||
3 * M_PI_2,
|
||||
4 * M_PI_2,
|
||||
5 * M_PI_2
|
||||
};
|
||||
|
||||
static const double invpio4_table[] = {
|
||||
0x0p+0,
|
||||
0x1.45f306cp+0,
|
||||
0x1.c9c882ap-28,
|
||||
0x1.4fe13a8p-58,
|
||||
0x1.f47d4dp-85,
|
||||
0x1.bb81b6cp-112,
|
||||
0x1.4acc9ep-142,
|
||||
0x1.0e4107cp-169
|
||||
};
|
||||
|
||||
static const double ones[] = { 1.0, -1.0 };
|
||||
|
||||
/* Compute the sine value using Chebyshev polynomials where
|
||||
THETA is the range reduced absolute value of the input
|
||||
and it is less than Pi/4,
|
||||
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
|
||||
whether a sine or cosine approximation is more accurate and
|
||||
SIGNBIT is used to add the correct sign after the Chebyshev
|
||||
polynomial is computed. */
|
||||
static inline float
|
||||
reduced_sin (const double theta, const unsigned int n,
|
||||
const unsigned int signbit)
|
||||
{
|
||||
double sx;
|
||||
const double theta2 = theta * theta;
|
||||
/* We are operating on |x|, so we need to add back the original
|
||||
signbit for sinf. */
|
||||
double sign;
|
||||
/* Determine positive or negative primary interval. */
|
||||
sign = ones[((n >> 2) & 1) ^ signbit];
|
||||
/* Are we in the primary interval of sin or cos? */
|
||||
if ((n & 2) == 0)
|
||||
{
|
||||
/* Here sinf() is calculated using sin Chebyshev polynomial:
|
||||
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
|
||||
sx = S3 + theta2 * S4; /* S3+x^2*S4. */
|
||||
sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */
|
||||
sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
|
||||
sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
|
||||
sx = theta + theta * theta2 * sx;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Here sinf() is calculated using cos Chebyshev polynomial:
|
||||
1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
|
||||
sx = C3 + theta2 * C4; /* C3+x^2*C4. */
|
||||
sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */
|
||||
sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */
|
||||
sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */
|
||||
sx = 1.0 + theta2 * sx;
|
||||
}
|
||||
|
||||
/* Add in the signbit and assign the result. */
|
||||
return sign * sx;
|
||||
}
|
||||
|
||||
/* Compute the cosine value using Chebyshev polynomials where
|
||||
THETA is the range reduced absolute value of the input
|
||||
and it is less than Pi/4,
|
||||
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
|
||||
whether a sine or cosine approximation is more accurate and
|
||||
the sign of the result. */
|
||||
static inline float
|
||||
reduced_cos (double theta, unsigned int n)
|
||||
{
|
||||
double sign, cx;
|
||||
const double theta2 = theta * theta;
|
||||
|
||||
/* Determine positive or negative primary interval. */
|
||||
n += 2;
|
||||
sign = ones[(n >> 2) & 1];
|
||||
|
||||
/* Are we in the primary interval of sin or cos? */
|
||||
if ((n & 2) == 0)
|
||||
{
|
||||
/* Here cosf() is calculated using sin Chebyshev polynomial:
|
||||
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
|
||||
cx = S3 + theta2 * S4;
|
||||
cx = S2 + theta2 * cx;
|
||||
cx = S1 + theta2 * cx;
|
||||
cx = S0 + theta2 * cx;
|
||||
cx = theta + theta * theta2 * cx;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Here cosf() is calculated using cos Chebyshev polynomial:
|
||||
1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
|
||||
cx = C3 + theta2 * C4;
|
||||
cx = C2 + theta2 * cx;
|
||||
cx = C1 + theta2 * cx;
|
||||
cx = C0 + theta2 * cx;
|
||||
cx = 1. + theta2 * cx;
|
||||
}
|
||||
return sign * cx;
|
||||
}
|
@ -20,6 +20,7 @@
|
||||
#include <math.h>
|
||||
#include <math_private.h>
|
||||
#include <libm-alias-float.h>
|
||||
#include "s_sincosf.h"
|
||||
|
||||
#ifndef SINF
|
||||
# define SINF_FUNC __sinf
|
||||
@ -27,100 +28,6 @@
|
||||
# define SINF_FUNC SINF
|
||||
#endif
|
||||
|
||||
/* Chebyshev constants for cos, range -PI/4 - PI/4. */
|
||||
static const double C0 = -0x1.ffffffffe98aep-2;
|
||||
static const double C1 = 0x1.55555545c50c7p-5;
|
||||
static const double C2 = -0x1.6c16b348b6874p-10;
|
||||
static const double C3 = 0x1.a00eb9ac43ccp-16;
|
||||
static const double C4 = -0x1.23c97dd8844d7p-22;
|
||||
|
||||
/* Chebyshev constants for sin, range -PI/4 - PI/4. */
|
||||
static const double S0 = -0x1.5555555551cd9p-3;
|
||||
static const double S1 = 0x1.1111110c2688bp-7;
|
||||
static const double S2 = -0x1.a019f8b4bd1f9p-13;
|
||||
static const double S3 = 0x1.71d7264e6b5b4p-19;
|
||||
static const double S4 = -0x1.a947e1674b58ap-26;
|
||||
|
||||
/* Chebyshev constants for sin, range 2^-27 - 2^-5. */
|
||||
static const double SS0 = -0x1.555555543d49dp-3;
|
||||
static const double SS1 = 0x1.110f475cec8c5p-7;
|
||||
|
||||
/* PI/2 with 98 bits of accuracy. */
|
||||
static const double PI_2_hi = -0x1.921fb544p+0;
|
||||
static const double PI_2_lo = -0x1.0b4611a626332p-34;
|
||||
|
||||
static const double SMALL = 0x1p-50; /* 2^-50. */
|
||||
static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */
|
||||
|
||||
#define FLOAT_EXPONENT_SHIFT 23
|
||||
#define FLOAT_EXPONENT_BIAS 127
|
||||
|
||||
static const double pio2_table[] = {
|
||||
0 * M_PI_2,
|
||||
1 * M_PI_2,
|
||||
2 * M_PI_2,
|
||||
3 * M_PI_2,
|
||||
4 * M_PI_2,
|
||||
5 * M_PI_2
|
||||
};
|
||||
|
||||
static const double invpio4_table[] = {
|
||||
0x0p+0,
|
||||
0x1.45f306cp+0,
|
||||
0x1.c9c882ap-28,
|
||||
0x1.4fe13a8p-58,
|
||||
0x1.f47d4dp-85,
|
||||
0x1.bb81b6cp-112,
|
||||
0x1.4acc9ep-142,
|
||||
0x1.0e4107cp-169
|
||||
};
|
||||
|
||||
static const double ones[] = { 1.0, -1.0 };
|
||||
|
||||
/* Compute the sine value using Chebyshev polynomials where
|
||||
THETA is the range reduced absolute value of the input
|
||||
and it is less than Pi/4,
|
||||
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
|
||||
whether a sine or cosine approximation is more accurate and
|
||||
SIGNBIT is used to add the correct sign after the Chebyshev
|
||||
polynomial is computed. */
|
||||
static inline float
|
||||
reduced (const double theta, const unsigned int n,
|
||||
const unsigned int signbit)
|
||||
{
|
||||
double sx;
|
||||
const double theta2 = theta * theta;
|
||||
/* We are operating on |x|, so we need to add back the original
|
||||
signbit for sinf. */
|
||||
double sign;
|
||||
/* Determine positive or negative primary interval. */
|
||||
sign = ones[((n >> 2) & 1) ^ signbit];
|
||||
/* Are we in the primary interval of sin or cos? */
|
||||
if ((n & 2) == 0)
|
||||
{
|
||||
/* Here sinf() is calculated using sin Chebyshev polynomial:
|
||||
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
|
||||
sx = S3 + theta2 * S4; /* S3+x^2*S4. */
|
||||
sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */
|
||||
sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
|
||||
sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
|
||||
sx = theta + theta * theta2 * sx;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Here sinf() is calculated using cos Chebyshev polynomial:
|
||||
1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
|
||||
sx = C3 + theta2 * C4; /* C3+x^2*C4. */
|
||||
sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */
|
||||
sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */
|
||||
sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */
|
||||
sx = 1.0 + theta2 * sx;
|
||||
}
|
||||
|
||||
/* Add in the signbit and assign the result. */
|
||||
return sign * sx;
|
||||
}
|
||||
|
||||
float
|
||||
SINF_FUNC (float x)
|
||||
{
|
||||
@ -171,7 +78,7 @@ SINF_FUNC (float x)
|
||||
pio2_table must go to 5 (9 / 2 + 1). */
|
||||
unsigned int n = (abstheta * inv_PI_4) + 1;
|
||||
theta = abstheta - pio2_table[n / 2];
|
||||
return reduced (theta, n, signbit);
|
||||
return reduced_sin (theta, n, signbit);
|
||||
}
|
||||
else if (isless (abstheta, INFINITY))
|
||||
{
|
||||
@ -179,9 +86,9 @@ SINF_FUNC (float x)
|
||||
{
|
||||
unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
|
||||
double x = n / 2;
|
||||
theta = x * PI_2_lo + (x * PI_2_hi + abstheta);
|
||||
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
|
||||
/* Argument reduction needed. */
|
||||
return reduced (theta, n, signbit);
|
||||
return reduced_sin (theta, n, signbit);
|
||||
}
|
||||
else /* |x| >= 2^23. */
|
||||
{
|
||||
@ -209,7 +116,7 @@ SINF_FUNC (float x)
|
||||
e += c;
|
||||
e += d;
|
||||
e *= M_PI_4;
|
||||
return reduced (e, l + 1, signbit);
|
||||
return reduced_sin (e, l + 1, signbit);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -219,14 +126,14 @@ SINF_FUNC (float x)
|
||||
if (e <= 1.0)
|
||||
{
|
||||
e *= M_PI_4;
|
||||
return reduced (e, l + 1, signbit);
|
||||
return reduced_sin (e, l + 1, signbit);
|
||||
}
|
||||
else
|
||||
{
|
||||
l++;
|
||||
e -= 2.0;
|
||||
e *= M_PI_4;
|
||||
return reduced (e, l + 1, signbit);
|
||||
return reduced_sin (e, l + 1, signbit);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user