Remove nptl/sockperf.c.

This patch removes nptl/sockperf.c, an unused, x86-specific program
with a hardcoded path in /tmp.  If someone finds some of this code in
future for adding a proper benchmark, that does not of course rule out
adding it back in that form, but for now I think it's best to
eliminate this code with the hardcoded /tmp path.

Tested for x86_64.

	* nptl/sockperf.c: Remove file.
This commit is contained in:
Joseph Myers 2018-06-27 17:01:06 +00:00
parent 92d6aa8528
commit a833e627c3
2 changed files with 4 additions and 593 deletions

View File

@ -1,3 +1,7 @@
2018-06-27 Joseph Myers <joseph@codesourcery.com>
* nptl/sockperf.c: Remove file.
2018-06-27 Florian Weimer <fweimer@redhat.com> 2018-06-27 Florian Weimer <fweimer@redhat.com>
[BZ #18023] [BZ #18023]

View File

@ -1,593 +0,0 @@
#define _GNU_SOURCE
#include <argp.h>
#include <complex.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <gd.h>
#include <inttypes.h>
#include <pthread.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/param.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <sys/un.h>
#define size_x 320
#define size_y 240
#define PATH "/tmp/s.sockperf"
struct thread_param
{
unsigned int from;
unsigned int to;
unsigned int nserv;
};
struct coord
{
unsigned int x;
unsigned int y;
complex double z;
};
/* We use 64bit values for the times. */
typedef unsigned long long int hp_timing_t;
static unsigned int nclients = 2;
static unsigned int nservers = 2;
static bool timing;
static int points;
static complex double top_left = -0.7 + 0.2i;
static complex double bottom_right = -0.5 - 0.0i;
static int colors[256];
static gdImagePtr image;
static pthread_mutex_t image_lock;
static int sock;
static void *
client (void *arg)
{
struct thread_param *param = arg;
unsigned int cnt;
unsigned int nserv = param->nserv;
struct pollfd servpoll[nserv];
struct sockaddr_un servaddr;
socklen_t servlen;
struct coord c;
bool new_coord (void)
{
if (cnt >= param->to)
return false;
unsigned int row = cnt / size_x;
unsigned int col = cnt % size_x;
c.x = col;
c.y = row;
c.z = (top_left
+ ((col
* (creal (bottom_right) - creal (top_left))) / size_x)
+ (_Complex_I * (row * (cimag (bottom_right) - cimag (top_left)))
/ size_y));
++cnt;
return true;
}
for (cnt = 0; cnt < nserv; ++cnt)
{
servpoll[cnt].fd = socket (AF_UNIX, SOCK_STREAM, 0);
if (servpoll[cnt].fd < 0)
{
puts ("cannot create socket in client");
return NULL;
}
memset (&servaddr, '\0', sizeof (servaddr));
servaddr.sun_family = AF_UNIX;
strncpy (servaddr.sun_path, PATH, sizeof (servaddr.sun_path));
servlen = offsetof (struct sockaddr_un, sun_path) + strlen (PATH) + 1;
int err;
while (1)
{
err = TEMP_FAILURE_RETRY (connect (servpoll[cnt].fd, &servaddr,
servlen));
if (err != -1 || errno != ECONNREFUSED)
break;
pthread_yield ();
}
if (err == -1)
{
printf ("cannot connect: %m (%d)\n", errno);
exit (1);
}
servpoll[cnt].events = POLLOUT;
servpoll[cnt].revents = 0;
}
cnt = param->from;
new_coord ();
bool z_valid = true;
while (1)
{
int i;
int n = poll (servpoll, nserv, -1);
if (n == -1)
{
puts ("poll returned error");
break;
}
bool cont = false;
for (i = 0; i < nserv && n > 0; ++i)
if (servpoll[i].revents != 0)
{
if (servpoll[i].revents == POLLIN)
{
unsigned int vals[3];
if (TEMP_FAILURE_RETRY (read (servpoll[i].fd, &vals,
sizeof (vals)))
!= sizeof (vals))
{
puts ("read error in client");
return NULL;
}
pthread_mutex_lock (&image_lock);
gdImageSetPixel (image, vals[0], vals[1], vals[2]);
++points;
pthread_mutex_unlock (&image_lock);
servpoll[i].events = POLLOUT;
}
else
{
if (servpoll[i].revents != POLLOUT)
printf ("revents: %hd != POLLOUT ???\n",
servpoll[i].revents);
if (z_valid)
{
if (TEMP_FAILURE_RETRY (write (servpoll[i].fd, &c,
sizeof (c))) != sizeof (c))
{
puts ("write error in client");
return NULL;
}
cont = true;
servpoll[i].events = POLLIN;
z_valid = new_coord ();
if (! z_valid)
/* No more to do. Clear the event fields. */
for (i = 0; i < nserv; ++i)
if (servpoll[i].events == POLLOUT)
servpoll[i].events = servpoll[i].revents = 0;
}
else
servpoll[i].events = servpoll[i].revents = 0;
}
--n;
}
else if (servpoll[i].events != 0)
cont = true;
if (! cont && ! z_valid)
break;
}
c.x = 0xffffffff;
c.y = 0xffffffff;
for (cnt = 0; cnt < nserv; ++cnt)
{
TEMP_FAILURE_RETRY (write (servpoll[cnt].fd, &c, sizeof (c)));
close (servpoll[cnt].fd);
}
return NULL;
}
static void *
server (void *arg)
{
struct sockaddr_un cliaddr;
socklen_t clilen;
int clisock = TEMP_FAILURE_RETRY (accept (sock, &cliaddr, &clilen));
if (clisock == -1)
{
puts ("accept failed");
return NULL;
}
while (1)
{
struct coord c;
if (TEMP_FAILURE_RETRY (read (clisock, &c, sizeof (c))) != sizeof (c))
{
printf ("server read failed: %m (%d)\n", errno);
break;
}
if (c.x == 0xffffffff && c.y == 0xffffffff)
break;
unsigned int rnds = 0;
complex double z = c.z;
while (cabs (z) < 4.0)
{
z = z * z - 1;
if (++rnds == 255)
break;
}
unsigned int vals[3] = { c.x, c.y, rnds };
if (TEMP_FAILURE_RETRY (write (clisock, vals, sizeof (vals)))
!= sizeof (vals))
{
puts ("server write error");
return NULL;
}
}
close (clisock);
return NULL;
}
static const char *outfilename = "test.png";
static const struct argp_option options[] =
{
{ "clients", 'c', "NUMBER", 0, "Number of client threads" },
{ "servers", 's', "NUMBER", 0, "Number of server threads per client" },
{ "timing", 'T', NULL, 0,
"Measure time from startup to the last thread finishing" },
{ NULL, 0, NULL, 0, NULL }
};
/* Prototype for option handler. */
static error_t parse_opt (int key, char *arg, struct argp_state *state);
/* Data structure to communicate with argp functions. */
static struct argp argp =
{
options, parse_opt
};
int
main (int argc, char *argv[])
{
int cnt;
FILE *outfile;
struct sockaddr_un servaddr;
socklen_t servlen;
int remaining;
/* Parse and process arguments. */
argp_parse (&argp, argc, argv, 0, &remaining, NULL);
pthread_t servth[nservers * nclients];
pthread_t clntth[nclients];
struct thread_param clntparam[nclients];
image = gdImageCreate (size_x, size_y);
if (image == NULL)
{
puts ("gdImageCreate failed");
return 1;
}
for (cnt = 0; cnt < 255; ++cnt)
colors[cnt] = gdImageColorAllocate (image, 256 - cnt, 256 - cnt,
256 - cnt);
/* Black. */
colors[cnt] = gdImageColorAllocate (image, 0, 0, 0);
sock = socket (AF_UNIX, SOCK_STREAM, 0);
if (sock < 0)
error (EXIT_FAILURE, errno, "cannot create socket");
memset (&servaddr, '\0', sizeof (servaddr));
servaddr.sun_family = AF_UNIX;
strncpy (servaddr.sun_path, PATH, sizeof (servaddr.sun_path));
servlen = offsetof (struct sockaddr_un, sun_path) + strlen (PATH) + 1;
if (bind (sock, &servaddr, servlen) == -1)
error (EXIT_FAILURE, errno, "bind failed");
listen (sock, SOMAXCONN);
pthread_mutex_init (&image_lock, NULL);
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sigemptyset (&sa.sa_mask);
sa.sa_flags = 0;
clockid_t cl;
struct timespec start_time;
if (timing)
{
if (clock_getcpuclockid (0, &cl) != 0
|| clock_gettime (cl, &start_time) != 0)
timing = false;
}
/* Start the servers. */
for (cnt = 0; cnt < nservers * nclients; ++cnt)
{
if (pthread_create (&servth[cnt], NULL, server, NULL) != 0)
{
puts ("pthread_create for server failed");
exit (1);
}
}
for (cnt = 0; cnt < nclients; ++cnt)
{
clntparam[cnt].from = cnt * (size_x * size_y) / nclients;
clntparam[cnt].to = MIN ((cnt + 1) * (size_x * size_y) / nclients,
size_x * size_y);
clntparam[cnt].nserv = nservers;
if (pthread_create (&clntth[cnt], NULL, client, &clntparam[cnt]) != 0)
{
puts ("pthread_create for client failed");
exit (1);
}
}
/* Wait for the clients. */
for (cnt = 0; cnt < nclients; ++cnt)
if (pthread_join (clntth[cnt], NULL) != 0)
{
puts ("client pthread_join failed");
exit (1);
}
/* Wait for the servers. */
for (cnt = 0; cnt < nclients * nservers; ++cnt)
if (pthread_join (servth[cnt], NULL) != 0)
{
puts ("server pthread_join failed");
exit (1);
}
if (timing)
{
struct timespec end_time;
if (clock_gettime (cl, &end_time) == 0)
{
end_time.tv_sec -= start_time.tv_sec;
end_time.tv_nsec -= start_time.tv_nsec;
if (end_time.tv_nsec < 0)
{
end_time.tv_nsec += 1000000000;
--end_time.tv_sec;
}
printf ("\nRuntime: %lu.%09lu seconds\n%d points computed\n",
(unsigned long int) end_time.tv_sec,
(unsigned long int) end_time.tv_nsec,
points);
}
}
outfile = fopen (outfilename, "w");
if (outfile == NULL)
error (EXIT_FAILURE, errno, "cannot open output file '%s'", outfilename);
gdImagePng (image, outfile);
fclose (outfile);
unlink (PATH);
return 0;
}
/* Handle program arguments. */
static error_t
parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case 'c':
nclients = strtoul (arg, NULL, 0);
break;
case 's':
nservers = strtoul (arg, NULL, 0);
break;
case 'T':
timing = true;
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static hp_timing_t
get_clockfreq (void)
{
/* We read the information from the /proc filesystem. It contains at
least one line like
cpu MHz : 497.840237
or also
cpu MHz : 497.841
We search for this line and convert the number in an integer. */
static hp_timing_t result;
int fd;
/* If this function was called before, we know the result. */
if (result != 0)
return result;
fd = open ("/proc/cpuinfo", O_RDONLY);
if (__glibc_likely (fd != -1))
{
/* XXX AFAIK the /proc filesystem can generate "files" only up
to a size of 4096 bytes. */
char buf[4096];
ssize_t n;
n = read (fd, buf, sizeof buf);
if (__builtin_expect (n, 1) > 0)
{
char *mhz = memmem (buf, n, "cpu MHz", 7);
if (__glibc_likely (mhz != NULL))
{
char *endp = buf + n;
int seen_decpoint = 0;
int ndigits = 0;
/* Search for the beginning of the string. */
while (mhz < endp && (*mhz < '0' || *mhz > '9') && *mhz != '\n')
++mhz;
while (mhz < endp && *mhz != '\n')
{
if (*mhz >= '0' && *mhz <= '9')
{
result *= 10;
result += *mhz - '0';
if (seen_decpoint)
++ndigits;
}
else if (*mhz == '.')
seen_decpoint = 1;
++mhz;
}
/* Compensate for missing digits at the end. */
while (ndigits++ < 6)
result *= 10;
}
}
close (fd);
}
return result;
}
int
clock_getcpuclockid (pid_t pid, clockid_t *clock_id)
{
/* We don't allow any process ID but our own. */
if (pid != 0 && pid != getpid ())
return EPERM;
#ifdef CLOCK_PROCESS_CPUTIME_ID
/* Store the number. */
*clock_id = CLOCK_PROCESS_CPUTIME_ID;
return 0;
#else
/* We don't have a timer for that. */
return ENOENT;
#endif
}
#define HP_TIMING_NOW(Var) __asm__ __volatile__ ("rdtsc" : "=A" (Var))
/* Get current value of CLOCK and store it in TP. */
int
clock_gettime (clockid_t clock_id, struct timespec *tp)
{
int retval = -1;
switch (clock_id)
{
case CLOCK_PROCESS_CPUTIME_ID:
{
static hp_timing_t freq;
hp_timing_t tsc;
/* Get the current counter. */
HP_TIMING_NOW (tsc);
if (freq == 0)
{
freq = get_clockfreq ();
if (freq == 0)
return EINVAL;
}
/* Compute the seconds. */
tp->tv_sec = tsc / freq;
/* And the nanoseconds. This computation should be stable until
we get machines with about 16GHz frequency. */
tp->tv_nsec = ((tsc % freq) * UINT64_C (1000000000)) / freq;
retval = 0;
}
break;
default:
errno = EINVAL;
break;
}
return retval;
}