aarch64: MTE compatible strcmp

Add support for MTE to strcmp. Regression tested with xcheck and benchmarked
with glibc's benchtests on the Cortex-A53, Cortex-A72, and Neoverse N1.

The existing implementation assumes that any access to the pages in which the
string resides is safe. This assumption is not true when MTE is enabled. This
patch updates the algorithm to ensure that accesses remain within the bounds
of an MTE tag (16-byte chunks) and improves overall performance.

Co-authored-by: Branislav Rankov <branislav.rankov@arm.com>
Co-authored-by: Wilco Dijkstra <wilco.dijkstra@arm.com>
This commit is contained in:
Alex Butler 2020-06-16 12:42:38 +00:00 committed by Szabolcs Nagy
parent 79160c06c7
commit adac54ffc5

View File

@ -18,14 +18,14 @@
/* Assumptions:
*
* ARMv8-a, AArch64
* ARMv8-a, AArch64.
* MTE compatible.
*/
#include <sysdep.h>
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080
/* Parameters and result. */
#define src1 x0
@ -39,146 +39,162 @@
#define data2w w3
#define has_nul x4
#define diff x5
#define off1 x5
#define syndrome x6
#define tmp1 x7
#define tmp2 x8
#define tmp3 x9
#define zeroones x10
#define pos x11
#define tmp x6
#define data3 x7
#define zeroones x8
#define shift x9
#define off2 x10
/* Start of performance-critical section -- one 64B cache line. */
ENTRY_ALIGN(strcmp, 6)
/* On big-endian early bytes are at MSB and on little-endian LSB.
LS_FW means shifting towards early bytes. */
#ifdef __AARCH64EB__
# define LS_FW lsl
#else
# define LS_FW lsr
#endif
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word.
Since carry propagation makes 0x1 bytes before a NUL byte appear
NUL too in big-endian, byte-reverse the data before the NUL check. */
ENTRY(strcmp)
DELOUSE (0)
DELOUSE (1)
eor tmp1, src1, src2
mov zeroones, #REP8_01
tst tmp1, #7
sub off2, src2, src1
mov zeroones, REP8_01
and tmp, src1, 7
tst off2, 7
b.ne L(misaligned8)
ands tmp1, src1, #7
b.ne L(mutual_align)
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word. */
L(loop_aligned):
ldr data1, [src1], #8
ldr data2, [src2], #8
L(start_realigned):
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
orr syndrome, diff, has_nul
cbz syndrome, L(loop_aligned)
/* End of performance-critical section -- one 64B cache line. */
cbnz tmp, L(mutual_align)
.p2align 4
L(loop_aligned):
ldr data2, [src1, off2]
ldr data1, [src1], 8
L(start_realigned):
#ifdef __AARCH64EB__
rev tmp, data1
sub has_nul, tmp, zeroones
orr tmp, tmp, REP8_7f
#else
sub has_nul, data1, zeroones
orr tmp, data1, REP8_7f
#endif
bics has_nul, has_nul, tmp /* Non-zero if NUL terminator. */
ccmp data1, data2, 0, eq
b.eq L(loop_aligned)
#ifdef __AARCH64EB__
rev has_nul, has_nul
#endif
eor diff, data1, data2
orr syndrome, diff, has_nul
L(end):
#ifndef __AARCH64EB__
#ifndef __AARCH64EB__
rev syndrome, syndrome
rev data1, data1
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
clz pos, syndrome
rev data2, data2
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
RET
#else
/* For big-endian we cannot use the trick with the syndrome value
as carry-propagation can corrupt the upper bits if the trailing
bytes in the string contain 0x01. */
/* However, if there is no NUL byte in the dword, we can generate
the result directly. We can't just subtract the bytes as the
MSB might be significant. */
cbnz has_nul, 1f
cmp data1, data2
cset result, ne
cneg result, result, lo
RET
1:
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
rev tmp3, data1
sub tmp1, tmp3, zeroones
orr tmp2, tmp3, #REP8_7f
bic has_nul, tmp1, tmp2
rev has_nul, has_nul
orr syndrome, diff, has_nul
clz pos, syndrome
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
#endif
clz shift, syndrome
/* The most-significant-non-zero bit of the syndrome marks either the
first bit that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
lsl data1, data1, pos
lsl data2, data2, pos
lsl data1, data1, shift
lsl data2, data2, shift
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
RET
#endif
lsr data1, data1, 56
sub result, data1, data2, lsr 56
ret
.p2align 4
L(mutual_align):
/* Sources are mutually aligned, but are not currently at an
alignment boundary. Round down the addresses and then mask off
the bytes that preceed the start point. */
bic src1, src1, #7
bic src2, src2, #7
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
ldr data1, [src1], #8
neg tmp1, tmp1 /* Bits to alignment -64. */
ldr data2, [src2], #8
mov tmp2, #~0
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#else
/* Little-endian. Early bytes are at LSB. */
lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#endif
orr data1, data1, tmp2
orr data2, data2, tmp2
the bytes that precede the start point. */
bic src1, src1, 7
ldr data2, [src1, off2]
ldr data1, [src1], 8
neg shift, src2, lsl 3 /* Bits to alignment -64. */
mov tmp, -1
LS_FW tmp, tmp, shift
orr data1, data1, tmp
orr data2, data2, tmp
b L(start_realigned)
L(misaligned8):
/* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always
checking to make sure that we don't access beyond page boundary in
SRC2. */
tst src1, #7
b.eq L(loop_misaligned)
checking to make sure that we don't access beyond the end of SRC2. */
cbz tmp, L(src1_aligned)
L(do_misaligned):
ldrb data1w, [src1], #1
ldrb data2w, [src2], #1
cmp data1w, #1
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
ldrb data1w, [src1], 1
ldrb data2w, [src2], 1
cmp data1w, 0
ccmp data1w, data2w, 0, ne /* NZCV = 0b0000. */
b.ne L(done)
tst src1, #7
tst src1, 7
b.ne L(do_misaligned)
L(loop_misaligned):
/* Test if we are within the last dword of the end of a 4K page. If
yes then jump back to the misaligned loop to copy a byte at a time. */
and tmp1, src2, #0xff8
eor tmp1, tmp1, #0xff8
cbz tmp1, L(do_misaligned)
ldr data1, [src1], #8
ldr data2, [src2], #8
L(src1_aligned):
neg shift, src2, lsl 3
bic src2, src2, 7
ldr data3, [src2], 8
#ifdef __AARCH64EB__
rev data3, data3
#endif
lsr tmp, zeroones, shift
orr data3, data3, tmp
sub has_nul, data3, zeroones
orr tmp, data3, REP8_7f
bics has_nul, has_nul, tmp
b.ne L(tail)
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
sub off1, src2, src1
.p2align 4
L(loop_unaligned):
ldr data3, [src1, off1]
ldr data2, [src1, off2]
#ifdef __AARCH64EB__
rev data3, data3
#endif
sub has_nul, data3, zeroones
orr tmp, data3, REP8_7f
ldr data1, [src1], 8
bics has_nul, has_nul, tmp
ccmp data1, data2, 0, eq
b.eq L(loop_unaligned)
lsl tmp, has_nul, shift
#ifdef __AARCH64EB__
rev tmp, tmp
#endif
eor diff, data1, data2
orr syndrome, diff, tmp
cbnz syndrome, L(end)
L(tail):
ldr data1, [src1]
neg shift, shift
lsr data2, data3, shift
lsr has_nul, has_nul, shift
#ifdef __AARCH64EB__
rev data2, data2
rev has_nul, has_nul
#endif
eor diff, data1, data2
orr syndrome, diff, has_nul
cbz syndrome, L(loop_misaligned)
b L(end)
L(done):
sub result, data1, data2
RET
ret
END(strcmp)
libc_hidden_builtin_def (strcmp)