mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 14:00:30 +00:00
math: Fix inaccuracy of j0f for x >= 2^127 when sin(x)+cos(x) is tiny
Checked on x86_64-linux-gnu and i686-linux-gnu.
This commit is contained in:
parent
1cfb471528
commit
b7dd366dbe
@ -5748,6 +5748,8 @@ j0 0x1p16382
|
||||
j0 0x1p16383
|
||||
# the next value generates larger error bounds on x86_64 (binary32)
|
||||
j0 0x2.602774p+0 xfail-rounding:ibm128-libgcc
|
||||
# the next value exercises the flt-32 code path for x >= 2^127
|
||||
j0 0x8.2f4ecp+124
|
||||
|
||||
j1 -1.0
|
||||
j1 0.0
|
||||
|
@ -55,7 +55,22 @@ __ieee754_j0f(float x)
|
||||
z = -__cosf(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
} else {
|
||||
/* We subtract (exactly) a value x0 such that
|
||||
cos(x0)+sin(x0) is very near to 0, and use the identity
|
||||
sin(x-x0) = sin(x)*cos(x0)-cos(x)*sin(x0) to get
|
||||
sin(x) + cos(x) with extra accuracy. */
|
||||
float x0 = 0xe.d4108p+124f;
|
||||
float y = x - x0; /* exact */
|
||||
/* sin(y) = sin(x)*cos(x0)-cos(x)*sin(x0) */
|
||||
z = __sinf (y);
|
||||
float eps = 0x1.5f263ep-24f;
|
||||
/* cos(x0) ~ -sin(x0) + eps */
|
||||
z += eps * __cosf (x);
|
||||
/* now z ~ (sin(x)-cos(x))*cos(x0) */
|
||||
float cosx0 = -0xb.504f3p-4f;
|
||||
cc = z / cosx0;
|
||||
}
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
|
Loading…
Reference in New Issue
Block a user