Convert _Complex sine functions to generated code

Refactor s_c{,a}sin{,h}{f,,l} into a single templated
macro.
This commit is contained in:
Paul E. Murphy 2016-06-28 08:49:23 -05:00
parent ffb84f5e19
commit c50eee19c4
40 changed files with 301 additions and 2352 deletions

View File

@ -1,3 +1,55 @@
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* math/Makefile (gen-libm-calls): Move
casin, casinh, csin, csinh here.
(libm-calls): Remove the above.
* math/s_casin_template.c: Update using type-generic macros.
* math/s_casinh_template.c: Likewise.
* math/s_csin_template.c: Likewise.
* math/s_csinh_template.c: Likewise.
* math/k_casinh_template.c: Likewise.
* math/s_casinf.c: Removed.
* math/s_casin.c: Removed.
* math/s_casinl.c: Removed.
* math/s_casinh.c: Removed.
* math/s_casinhf.c: Removed.
* math/s_casinhl.c: Removed.
* math/s_csin.c: Removed.
* math/s_csinf.c: Removed.
* math/s_csinl.c: Removed.
* math/s_csinh.c: Removed.
* math/s_csinhf.c: Removed.
* math/s_csinhl.c: Removed.
* math/k_casinh.c: Removed.
* math/k_casinhf.c: Removed.
* math/k_casinhl.c: Removed.
* sysdeps/alpha/fpu/s_casinf.c: Refactor using templated version.
* sysdeps/alpha/fpu/s_casinhf.c: Likewise.
* sysdeps/alpha/fpu/s_csinf.c: Likewise.
* sysdeps/alpha/fpu/s_csinhf.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_casin.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_casinh.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_casinhl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_casinl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_csin.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_csinh.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_csinhl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_csinl.c: Removed.
* sysdeps/m68k/m680x0/fpu/s_csin.c: Refactor into ...
* sysdeps/m68k/m680x0/fpu/s_csin_template.c: New file.
* sysdeps/m68k/m680x0/fpu/s_csinf.c: Removed.
* sysdeps/m68k/m680x0/fpu/s_csinl.c: Removed.
* sysdeps/m68k/m680x0/fpu/s_csinh.c: Refactor into.
* sysdeps/m68k/m680x0/fpu/s_csinh_template.c: New file.
* sysdeps/m68k/m680x0/fpu/s_csinhf.c: Removed.
* sysdeps/m68k/m680x0/fpu/s_csinhl.c: Removed.
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* s_casin_template.c: Copy of s_casin.c.

View File

@ -46,7 +46,8 @@ libm-support = s_lib_version s_matherr s_signgam \
# Wrappers for these functions generated per type using a file named
# <func>_template.c and the appropriate math-type-macros-<TYPE>.h.
gen-libm-calls = cargF conjF cimagF crealF cabsF s_cacosF \
s_cacoshF s_ccosF s_ccoshF
s_cacoshF s_ccosF s_ccoshF s_casinF s_csinF s_casinhF \
k_casinhF s_csinhF
libm-calls = \
e_acosF e_acoshF e_asinF e_atan2F e_atanhF e_coshF e_expF e_fmodF \
@ -64,11 +65,11 @@ libm-calls = \
w_ilogbF \
s_fpclassifyF s_fmaxF s_fminF s_fdimF s_nanF s_truncF \
s_remquoF e_log2F e_exp2F s_roundF s_nearbyintF s_sincosF \
s_cexpF s_csinhF s_clogF \
s_catanF s_casinF s_csinF s_ctanF s_ctanhF \
s_casinhF s_catanhF s_csqrtF s_cpowF s_cprojF s_clog10F \
s_cexpF s_clogF \
s_catanF s_ctanF s_ctanhF \
s_catanhF s_csqrtF s_cpowF s_cprojF s_clog10F \
s_fmaF s_lrintF s_llrintF s_lroundF s_llroundF e_exp10F w_log2F \
s_issignalingF $(calls:s_%=m_%) x2y2m1F k_casinhF \
s_issignalingF $(calls:s_%=m_%) x2y2m1F \
gamma_productF lgamma_negF lgamma_productF \
s_nextupF s_nextdownF $(gen-libm-calls)

View File

@ -1,210 +0,0 @@
/* Return arc hyperbole sine for double value, with the imaginary part
of the result possibly adjusted for use in computing other
functions.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Return the complex inverse hyperbolic sine of finite nonzero Z,
with the imaginary part of the result subtracted from pi/2 if ADJ
is nonzero. */
__complex__ double
__kernel_casinh (__complex__ double x, int adj)
{
__complex__ double res;
double rx, ix;
__complex__ double y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabs (__real__ x);
ix = fabs (__imag__ x);
if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
difference to the result; avoid possible overflow from
the squaring and addition. */
__real__ y = rx;
__imag__ y = ix;
if (adj)
{
double t = __real__ y;
__real__ y = __copysign (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clog (y);
__real__ res += M_LN2;
}
else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0)
{
double s = __ieee754_hypot (1.0, rx);
__real__ res = __ieee754_log (rx + s);
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
}
else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5)
{
double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0));
__real__ res = __ieee754_log (ix + s);
if (adj)
__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
else
__imag__ res = __ieee754_atan2 (s, rx);
}
else if (ix > 1.0 && ix < 1.5 && rx < 0.5)
{
if (rx < DBL_EPSILON * DBL_EPSILON)
{
double ix2m1 = (ix + 1.0) * (ix - 1.0);
double s = __ieee754_sqrt (ix2m1);
__real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
else
__imag__ res = __ieee754_atan2 (s, rx);
}
else
{
double ix2m1 = (ix + 1.0) * (ix - 1.0);
double rx2 = rx * rx;
double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
double d = __ieee754_sqrt (ix2m1 * ix2m1 + f);
double dp = d + ix2m1;
double dm = f / dp;
double r1 = __ieee754_sqrt ((dm + rx2) / 2.0);
double r2 = rx * ix / r1;
__real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2 (ix + r2, rx + r1);
}
}
else if (ix == 1.0 && rx < 0.5)
{
if (rx < DBL_EPSILON / 8.0)
{
__real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx),
__copysign (1.0, __imag__ x));
else
__imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx));
}
else
{
double d = rx * __ieee754_sqrt (4.0 + rx * rx);
double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0);
double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0);
__real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2,
__imag__ x));
else
__imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1);
}
}
else if (ix < 1.0 && rx < 0.5)
{
if (ix >= DBL_EPSILON)
{
if (rx < DBL_EPSILON * DBL_EPSILON)
{
double onemix2 = (1.0 + ix) * (1.0 - ix);
double s = __ieee754_sqrt (onemix2);
__real__ res = __log1p (2.0 * rx / s) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
}
else
{
double onemix2 = (1.0 + ix) * (1.0 - ix);
double rx2 = rx * rx;
double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
double d = __ieee754_sqrt (onemix2 * onemix2 + f);
double dp = d + onemix2;
double dm = f / dp;
double r1 = __ieee754_sqrt ((dp + rx2) / 2.0);
double r2 = rx * ix / r1;
__real__ res
= __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (rx + r1,
__copysign (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2 (ix + r2, rx + r1);
}
}
else
{
double s = __ieee754_hypot (1.0, rx);
__real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
}
math_check_force_underflow_nonneg (__real__ res);
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0;
__imag__ y = 2.0 * rx * ix;
y = __csqrt (y);
__real__ y += rx;
__imag__ y += ix;
if (adj)
{
double t = __real__ y;
__real__ y = __copysign (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clog (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysign (__real__ res, __real__ x);
__imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x));
return res;
}

View File

@ -1,6 +1,6 @@
/* Return arc hyperbole sine for double value, with the imaginary part
of the result possibly adjusted for use in computing other
functions.
/* Return arc hyperbolic sine for a complex float type, with the
imaginary part of the result possibly adjusted for use in
computing other functions.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
@ -27,18 +27,18 @@
with the imaginary part of the result subtracted from pi/2 if ADJ
is nonzero. */
__complex__ double
__kernel_casinh (__complex__ double x, int adj)
CFLOAT
M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
{
__complex__ double res;
double rx, ix;
__complex__ double y;
CFLOAT res;
FLOAT rx, ix;
CFLOAT y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabs (__real__ x);
ix = fabs (__imag__ x);
rx = M_FABS (__real__ x);
ix = M_FABS (__imag__ x);
if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON)
if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
@ -49,162 +49,157 @@ __kernel_casinh (__complex__ double x, int adj)
if (adj)
{
double t = __real__ y;
__real__ y = __copysign (__imag__ y, __imag__ x);
FLOAT t = __real__ y;
__real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clog (y);
__real__ res += M_LN2;
res = M_SUF (__clog) (y);
__real__ res += (FLOAT) M_MLIT (M_LN2);
}
else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0)
else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
{
double s = __ieee754_hypot (1.0, rx);
FLOAT s = M_HYPOT (1, rx);
__real__ res = __ieee754_log (rx + s);
__real__ res = M_LOG (rx + s);
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
__imag__ res = M_ATAN2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
__imag__ res = M_ATAN2 (ix, s);
}
else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5)
else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
{
double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0));
FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
__real__ res = __ieee754_log (ix + s);
__real__ res = M_LOG (ix + s);
if (adj)
__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
__imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
else
__imag__ res = __ieee754_atan2 (s, rx);
__imag__ res = M_ATAN2 (s, rx);
}
else if (ix > 1.0 && ix < 1.5 && rx < 0.5)
else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
{
if (rx < DBL_EPSILON * DBL_EPSILON)
if (rx < M_EPSILON * M_EPSILON)
{
double ix2m1 = (ix + 1.0) * (ix - 1.0);
double s = __ieee754_sqrt (ix2m1);
FLOAT ix2m1 = (ix + 1) * (ix - 1);
FLOAT s = M_SQRT (ix2m1);
__real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0;
__real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
if (adj)
__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
__imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
else
__imag__ res = __ieee754_atan2 (s, rx);
__imag__ res = M_ATAN2 (s, rx);
}
else
{
double ix2m1 = (ix + 1.0) * (ix - 1.0);
double rx2 = rx * rx;
double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
double d = __ieee754_sqrt (ix2m1 * ix2m1 + f);
double dp = d + ix2m1;
double dm = f / dp;
double r1 = __ieee754_sqrt ((dm + rx2) / 2.0);
double r2 = rx * ix / r1;
FLOAT ix2m1 = (ix + 1) * (ix - 1);
FLOAT rx2 = rx * rx;
FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
FLOAT dp = d + ix2m1;
FLOAT dm = f / dp;
FLOAT r1 = M_SQRT ((dm + rx2) / 2);
FLOAT r2 = rx * ix / r1;
__real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0;
__real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
if (adj)
__imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2,
__imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
else
__imag__ res = M_ATAN2 (ix + r2, rx + r1);
}
}
else if (ix == 1 && rx < M_LIT (0.5))
{
if (rx < M_EPSILON / 8)
{
__real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
if (adj)
__imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
else
__imag__ res = M_ATAN2 (1, M_SQRT (rx));
}
else
{
FLOAT d = rx * M_SQRT (4 + rx * rx);
FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
__real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
if (adj)
__imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
else
__imag__ res = M_ATAN2 (1 + s2, rx + s1);
}
}
else if (ix < 1 && rx < M_LIT (0.5))
{
if (ix >= M_EPSILON)
{
if (rx < M_EPSILON * M_EPSILON)
{
FLOAT onemix2 = (1 + ix) * (1 - ix);
FLOAT s = M_SQRT (onemix2);
__real__ res = M_LOG1P (2 * rx / s) / 2;
if (adj)
__imag__ res = M_ATAN2 (s, __imag__ x);
else
__imag__ res = M_ATAN2 (ix, s);
}
else
{
FLOAT onemix2 = (1 + ix) * (1 - ix);
FLOAT rx2 = rx * rx;
FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
FLOAT d = M_SQRT (onemix2 * onemix2 + f);
FLOAT dp = d + onemix2;
FLOAT dm = f / dp;
FLOAT r1 = M_SQRT ((dp + rx2) / 2);
FLOAT r2 = rx * ix / r1;
__real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
if (adj)
__imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2 (ix + r2, rx + r1);
__imag__ res = M_ATAN2 (ix + r2, rx + r1);
}
}
else if (ix == 1.0 && rx < 0.5)
{
if (rx < DBL_EPSILON / 8.0)
{
__real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx),
__copysign (1.0, __imag__ x));
else
__imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx));
}
else
{
double d = rx * __ieee754_sqrt (4.0 + rx * rx);
double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0);
double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0);
FLOAT s = M_HYPOT (1, rx);
__real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0;
__real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
if (adj)
__imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2,
__imag__ x));
__imag__ res = M_ATAN2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1);
}
}
else if (ix < 1.0 && rx < 0.5)
{
if (ix >= DBL_EPSILON)
{
if (rx < DBL_EPSILON * DBL_EPSILON)
{
double onemix2 = (1.0 + ix) * (1.0 - ix);
double s = __ieee754_sqrt (onemix2);
__real__ res = __log1p (2.0 * rx / s) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
}
else
{
double onemix2 = (1.0 + ix) * (1.0 - ix);
double rx2 = rx * rx;
double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
double d = __ieee754_sqrt (onemix2 * onemix2 + f);
double dp = d + onemix2;
double dm = f / dp;
double r1 = __ieee754_sqrt ((dp + rx2) / 2.0);
double r2 = rx * ix / r1;
__real__ res
= __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (rx + r1,
__copysign (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2 (ix + r2, rx + r1);
}
}
else
{
double s = __ieee754_hypot (1.0, rx);
__real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
__imag__ res = M_ATAN2 (ix, s);
}
math_check_force_underflow_nonneg (__real__ res);
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0;
__imag__ y = 2.0 * rx * ix;
__real__ y = (rx - ix) * (rx + ix) + 1;
__imag__ y = 2 * rx * ix;
y = __csqrt (y);
y = M_SUF (__csqrt) (y);
__real__ y += rx;
__imag__ y += ix;
if (adj)
{
double t = __real__ y;
__real__ y = __copysign (__imag__ y, __imag__ x);
FLOAT t = __real__ y;
__real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clog (y);
res = M_SUF (__clog) (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysign (__real__ res, __real__ x);
__imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x));
__real__ res = M_COPYSIGN (__real__ res, __real__ x);
__imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
return res;
}

View File

@ -1,212 +0,0 @@
/* Return arc hyperbole sine for float value, with the imaginary part
of the result possibly adjusted for use in computing other
functions.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Return the complex inverse hyperbolic sine of finite nonzero Z,
with the imaginary part of the result subtracted from pi/2 if ADJ
is nonzero. */
__complex__ float
__kernel_casinhf (__complex__ float x, int adj)
{
__complex__ float res;
float rx, ix;
__complex__ float y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabsf (__real__ x);
ix = fabsf (__imag__ x);
if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
difference to the result; avoid possible overflow from
the squaring and addition. */
__real__ y = rx;
__imag__ y = ix;
if (adj)
{
float t = __real__ y;
__real__ y = __copysignf (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clogf (y);
__real__ res += (float) M_LN2;
}
else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f)
{
float s = __ieee754_hypotf (1.0f, rx);
__real__ res = __ieee754_logf (rx + s);
if (adj)
__imag__ res = __ieee754_atan2f (s, __imag__ x);
else
__imag__ res = __ieee754_atan2f (ix, s);
}
else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f)
{
float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f));
__real__ res = __ieee754_logf (ix + s);
if (adj)
__imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x));
else
__imag__ res = __ieee754_atan2f (s, rx);
}
else if (ix > 1.0f && ix < 1.5f && rx < 0.5f)
{
if (rx < FLT_EPSILON * FLT_EPSILON)
{
float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
float s = __ieee754_sqrtf (ix2m1);
__real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x));
else
__imag__ res = __ieee754_atan2f (s, rx);
}
else
{
float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
float rx2 = rx * rx;
float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f);
float dp = d + ix2m1;
float dm = f / dp;
float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f);
float r2 = rx * ix / r1;
__real__ res
= __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2f (ix + r2, rx + r1);
}
}
else if (ix == 1.0f && rx < 0.5f)
{
if (rx < FLT_EPSILON / 8.0f)
{
__real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx),
__copysignf (1.0f, __imag__ x));
else
__imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx));
}
else
{
float d = rx * __ieee754_sqrtf (4.0f + rx * rx);
float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f);
float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f);
__real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (rx + s1,
__copysignf (1.0f + s2,
__imag__ x));
else
__imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1);
}
}
else if (ix < 1.0f && rx < 0.5f)
{
if (ix >= FLT_EPSILON)
{
if (rx < FLT_EPSILON * FLT_EPSILON)
{
float onemix2 = (1.0f + ix) * (1.0f - ix);
float s = __ieee754_sqrtf (onemix2);
__real__ res = __log1pf (2.0f * rx / s) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (s, __imag__ x);
else
__imag__ res = __ieee754_atan2f (ix, s);
}
else
{
float onemix2 = (1.0f + ix) * (1.0f - ix);
float rx2 = rx * rx;
float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
float d = __ieee754_sqrtf (onemix2 * onemix2 + f);
float dp = d + onemix2;
float dm = f / dp;
float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f);
float r2 = rx * ix / r1;
__real__ res
= __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (rx + r1,
__copysignf (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2f (ix + r2, rx + r1);
}
}
else
{
float s = __ieee754_hypotf (1.0f, rx);
__real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f;
if (adj)
__imag__ res = __ieee754_atan2f (s, __imag__ x);
else
__imag__ res = __ieee754_atan2f (ix, s);
}
math_check_force_underflow_nonneg (__real__ res);
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0f;
__imag__ y = 2.0f * rx * ix;
y = __csqrtf (y);
__real__ y += rx;
__imag__ y += ix;
if (adj)
{
float t = __real__ y;
__real__ y = __copysignf (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clogf (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysignf (__real__ res, __real__ x);
__imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x));
return res;
}

View File

@ -1,219 +0,0 @@
/* Return arc hyperbole sine for long double value, with the imaginary
part of the result possibly adjusted for use in computing other
functions.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious overflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
/* Return the complex inverse hyperbolic sine of finite nonzero Z,
with the imaginary part of the result subtracted from pi/2 if ADJ
is nonzero. */
__complex__ long double
__kernel_casinhl (__complex__ long double x, int adj)
{
__complex__ long double res;
long double rx, ix;
__complex__ long double y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabsl (__real__ x);
ix = fabsl (__imag__ x);
if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
difference to the result; avoid possible overflow from
the squaring and addition. */
__real__ y = rx;
__imag__ y = ix;
if (adj)
{
long double t = __real__ y;
__real__ y = __copysignl (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clogl (y);
__real__ res += M_LN2l;
}
else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L)
{
long double s = __ieee754_hypotl (1.0L, rx);
__real__ res = __ieee754_logl (rx + s);
if (adj)
__imag__ res = __ieee754_atan2l (s, __imag__ x);
else
__imag__ res = __ieee754_atan2l (ix, s);
}
else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L)
{
long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L));
__real__ res = __ieee754_logl (ix + s);
if (adj)
__imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
else
__imag__ res = __ieee754_atan2l (s, rx);
}
else if (ix > 1.0L && ix < 1.5L && rx < 0.5L)
{
if (rx < LDBL_EPSILON * LDBL_EPSILON)
{
long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
long double s = __ieee754_sqrtl (ix2m1);
__real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
else
__imag__ res = __ieee754_atan2l (s, rx);
}
else
{
long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
long double rx2 = rx * rx;
long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f);
long double dp = d + ix2m1;
long double dm = f / dp;
long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L);
long double r2 = rx * ix / r1;
__real__ res
= __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2l (ix + r2, rx + r1);
}
}
else if (ix == 1.0L && rx < 0.5L)
{
if (rx < LDBL_EPSILON / 8.0L)
{
__real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx),
__copysignl (1.0L, __imag__ x));
else
__imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx));
}
else
{
long double d = rx * __ieee754_sqrtl (4.0L + rx * rx);
long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L);
long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L);
__real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (rx + s1,
__copysignl (1.0L + s2,
__imag__ x));
else
__imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1);
}
}
else if (ix < 1.0L && rx < 0.5L)
{
if (ix >= LDBL_EPSILON)
{
if (rx < LDBL_EPSILON * LDBL_EPSILON)
{
long double onemix2 = (1.0L + ix) * (1.0L - ix);
long double s = __ieee754_sqrtl (onemix2);
__real__ res = __log1pl (2.0L * rx / s) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (s, __imag__ x);
else
__imag__ res = __ieee754_atan2l (ix, s);
}
else
{
long double onemix2 = (1.0L + ix) * (1.0L - ix);
long double rx2 = rx * rx;
long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
long double d = __ieee754_sqrtl (onemix2 * onemix2 + f);
long double dp = d + onemix2;
long double dm = f / dp;
long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L);
long double r2 = rx * ix / r1;
__real__ res
= __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (rx + r1,
__copysignl (ix + r2,
__imag__ x));
else
__imag__ res = __ieee754_atan2l (ix + r2, rx + r1);
}
}
else
{
long double s = __ieee754_hypotl (1.0L, rx);
__real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L;
if (adj)
__imag__ res = __ieee754_atan2l (s, __imag__ x);
else
__imag__ res = __ieee754_atan2l (ix, s);
}
math_check_force_underflow_nonneg (__real__ res);
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0L;
__imag__ y = 2.0L * rx * ix;
y = __csqrtl (y);
__real__ y += rx;
__imag__ y += ix;
if (adj)
{
long double t = __real__ y;
__real__ y = __copysignl (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clogl (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysignl (__real__ res, __real__ x);
__imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x));
return res;
}

View File

@ -1,66 +0,0 @@
/* Return arc sine of complex double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ double
__casin (__complex__ double x)
{
__complex__ double res;
if (isnan (__real__ x) || isnan (__imag__ x))
{
if (__real__ x == 0.0)
{
res = x;
}
else if (isinf (__real__ x) || isinf (__imag__ x))
{
__real__ res = __nan ("");
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else
{
__complex__ double y;
__real__ y = -__imag__ x;
__imag__ y = __real__ x;
y = __casinh (y);
__real__ res = __imag__ y;
__imag__ res = -__real__ y;
}
return res;
}
weak_alias (__casin, casin)
#ifdef NO_LONG_DOUBLE
strong_alias (__casin, __casinl)
weak_alias (__casin, casinl)
#endif

View File

@ -1,4 +1,4 @@
/* Return arc sine of complex double value.
/* Return arc sine of a complex float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -22,36 +22,36 @@
#include <math_private.h>
__complex__ double
__casin (__complex__ double x)
CFLOAT
M_DECL_FUNC (__casin) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
if (isnan (__real__ x) || isnan (__imag__ x))
{
if (__real__ x == 0.0)
if (__real__ x == 0)
{
res = x;
}
else if (isinf (__real__ x) || isinf (__imag__ x))
{
__real__ res = __nan ("");
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
__real__ res = M_NAN;
__imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
}
}
else
{
__complex__ double y;
CFLOAT y;
__real__ y = -__imag__ x;
__imag__ y = __real__ x;
y = __casinh (y);
y = M_SUF (__casinh) (y);
__real__ res = __imag__ y;
__imag__ res = -__real__ y;
@ -59,8 +59,9 @@ __casin (__complex__ double x)
return res;
}
weak_alias (__casin, casin)
#ifdef NO_LONG_DOUBLE
strong_alias (__casin, __casinl)
weak_alias (__casin, casinl)
declare_mgen_alias (__casin, casin)
#if M_LIBM_NEED_COMPAT (casin)
declare_mgen_libm_compat (__casin, casin)
#endif

View File

@ -1,64 +0,0 @@
/* Return arc sine of complex float value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ float
__casinf (__complex__ float x)
{
__complex__ float res;
if (isnan (__real__ x) || isnan (__imag__ x))
{
if (__real__ x == 0.0)
{
res = x;
}
else if (isinf (__real__ x) || isinf (__imag__ x))
{
__real__ res = __nanf ("");
__imag__ res = __copysignf (HUGE_VALF, __imag__ x);
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
}
}
else
{
__complex__ float y;
__real__ y = -__imag__ x;
__imag__ y = __real__ x;
y = __casinhf (y);
__real__ res = __imag__ y;
__imag__ res = -__real__ y;
}
return res;
}
#ifndef __casinf
weak_alias (__casinf, casinf)
#endif

View File

@ -1,73 +0,0 @@
/* Return arc hyperbole sine for double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ double
__casinh (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (rcls <= FP_INFINITE || icls <= FP_INFINITE)
{
if (icls == FP_INFINITE)
{
__real__ res = __copysign (HUGE_VAL, __real__ x);
if (rcls == FP_NAN)
__imag__ res = __nan ("");
else
__imag__ res = __copysign (rcls >= FP_ZERO ? M_PI_2 : M_PI_4,
__imag__ x);
}
else if (rcls <= FP_INFINITE)
{
__real__ res = __real__ x;
if ((rcls == FP_INFINITE && icls >= FP_ZERO)
|| (rcls == FP_NAN && icls == FP_ZERO))
__imag__ res = __copysign (0.0, __imag__ x);
else
__imag__ res = __nan ("");
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else if (rcls == FP_ZERO && icls == FP_ZERO)
{
res = x;
}
else
{
res = __kernel_casinh (x, 0);
}
return res;
}
weak_alias (__casinh, casinh)
#ifdef NO_LONG_DOUBLE
strong_alias (__casinh, __casinhl)
weak_alias (__casinh, casinhl)
#endif

View File

@ -1,4 +1,4 @@
/* Return arc hyperbole sine for double value.
/* Return arc hyperbolic sine for a complex float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -21,10 +21,10 @@
#include <math.h>
#include <math_private.h>
__complex__ double
__casinh (__complex__ double x)
CFLOAT
M_DECL_FUNC (__casinh) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@ -32,12 +32,13 @@ __casinh (__complex__ double x)
{
if (icls == FP_INFINITE)
{
__real__ res = __copysign (HUGE_VAL, __real__ x);
__real__ res = M_COPYSIGN (M_HUGE_VAL, __real__ x);
if (rcls == FP_NAN)
__imag__ res = __nan ("");
__imag__ res = M_NAN;
else
__imag__ res = __copysign (rcls >= FP_ZERO ? M_PI_2 : M_PI_4,
__imag__ res = M_COPYSIGN ((rcls >= FP_ZERO
? M_MLIT (M_PI_2) : M_MLIT (M_PI_4)),
__imag__ x);
}
else if (rcls <= FP_INFINITE)
@ -45,14 +46,14 @@ __casinh (__complex__ double x)
__real__ res = __real__ x;
if ((rcls == FP_INFINITE && icls >= FP_ZERO)
|| (rcls == FP_NAN && icls == FP_ZERO))
__imag__ res = __copysign (0.0, __imag__ x);
__imag__ res = M_COPYSIGN (0, __imag__ x);
else
__imag__ res = __nan ("");
__imag__ res = M_NAN;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
}
}
else if (rcls == FP_ZERO && icls == FP_ZERO)
@ -61,13 +62,14 @@ __casinh (__complex__ double x)
}
else
{
res = __kernel_casinh (x, 0);
res = M_SUF (__kernel_casinh) (x, 0);
}
return res;
}
weak_alias (__casinh, casinh)
#ifdef NO_LONG_DOUBLE
strong_alias (__casinh, __casinhl)
weak_alias (__casinh, casinhl)
declare_mgen_alias (__casinh, casinh)
#if M_LIBM_NEED_COMPAT (casinh)
declare_mgen_libm_compat (__casinh, casinh)
#endif

View File

@ -1,71 +0,0 @@
/* Return arc hyperbole sine for float value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ float
__casinhf (__complex__ float x)
{
__complex__ float res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (rcls <= FP_INFINITE || icls <= FP_INFINITE)
{
if (icls == FP_INFINITE)
{
__real__ res = __copysignf (HUGE_VALF, __real__ x);
if (rcls == FP_NAN)
__imag__ res = __nanf ("");
else
__imag__ res = __copysignf (rcls >= FP_ZERO ? M_PI_2 : M_PI_4,
__imag__ x);
}
else if (rcls <= FP_INFINITE)
{
__real__ res = __real__ x;
if ((rcls == FP_INFINITE && icls >= FP_ZERO)
|| (rcls == FP_NAN && icls == FP_ZERO))
__imag__ res = __copysignf (0.0, __imag__ x);
else
__imag__ res = __nanf ("");
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
}
}
else if (rcls == FP_ZERO && icls == FP_ZERO)
{
res = x;
}
else
{
res = __kernel_casinhf (x, 0);
}
return res;
}
#ifndef __casinhf
weak_alias (__casinhf, casinhf)
#endif

View File

@ -1,69 +0,0 @@
/* Return arc hyperbole sine for long double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ long double
__casinhl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (rcls <= FP_INFINITE || icls <= FP_INFINITE)
{
if (icls == FP_INFINITE)
{
__real__ res = __copysignl (HUGE_VALL, __real__ x);
if (rcls == FP_NAN)
__imag__ res = __nanl ("");
else
__imag__ res = __copysignl (rcls >= FP_ZERO ? M_PI_2l : M_PI_4l,
__imag__ x);
}
else if (rcls <= FP_INFINITE)
{
__real__ res = __real__ x;
if ((rcls == FP_INFINITE && icls >= FP_ZERO)
|| (rcls == FP_NAN && icls == FP_ZERO))
__imag__ res = __copysignl (0.0, __imag__ x);
else
__imag__ res = __nanl ("");
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else if (rcls == FP_ZERO && icls == FP_ZERO)
{
res = x;
}
else
{
res = __kernel_casinhl (x, 0);
}
return res;
}
weak_alias (__casinhl, casinhl)

View File

@ -1,62 +0,0 @@
/* Return arc sine of complex long double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ long double
__casinl (__complex__ long double x)
{
__complex__ long double res;
if (isnan (__real__ x) || isnan (__imag__ x))
{
if (__real__ x == 0.0)
{
res = x;
}
else if (isinf (__real__ x) || isinf (__imag__ x))
{
__real__ res = __nanl ("");
__imag__ res = __copysignl (HUGE_VALL, __imag__ x);
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else
{
__complex__ long double y;
__real__ y = -__imag__ x;
__imag__ y = __real__ x;
y = __casinhl (y);
__real__ res = __imag__ y;
__imag__ res = -__real__ y;
}
return res;
}
weak_alias (__casinl, casinl)

View File

@ -1,171 +0,0 @@
/* Complex sine function for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__csin (__complex__ double x)
{
__complex__ double retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabs (__real__ x);
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
if (__glibc_likely (__real__ x > DBL_MIN))
{
__sincos (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0;
}
if (negate)
sinix = -sinix;
if (fabs (__imag__ x) > t)
{
double exp_t = __ieee754_exp (t);
double ix = fabs (__imag__ x);
if (signbit (__imag__ x))
cosix = -cosix;
ix -= t;
sinix *= exp_t / 2.0;
cosix *= exp_t / 2.0;
if (ix > t)
{
ix -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (ix > t)
{
/* Overflow (original imaginary part of x > 3t). */
__real__ retval = DBL_MAX * sinix;
__imag__ retval = DBL_MAX * cosix;
}
else
{
double exp_val = __ieee754_exp (ix);
__real__ retval = exp_val * sinix;
__imag__ retval = exp_val * cosix;
}
}
else
{
__real__ retval = __ieee754_cosh (__imag__ x) * sinix;
__imag__ retval = __ieee754_sinh (__imag__ x) * cosix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = __nan ("");
__imag__ retval = __imag__ x;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (icls == FP_INFINITE)
{
/* Imaginary part is infinite. */
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __imag__ x;
}
else if (rcls > FP_ZERO)
{
/* Real part is finite. */
double sinix, cosix;
if (__glibc_likely (__real__ x > DBL_MIN))
{
__sincos (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0;
}
__real__ retval = __copysign (HUGE_VAL, sinix);
__imag__ retval = __copysign (HUGE_VAL, cosix);
if (negate)
__real__ retval = -__real__ retval;
if (signbit (__imag__ x))
__imag__ retval = -__imag__ retval;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = __nan ("");
__imag__ retval = HUGE_VAL;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
if (rcls == FP_ZERO)
__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
else
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
}
return retval;
}
weak_alias (__csin, csin)
#ifdef NO_LONG_DOUBLE
strong_alias (__csin, __csinl)
weak_alias (__csin, csinl)
#endif

View File

@ -1,4 +1,4 @@
/* Complex sine function for double.
/* Complex sine function for float types.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -23,15 +23,15 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__csin (__complex__ double x)
CFLOAT
M_DECL_FUNC (__csin) (CFLOAT x)
{
__complex__ double retval;
CFLOAT retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabs (__real__ x);
__real__ x = M_FABS (__real__ x);
if (__glibc_likely (icls >= FP_ZERO))
{
@ -39,31 +39,31 @@ __csin (__complex__ double x)
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (__real__ x > DBL_MIN))
if (__glibc_likely (__real__ x > M_MIN))
{
__sincos (__real__ x, &sinix, &cosix);
M_SINCOS (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0;
cosix = 1;
}
if (negate)
sinix = -sinix;
if (fabs (__imag__ x) > t)
if (M_FABS (__imag__ x) > t)
{
double exp_t = __ieee754_exp (t);
double ix = fabs (__imag__ x);
FLOAT exp_t = M_EXP (t);
FLOAT ix = M_FABS (__imag__ x);
if (signbit (__imag__ x))
cosix = -cosix;
ix -= t;
sinix *= exp_t / 2.0;
cosix *= exp_t / 2.0;
sinix *= exp_t / 2;
cosix *= exp_t / 2;
if (ix > t)
{
ix -= t;
@ -73,20 +73,20 @@ __csin (__complex__ double x)
if (ix > t)
{
/* Overflow (original imaginary part of x > 3t). */
__real__ retval = DBL_MAX * sinix;
__imag__ retval = DBL_MAX * cosix;
__real__ retval = M_MAX * sinix;
__imag__ retval = M_MAX * cosix;
}
else
{
double exp_val = __ieee754_exp (ix);
FLOAT exp_val = M_EXP (ix);
__real__ retval = exp_val * sinix;
__imag__ retval = exp_val * cosix;
}
}
else
{
__real__ retval = __ieee754_cosh (__imag__ x) * sinix;
__imag__ retval = __ieee754_sinh (__imag__ x) * cosix;
__real__ retval = M_COSH (__imag__ x) * sinix;
__imag__ retval = M_SINH (__imag__ x) * cosix;
}
math_check_force_underflow_complex (retval);
@ -96,7 +96,7 @@ __csin (__complex__ double x)
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = __nan ("");
__real__ retval = M_NAN;
__imag__ retval = __imag__ x;
if (rcls == FP_INFINITE)
@ -104,8 +104,8 @@ __csin (__complex__ double x)
}
else
{
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
@ -117,26 +117,26 @@ __csin (__complex__ double x)
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
__real__ retval = M_COPYSIGN (0, negate ? -1 : 1);
__imag__ retval = __imag__ x;
}
else if (rcls > FP_ZERO)
{
/* Real part is finite. */
double sinix, cosix;
FLOAT sinix, cosix;
if (__glibc_likely (__real__ x > DBL_MIN))
if (__glibc_likely (__real__ x > M_MIN))
{
__sincos (__real__ x, &sinix, &cosix);
M_SINCOS (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0;
cosix = 1;
}
__real__ retval = __copysign (HUGE_VAL, sinix);
__imag__ retval = __copysign (HUGE_VAL, cosix);
__real__ retval = M_COPYSIGN (M_HUGE_VAL, sinix);
__imag__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
if (negate)
__real__ retval = -__real__ retval;
@ -146,8 +146,8 @@ __csin (__complex__ double x)
else
{
/* The addition raises the invalid exception. */
__real__ retval = __nan ("");
__imag__ retval = HUGE_VAL;
__real__ retval = M_NAN;
__imag__ retval = M_HUGE_VAL;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
@ -156,16 +156,17 @@ __csin (__complex__ double x)
else
{
if (rcls == FP_ZERO)
__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
__real__ retval = M_COPYSIGN (0, negate ? -1 : 1);
else
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
}
return retval;
}
weak_alias (__csin, csin)
#ifdef NO_LONG_DOUBLE
strong_alias (__csin, __csinl)
weak_alias (__csin, csinl)
declare_mgen_alias (__csin, csin)
#if M_LIBM_NEED_COMPAT (csin)
declare_mgen_libm_compat (__csin, csin)
#endif

View File

@ -1,169 +0,0 @@
/* Complex sine function for float.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__csinf (__complex__ float x)
{
__complex__ float retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsf (__real__ x);
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
float sinix, cosix;
if (__glibc_likely (__real__ x > FLT_MIN))
{
__sincosf (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0f;
}
if (negate)
sinix = -sinix;
if (fabsf (__imag__ x) > t)
{
float exp_t = __ieee754_expf (t);
float ix = fabsf (__imag__ x);
if (signbit (__imag__ x))
cosix = -cosix;
ix -= t;
sinix *= exp_t / 2.0f;
cosix *= exp_t / 2.0f;
if (ix > t)
{
ix -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (ix > t)
{
/* Overflow (original imaginary part of x > 3t). */
__real__ retval = FLT_MAX * sinix;
__imag__ retval = FLT_MAX * cosix;
}
else
{
float exp_val = __ieee754_expf (ix);
__real__ retval = exp_val * sinix;
__imag__ retval = exp_val * cosix;
}
}
else
{
__real__ retval = __ieee754_coshf (__imag__ x) * sinix;
__imag__ retval = __ieee754_sinhf (__imag__ x) * cosix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = __nanf ("");
__imag__ retval = __imag__ x;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (icls == FP_INFINITE)
{
/* Imaginary part is infinite. */
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __imag__ x;
}
else if (rcls > FP_ZERO)
{
/* Real part is finite. */
float sinix, cosix;
if (__glibc_likely (__real__ x > FLT_MIN))
{
__sincosf (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0f;
}
__real__ retval = __copysignf (HUGE_VALF, sinix);
__imag__ retval = __copysignf (HUGE_VALF, cosix);
if (negate)
__real__ retval = -__real__ retval;
if (signbit (__imag__ x))
__imag__ retval = -__imag__ retval;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = __nanf ("");
__imag__ retval = HUGE_VALF;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
if (rcls == FP_ZERO)
__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
else
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
}
return retval;
}
#ifndef __csinf
weak_alias (__csinf, csinf)
#endif

View File

@ -1,166 +0,0 @@
/* Complex sine hyperbole function for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__csinh (__complex__ double x)
{
__complex__ double retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabs (__real__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (negate)
cosix = -cosix;
if (fabs (__real__ x) > t)
{
double exp_t = __ieee754_exp (t);
double rx = fabs (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0;
cosix *= exp_t / 2.0;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = DBL_MAX * cosix;
__imag__ retval = DBL_MAX * sinix;
}
else
{
double exp_val = __ieee754_exp (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinh (__real__ x) * cosix;
__imag__ retval = __ieee754_cosh (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nan ("") + __nan ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (rcls == FP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
double sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = __copysign (HUGE_VAL, cosix);
__imag__ retval = __copysign (HUGE_VAL, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VAL : HUGE_VAL;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VAL;
__imag__ retval = __nan ("") + __nan ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
__real__ retval = __nan ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan ("");
}
return retval;
}
weak_alias (__csinh, csinh)
#ifdef NO_LONG_DOUBLE
strong_alias (__csinh, __csinhl)
weak_alias (__csinh, csinhl)
#endif

View File

@ -1,4 +1,4 @@
/* Complex sine hyperbole function for double.
/* Complex sine hyperbole function for float types.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -23,15 +23,15 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__csinh (__complex__ double x)
CFLOAT
M_DECL_FUNC (__csinh) (CFLOAT x)
{
__complex__ double retval;
CFLOAT retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabs (__real__ x);
__real__ x = M_FABS (__real__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
@ -39,31 +39,31 @@ __csinh (__complex__ double x)
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
cosix = 1;
}
if (negate)
cosix = -cosix;
if (fabs (__real__ x) > t)
if (M_FABS (__real__ x) > t)
{
double exp_t = __ieee754_exp (t);
double rx = fabs (__real__ x);
FLOAT exp_t = M_EXP (t);
FLOAT rx = M_FABS (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0;
cosix *= exp_t / 2.0;
sinix *= exp_t / 2;
cosix *= exp_t / 2;
if (rx > t)
{
rx -= t;
@ -73,20 +73,20 @@ __csinh (__complex__ double x)
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = DBL_MAX * cosix;
__imag__ retval = DBL_MAX * sinix;
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
double exp_val = __ieee754_exp (rx);
FLOAT exp_val = M_EXP (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinh (__real__ x) * cosix;
__imag__ retval = __ieee754_cosh (__real__ x) * sinix;
__real__ retval = M_SINH (__real__ x) * cosix;
__imag__ retval = M_COSH (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
@ -96,16 +96,16 @@ __csinh (__complex__ double x)
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysign (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nan ("") + __nan ("");
__real__ retval = M_COPYSIGN (0, negate ? -1 : 1);
__imag__ retval = M_NAN + M_NAN;
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
@ -117,20 +117,20 @@ __csinh (__complex__ double x)
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
double sinix, cosix;
FLOAT sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
cosix = 1;
}
__real__ retval = __copysign (HUGE_VAL, cosix);
__imag__ retval = __copysign (HUGE_VAL, sinix);
__real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
__imag__ retval = M_COPYSIGN (M_HUGE_VAL, sinix);
if (negate)
__real__ retval = -__real__ retval;
@ -138,14 +138,14 @@ __csinh (__complex__ double x)
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VAL : HUGE_VAL;
__real__ retval = negate ? -M_HUGE_VAL : M_HUGE_VAL;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VAL;
__imag__ retval = __nan ("") + __nan ("");
__real__ retval = M_HUGE_VAL;
__imag__ retval = M_NAN + M_NAN;
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
@ -153,14 +153,15 @@ __csinh (__complex__ double x)
}
else
{
__real__ retval = __nan ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan ("");
__real__ retval = M_NAN;
__imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN;
}
return retval;
}
weak_alias (__csinh, csinh)
#ifdef NO_LONG_DOUBLE
strong_alias (__csinh, __csinhl)
weak_alias (__csinh, csinhl)
declare_mgen_alias (__csinh, csinh)
#if M_LIBM_NEED_COMPAT (csinh)
declare_mgen_libm_compat (__csinh, csinh)
#endif

View File

@ -1,164 +0,0 @@
/* Complex sine hyperbole function for float.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__csinhf (__complex__ float x)
{
__complex__ float retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsf (__real__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
float sinix, cosix;
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
if (negate)
cosix = -cosix;
if (fabsf (__real__ x) > t)
{
float exp_t = __ieee754_expf (t);
float rx = fabsf (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0f;
cosix *= exp_t / 2.0f;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT_MAX * cosix;
__imag__ retval = FLT_MAX * sinix;
}
else
{
float exp_val = __ieee754_expf (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinhf (__real__ x) * cosix;
__imag__ retval = __ieee754_coshf (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nanf ("") + __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (rcls == FP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
float sinix, cosix;
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
__real__ retval = __copysignf (HUGE_VALF, cosix);
__imag__ retval = __copysignf (HUGE_VALF, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALF : HUGE_VALF;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALF;
__imag__ retval = __nanf ("") + __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf ("");
}
return retval;
}
#ifndef __csinhf
weak_alias (__csinhf, csinhf)
#endif

View File

@ -1,162 +0,0 @@
/* Complex sine hyperbole function for long double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ long double
__csinhl (__complex__ long double x)
{
__complex__ long double retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsl (__real__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
long double sinix, cosix;
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (negate)
cosix = -cosix;
if (fabsl (__real__ x) > t)
{
long double exp_t = __ieee754_expl (t);
long double rx = fabsl (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0L;
cosix *= exp_t / 2.0L;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = LDBL_MAX * cosix;
__imag__ retval = LDBL_MAX * sinix;
}
else
{
long double exp_val = __ieee754_expl (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinhl (__real__ x) * cosix;
__imag__ retval = __ieee754_coshl (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nanl ("") + __nanl ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanl ("");
__imag__ retval = __nanl ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (rcls == FP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
long double sinix, cosix;
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = __copysignl (HUGE_VALL, cosix);
__imag__ retval = __copysignl (HUGE_VALL, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALL : HUGE_VALL;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALL;
__imag__ retval = __nanl ("") + __nanl ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
__real__ retval = __nanl ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanl ("");
}
return retval;
}
weak_alias (__csinhl, csinhl)

View File

@ -1,167 +0,0 @@
/* Complex sine function for long double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ long double
__csinl (__complex__ long double x)
{
__complex__ long double retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsl (__real__ x);
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
long double sinix, cosix;
if (__glibc_likely (__real__ x > LDBL_MIN))
{
__sincosl (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0;
}
if (negate)
sinix = -sinix;
if (fabsl (__imag__ x) > t)
{
long double exp_t = __ieee754_expl (t);
long double ix = fabsl (__imag__ x);
if (signbit (__imag__ x))
cosix = -cosix;
ix -= t;
sinix *= exp_t / 2.0L;
cosix *= exp_t / 2.0L;
if (ix > t)
{
ix -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (ix > t)
{
/* Overflow (original imaginary part of x > 3t). */
__real__ retval = LDBL_MAX * sinix;
__imag__ retval = LDBL_MAX * cosix;
}
else
{
long double exp_val = __ieee754_expl (ix);
__real__ retval = exp_val * sinix;
__imag__ retval = exp_val * cosix;
}
}
else
{
__real__ retval = __ieee754_coshl (__imag__ x) * sinix;
__imag__ retval = __ieee754_sinhl (__imag__ x) * cosix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = __nanl ("");
__imag__ retval = __imag__ x;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanl ("");
__imag__ retval = __nanl ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (icls == FP_INFINITE)
{
/* Imaginary part is infinite. */
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __imag__ x;
}
else if (rcls > FP_ZERO)
{
/* Real part is finite. */
long double sinix, cosix;
if (__glibc_likely (__real__ x > LDBL_MIN))
{
__sincosl (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1.0;
}
__real__ retval = __copysignl (HUGE_VALL, sinix);
__imag__ retval = __copysignl (HUGE_VALL, cosix);
if (negate)
__real__ retval = -__real__ retval;
if (signbit (__imag__ x))
__imag__ retval = -__imag__ retval;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = __nanl ("");
__imag__ retval = HUGE_VALL;
if (rcls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
if (rcls == FP_ZERO)
__real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0);
else
__real__ retval = __nanl ("");
__imag__ retval = __nanl ("");
}
return retval;
}
weak_alias (__csinl, csinl)

View File

@ -24,14 +24,18 @@
#undef __casinf
#undef casinf
#define __casinf internal_casinf
static _Complex float internal_casinf (_Complex float x);
#include <math/s_casinf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_casinf
#include <math-type-macros-float.h>
#undef __casinf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_casin_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_casinf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __casinhf
#undef casinhf
#define __casinhf internal_casinhf
static _Complex float internal_casinhf (_Complex float x);
#include <math/s_casinhf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_casinhf
#include <math-type-macros-float.h>
#undef __casinhf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_casinh_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_casinhf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __csinf
#undef csinf
#define __csinf internal_csinf
static _Complex float internal_csinf (_Complex float x);
#include <math/s_csinf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_csinf
#include <math-type-macros-float.h>
#undef __csinf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_csin_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_csinf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __csinhf
#undef csinhf
#define __csinhf internal_csinhf
static _Complex float internal_csinhf (_Complex float x);
#include <math/s_csinhf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_csinhf
#include <math-type-macros-float.h>
#undef __csinhf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_csinh_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_csinhf (c1_cfloat_decl (x))

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_casin.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __casin, casinl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_casinh.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __casinh, casinhl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_casinhl.c>
long_double_symbol (libm, __casinhl, casinhl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_casinl.c>
long_double_symbol (libm, __casinl, casinl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_csin.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __csin, csinl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_csinh.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __csinh, csinhl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_csinhl.c>
long_double_symbol (libm, __csinhl, csinhl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_csinl.c>
long_double_symbol (libm, __csinl, csinl);

View File

@ -21,27 +21,19 @@
#include <math.h>
#include "mathimpl.h"
#ifndef SUFF
#define SUFF
#endif
#ifndef float_type
#define float_type double
#endif
#define CONCATX(a,b) __CONCAT(a,b)
#define s(name) CONCATX(name,SUFF)
#define s(name) M_SUF (name)
#define m81(func) __m81_u(s(func))
__complex__ float_type
s(__csin) (__complex__ float_type x)
CFLOAT
s(__csin) (CFLOAT x)
{
__complex__ float_type retval;
CFLOAT retval;
unsigned long rx_cond = __m81_test (__real__ x);
if ((rx_cond & (__M81_COND_INF|__M81_COND_NAN)) == 0)
{
/* Real part is finite. */
float_type sin_rx, cos_rx;
FLOAT sin_rx, cos_rx;
__asm ("fsincos%.x %2,%1:%0" : "=f" (sin_rx), "=f" (cos_rx)
: "f" (__real__ x));

View File

@ -1,3 +0,0 @@
#define SUFF f
#define float_type float
#include <s_csin.c>

View File

@ -21,21 +21,14 @@
#include <math.h>
#include "mathimpl.h"
#ifndef SUFF
#define SUFF
#endif
#ifndef float_type
#define float_type double
#endif
#define CONCATX(a,b) __CONCAT(a,b)
#define s(name) CONCATX(name,SUFF)
#define s(name) M_SUF (name)
#define m81(func) __m81_u(s(func))
__complex__ float_type
s(__csinh) (__complex__ float_type x)
CFLOAT
s(__csinh) (CFLOAT x)
{
__complex__ float_type retval;
CFLOAT retval;
unsigned long ix_cond;
ix_cond = __m81_test (__imag__ x);
@ -43,7 +36,7 @@ s(__csinh) (__complex__ float_type x)
if ((ix_cond & (__M81_COND_INF|__M81_COND_NAN)) == 0)
{
/* Imaginary part is finite. */
float_type sin_ix, cos_ix;
FLOAT sin_ix, cos_ix;
__asm ("fsincos%.x %2,%1:%0" : "=f" (sin_ix), "=f" (cos_ix)
: "f" (__imag__ x));

View File

@ -1,3 +0,0 @@
#define SUFF f
#define float_type float
#include <s_csinh.c>

View File

@ -1,3 +0,0 @@
#define SUFF l
#define float_type long double
#include <s_csinh.c>

View File

@ -1,3 +0,0 @@
#define SUFF l
#define float_type long double
#include <s_csin.c>