mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
Simplify calculation of 2^-m in __mpexp
This commit is contained in:
parent
d3b9ea6148
commit
caa99d06e7
@ -1,5 +1,10 @@
|
||||
2013-01-18 Siddhesh Poyarekar <siddhesh@redhat.com>
|
||||
|
||||
* sysdeps/ieee754/dbl-64/mpa.h (__pow_mp): New function to get an
|
||||
mp_no from a power of two.
|
||||
* sysdeps/ieee754/dbl-64/mpexp.c (__mpexp): Remove
|
||||
__mpexp_twomm1. Use __pow_mp.
|
||||
|
||||
* sysdeps/ieee754/dbl-64/mpexp.c (__mpexp): Remove unnecessary
|
||||
multiplication.
|
||||
|
||||
|
@ -123,3 +123,33 @@ extern void __mpsqrt (mp_no *, mp_no *, int);
|
||||
extern void __mpexp (mp_no *, mp_no *, int);
|
||||
extern void __c32 (mp_no *, mp_no *, mp_no *, int);
|
||||
extern int __mpranred (double, mp_no *, int);
|
||||
|
||||
/* Given a power POW, build a multiprecision number 2^POW. */
|
||||
static inline void
|
||||
__pow_mp (int pow, mp_no *y, int p)
|
||||
{
|
||||
int i, rem;
|
||||
|
||||
/* The exponent is E such that E is a factor of 2^24. The remainder (of the
|
||||
form 2^x) goes entirely into the first digit of the mantissa as it is
|
||||
always less than 2^24. */
|
||||
EY = pow / 24;
|
||||
rem = pow - EY * 24;
|
||||
EY++;
|
||||
|
||||
/* If the remainder is negative, it means that POW was negative since
|
||||
|EY * 24| <= |pow|. Adjust so that REM is positive and still less than
|
||||
24 because of which, the mantissa digit is less than 2^24. */
|
||||
if (rem < 0)
|
||||
{
|
||||
EY--;
|
||||
rem += 24;
|
||||
}
|
||||
/* The sign of any 2^x is always positive. */
|
||||
Y[0] = ONE;
|
||||
Y[1] = 1 << rem;
|
||||
|
||||
/* Everything else is ZERO. */
|
||||
for (i = 2; i <= p; i++)
|
||||
Y[i] = ZERO;
|
||||
}
|
||||
|
@ -43,7 +43,7 @@ SECTION
|
||||
__mpexp (mp_no *x, mp_no *y, int p)
|
||||
{
|
||||
int i, j, k, m, m1, m2, n;
|
||||
double a, b;
|
||||
double b;
|
||||
static const int np[33] =
|
||||
{
|
||||
0, 0, 0, 0, 3, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6,
|
||||
@ -61,19 +61,6 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
70, 73, 76, 78,
|
||||
81
|
||||
};
|
||||
/* Stored values for 2^-m, where values of m are defined in M1P above. */
|
||||
static const double __mpexp_twomm1[33] =
|
||||
{
|
||||
0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0,
|
||||
0x1.0p-17, 0x1.0p-23, 0x1.0p-23, 0x1.0p-28,
|
||||
0x1.0p-27, 0x1.0p-38, 0x1.0p-42, 0x1.0p-39,
|
||||
0x1.0p-43, 0x1.0p-47, 0x1.0p-43, 0x1.0p-47,
|
||||
0x1.0p-50, 0x1.0p-54, 0x1.0p-57, 0x1.0p-60,
|
||||
0x1.0p-64, 0x1.0p-67, 0x1.0p-71, 0x1.0p-74,
|
||||
0x1.0p-68, 0x1.0p-71, 0x1.0p-74, 0x1.0p-77,
|
||||
0x1.0p-70, 0x1.0p-73, 0x1.0p-76, 0x1.0p-78,
|
||||
0x1.0p-81
|
||||
};
|
||||
static const int m1np[7][18] =
|
||||
{
|
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
@ -98,18 +85,10 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
/* Choose m,n and compute a=2**(-m). */
|
||||
n = np[p];
|
||||
m1 = m1p[p];
|
||||
a = __mpexp_twomm1[p];
|
||||
for (i = 0; i < EX; i++)
|
||||
a *= RADIXI;
|
||||
for (; i > EX; i--)
|
||||
a *= RADIX;
|
||||
b = X[1];
|
||||
m2 = 24 * EX;
|
||||
for (; b < HALFRAD; m2--)
|
||||
{
|
||||
a *= TWO;
|
||||
b *= TWO;
|
||||
}
|
||||
b *= TWO;
|
||||
if (b == HALFRAD)
|
||||
{
|
||||
for (i = 2; i <= p; i++)
|
||||
@ -118,10 +97,7 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
break;
|
||||
}
|
||||
if (i == p + 1)
|
||||
{
|
||||
m2--;
|
||||
a *= TWO;
|
||||
}
|
||||
m2--;
|
||||
}
|
||||
|
||||
m = m1 + m2;
|
||||
@ -134,14 +110,13 @@ __mpexp (mp_no *x, mp_no *y, int p)
|
||||
than 2^-55. */
|
||||
assert (p < 18);
|
||||
m = 0;
|
||||
a = ONE;
|
||||
for (i = n - 1; i > 0; i--, n--)
|
||||
if (m1np[i][p] + m2 > 0)
|
||||
break;
|
||||
}
|
||||
|
||||
/* Compute s=x*2**(-m). Put result in mps. */
|
||||
__dbl_mp (a, &mpt1, p);
|
||||
__pow_mp (-m, &mpt1, p);
|
||||
__mul (x, &mpt1, &mps, p);
|
||||
|
||||
/* Evaluate the polynomial. Put result in mpt2. */
|
||||
|
Loading…
Reference in New Issue
Block a user