math: Improve fmodf

This uses a new algorithm similar to already proposed earlier [1].
With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers),
the simplest implementation is:

   mx * 2^ex == 2 * mx * 2^(ex - 1)

   while (ex > ey)
     {
       mx *= 2;
       --ex;
       mx %= my;
     }

With mx/my being mantissa of double floating pointer, on each step the
argument reduction can be improved 8 (which is sizeof of uint32_t minus
MANTISSA_WIDTH plus the signal bit):

   while (ex > ey)
     {
       mx << 8;
       ex -= 8;
       mx %= my;
     }  */

The implementation uses builtin clz and ctz, along with shifts to
convert hx/hy back to doubles.  Different than the original patch,
this path assume modulo/divide operation is slow, so use multiplication
with invert values.

I see the following performance improvements using fmod benchtests
(result only show the 'mean' result):

  Architecture     | Input           | master   | patch
  -----------------|-----------------|----------|--------
  x86_64 (Ryzen 9) | subnormals      | 17.2549  | 12.0318
  x86_64 (Ryzen 9) | normal          | 85.4096  | 49.9641
  x86_64 (Ryzen 9) | close-exponents | 19.1072  | 15.8224
  aarch64 (N1)     | subnormal       | 10.2182  | 6.81778
  aarch64 (N1)     | normal          | 60.0616  | 20.3667
  aarch64 (N1)     | close-exponents | 11.5256  | 8.39685

I also see similar improvements on arm-linux-gnueabihf when running on
the N1 aarch64 chips, where it a lot of soft-fp implementation (for
modulo, and multiplication):

  Architecture     | Input           | master   | patch
  -----------------|-----------------|----------|--------
  armhf (N1)       | subnormal       | 11.6662  | 10.8955
  armhf (N1)       | normal          | 69.2759  | 34.1524
  armhf (N1)       | close-exponents | 13.6472  | 18.2131

Instead of using the math_private.h definitions, I used the
math_config.h instead which is used on newer math implementations.

Co-authored-by: kirill <kirill.okhotnikov@gmail.com>

[1] https://sourceware.org/pipermail/libc-alpha/2020-November/119794.html
Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
This commit is contained in:
Adhemerval Zanella Netto 2023-03-20 13:01:17 -03:00 committed by Adhemerval Zanella
parent 34b9f8bc17
commit cf9cf33199
3 changed files with 182 additions and 84 deletions

View File

@ -213,6 +213,10 @@ static const struct test_ff_f_data fmod_test_data[] =
TEST_ff_f (fmod, -0x1p127L, -0x3p-148L, -0x1p-147L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, -0x1p127L, 0x3p-126L, -0x1p-125L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, -0x1p127L, -0x3p-126L, -0x1p-125L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, 0x1.3a3e6p-127, 0x1.8b8338p-128, 0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, 0x1.3a3e6p-127, -0x1.8b8338p-128, 0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, -0x1.3a3e6p-127, 0x1.8b8338p-128, -0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, -0x1.3a3e6p-127, -0x1.8b8338p-128, -0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
#if !TEST_COND_binary32
TEST_ff_f (fmod, 0x1p1023L, 0x3p-1074L, 0x1p-1073L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
TEST_ff_f (fmod, 0x1p1023L, -0x3p-1074L, 0x1p-1073L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),

View File

@ -1,102 +1,155 @@
/* e_fmodf.c -- float version of e_fmod.c.
*/
/* Floating-point remainder function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
/*
* __ieee754_fmodf(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <libm-alias-finite.h>
#include <math.h>
#include "math_config.h"
static const float one = 1.0, Zero[] = {0.0, -0.0,};
/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the
simplest implementation is:
mx * 2^ex == 2 * mx * 2^(ex - 1)
or
while (ex > ey)
{
mx *= 2;
--ex;
mx %= my;
}
With the mathematical equivalence of:
r == x % y == (x % (N * y)) % y
And with mx/my being mantissa of double floating point number (which uses
less bits than the storage type), on each step the argument reduction can
be improved by 8 (which is the size of uint32_t minus MANTISSA_WIDTH plus
the signal bit):
mx * 2^ex == 2^8 * mx * 2^(ex - 8)
or
while (ex > ey)
{
mx << 8;
ex -= 8;
mx %= my;
} */
float
__ieee754_fmodf (float x, float y)
{
int32_t n,hx,hy,hz,ix,iy,sx,i;
uint32_t hx = asuint (x);
uint32_t hy = asuint (y);
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
uint32_t sx = hx & SIGN_MASK;
/* Get |x| and |y|. */
hx ^= sx;
hy &= ~SIGN_MASK;
/* purge off exception values */
if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */
(hy>0x7f800000)) /* or y is NaN */
return (x*y)/(x*y);
if(hx<hy) return x; /* |x|<|y| return x */
if(hx==hy)
return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
/* Special cases:
- If x or y is a Nan, NaN is returned.
- If x is an inifinity, a NaN is returned.
- If y is zero, Nan is returned.
- If x is +0/-0, and y is not zero, +0/-0 is returned. */
if (__glibc_unlikely (hy == 0 || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
return (x * y) / (x * y);
/* determine ix = ilogb(x) */
if(hx<0x00800000) { /* subnormal x */
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
} else ix = (hx>>23)-127;
if (__glibc_unlikely (hx <= hy))
{
if (hx < hy)
return x;
return asfloat (sx);
}
/* determine iy = ilogb(y) */
if(hy<0x00800000) { /* subnormal y */
for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
} else iy = (hy>>23)-127;
int ex = hx >> MANTISSA_WIDTH;
int ey = hy >> MANTISSA_WIDTH;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -126)
hx = 0x00800000|(0x007fffff&hx);
else { /* subnormal x, shift x to normal */
n = -126-ix;
hx = hx<<n;
}
if(iy >= -126)
hy = 0x00800000|(0x007fffff&hy);
else { /* subnormal y, shift y to normal */
n = -126-iy;
hy = hy<<n;
}
/* Common case where exponents are close: ey >= -103 and |x/y| < 2^8, */
if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
{
uint64_t mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);
uint64_t my = (hy & MANTISSA_MASK) | (MANTISSA_MASK + 1);
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;
if(hz<0){hx = hx+hx;}
else {
if(hz==0) /* return sign(x)*0 */
return Zero[(uint32_t)sx>>31];
hx = hz+hz;
}
}
hz=hx-hy;
if(hz>=0) {hx=hz;}
uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
return make_float (d, ey - 1, sx);
}
/* convert back to floating value and restore the sign */
if(hx==0) /* return sign(x)*0 */
return Zero[(uint32_t)sx>>31];
while(hx<0x00800000) { /* normalize x */
hx = hx+hx;
iy -= 1;
}
if(iy>= -126) { /* normalize output */
hx = ((hx-0x00800000)|((iy+127)<<23));
SET_FLOAT_WORD(x,hx|sx);
} else { /* subnormal output */
n = -126 - iy;
hx >>= n;
SET_FLOAT_WORD(x,hx|sx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
/* Special case, both x and y are subnormal. */
if (__glibc_unlikely (ex == 0 && ey == 0))
return asfloat (sx | hx % hy);
/* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'. Assume that hx is
not subnormal by conditions above. */
uint32_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1);
ex--;
uint32_t my = get_mantissa (hy) | (MANTISSA_MASK + 1);
int lead_zeros_my = EXPONENT_WIDTH;
if (__glibc_likely (ey > 0))
ey--;
else
{
my = hy;
lead_zeros_my = __builtin_clz (my);
}
int tail_zeros_my = __builtin_ctz (my);
int sides_zeroes = lead_zeros_my + tail_zeros_my;
int exp_diff = ex - ey;
int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
my >>= right_shift;
exp_diff -= right_shift;
ey += right_shift;
int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
mx <<= left_shift;
exp_diff -= left_shift;
mx %= my;
if (__glibc_unlikely (mx == 0))
return asfloat (sx);
if (exp_diff == 0)
return make_float (mx, ey, sx);
/* Assume modulo/divide operation is slow, so use multiplication with invert
values. */
uint32_t inv_hy = UINT32_MAX / my;
while (exp_diff > sides_zeroes) {
exp_diff -= sides_zeroes;
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
mx <<= sides_zeroes;
mx -= hd * my;
while (__glibc_unlikely (mx > my))
mx -= my;
}
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
mx <<= exp_diff;
mx -= hd * my;
while (__glibc_unlikely (mx > my))
mx -= my;
return make_float (mx, ey, sx);
}
libm_alias_finite (__ieee754_fmodf, __fmodf)

View File

@ -110,6 +110,47 @@ issignalingf_inline (float x)
return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
}
#define BIT_WIDTH 32
#define MANTISSA_WIDTH 23
#define EXPONENT_WIDTH 8
#define MANTISSA_MASK 0x007fffff
#define EXPONENT_MASK 0x7f800000
#define EXP_MANT_MASK 0x7fffffff
#define QUIET_NAN_MASK 0x00400000
#define SIGN_MASK 0x80000000
static inline bool
is_nan (uint32_t x)
{
return (x & EXP_MANT_MASK) > EXPONENT_MASK;
}
static inline uint32_t
get_mantissa (uint32_t x)
{
return x & MANTISSA_MASK;
}
/* Convert integer number X, unbiased exponent EP, and sign S to double:
result = X * 2^(EP+1 - exponent_bias)
NB: zero is not supported. */
static inline double
make_float (uint32_t x, int ep, uint32_t s)
{
int lz = __builtin_clz (x) - EXPONENT_WIDTH;
x <<= lz;
ep -= lz;
if (__glibc_unlikely (ep < 0 || x == 0))
{
x >>= -ep;
ep = 0;
}
return asfloat (s + x + (ep << MANTISSA_WIDTH));
}
#define NOINLINE __attribute__ ((noinline))
attribute_hidden float __math_oflowf (uint32_t);