Convert _Complex tangent functions to generated code

This converts s_c{,a}tan{,h}{f,,l} into a single
templated file c{,a}tan{,h}_template.c with the
exception of alpha.
This commit is contained in:
Paul E. Murphy 2016-06-28 11:06:42 -05:00
parent f6d3a72eca
commit d5602cebf1
30 changed files with 246 additions and 1860 deletions

View File

@ -1,3 +1,39 @@
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* math/Makefile (libm-gen-calls): Add
catan, catanh, ctan, ctanh.
(libm-calls): Remove the above.
* math/s_catan_template.c: Update using type-generic macros.
* math/s_catanh_template.c: Likewise.
* math/s_ctan_template.c: Likewise.
* math/s_ctanh_template.c: Likewise.
* math/s_catanf.c: Removed.
* math/s_catan.c: Removed.
* math/s_catanl.c: Removed.
* math/s_catanhf.c: Removed.
* math/s_catanh.c: Removed.
* math/s_catanhl.c: Removed.
* math/s_ctanf.c: Removed.
* math/s_ctan.c: Removed.
* math/s_ctanl.c: Removed.
* math/s_ctanhf.c: Removed.
* math/s_ctanh.c: Removed.
* math/s_ctanhl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_catanhl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_catanl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_ctan.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_ctanh.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_ctanhl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_ctanl.c: Removed.
* sysdeps/alpha/fpu/s_catanf.c: Update to use template file.
* sysdeps/alpha/fpu/s_catanhf.c: Likewise.
* sysdeps/alpha/fpu/s_ctanf.c: Likewise.
* sysdeps/alpha/fpu/s_ctanhf.c: Likewise.
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* s_catan_template.c: Copy of s_catan.c.

View File

@ -47,7 +47,8 @@ libm-support = s_lib_version s_matherr s_signgam \
# <func>_template.c and the appropriate math-type-macros-<TYPE>.h.
gen-libm-calls = cargF conjF cimagF crealF cabsF s_cacosF \
s_cacoshF s_ccosF s_ccoshF s_casinF s_csinF s_casinhF \
k_casinhF s_csinhF
k_casinhF s_csinhF k_casinhF s_csinhF s_catanhF s_catanF \
s_ctanF s_ctanhF
libm-calls = \
e_acosF e_acoshF e_asinF e_atan2F e_atanhF e_coshF e_expF e_fmodF \
@ -66,8 +67,7 @@ libm-calls = \
s_fpclassifyF s_fmaxF s_fminF s_fdimF s_nanF s_truncF \
s_remquoF e_log2F e_exp2F s_roundF s_nearbyintF s_sincosF \
s_cexpF s_clogF \
s_catanF s_ctanF s_ctanhF \
s_catanhF s_csqrtF s_cpowF s_cprojF s_clog10F \
s_csqrtF s_cpowF s_cprojF s_clog10F \
s_fmaF s_lrintF s_llrintF s_lroundF s_llroundF e_exp10F w_log2F \
s_issignalingF $(calls:s_%=m_%) x2y2m1F \
gamma_productF lgamma_negF lgamma_productF \

View File

@ -1,143 +0,0 @@
/* Return arc tangent of complex double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__catan (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (rcls == FP_INFINITE)
{
__real__ res = __copysign (M_PI_2, __real__ x);
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (icls == FP_INFINITE)
{
if (rcls >= FP_ZERO)
__real__ res = __copysign (M_PI_2, __real__ x);
else
__real__ res = __nan ("");
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (icls == FP_ZERO || icls == FP_INFINITE)
{
__real__ res = __nan ("");
__imag__ res = __copysign (0.0, __imag__ x);
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
|| fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
{
__real__ res = __copysign (M_PI_2, __real__ x);
if (fabs (__real__ x) <= 1.0)
__imag__ res = 1.0 / __imag__ x;
else if (fabs (__imag__ x) <= 1.0)
__imag__ res = __imag__ x / __real__ x / __real__ x;
else
{
double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
__imag__ res = __imag__ x / h / h / 4.0;
}
}
else
{
double den, absx, absy;
absx = fabs (__real__ x);
absy = fabs (__imag__ x);
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absy < DBL_EPSILON / 2.0)
{
den = (1.0 - absx) * (1.0 + absx);
if (den == -0.0)
den = 0.0;
}
else if (absx >= 1.0)
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
else if (absx >= 0.75 || absy >= 0.5)
den = -__x2y2m1 (absx, absy);
else
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
__real__ res = 0.5 * __ieee754_atan2 (2.0 * __real__ x, den);
if (fabs (__imag__ x) == 1.0
&& fabs (__real__ x) < DBL_EPSILON * DBL_EPSILON)
__imag__ res = (__copysign (0.5, __imag__ x)
* (M_LN2 - __ieee754_log (fabs (__real__ x))));
else
{
double r2 = 0.0, num, f;
if (fabs (__real__ x) >= DBL_EPSILON * DBL_EPSILON)
r2 = __real__ x * __real__ x;
num = __imag__ x + 1.0;
num = r2 + num * num;
den = __imag__ x - 1.0;
den = r2 + den * den;
f = num / den;
if (f < 0.5)
__imag__ res = 0.25 * __ieee754_log (f);
else
{
num = 4.0 * __imag__ x;
__imag__ res = 0.25 * __log1p (num / den);
}
}
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__catan, catan)
#ifdef NO_LONG_DOUBLE
strong_alias (__catan, __catanl)
weak_alias (__catan, catanl)
#endif

View File

@ -1,4 +1,4 @@
/* Return arc tangent of complex double value.
/* Return arc tangent of complex float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -22,10 +22,10 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__catan (__complex__ double x)
CFLOAT
M_DECL_FUNC (__catan) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@ -33,26 +33,26 @@ __catan (__complex__ double x)
{
if (rcls == FP_INFINITE)
{
__real__ res = __copysign (M_PI_2, __real__ x);
__imag__ res = __copysign (0.0, __imag__ x);
__real__ res = M_COPYSIGN (M_MLIT (M_PI_2), __real__ x);
__imag__ res = M_COPYSIGN (0, __imag__ x);
}
else if (icls == FP_INFINITE)
{
if (rcls >= FP_ZERO)
__real__ res = __copysign (M_PI_2, __real__ x);
__real__ res = M_COPYSIGN (M_MLIT (M_PI_2), __real__ x);
else
__real__ res = __nan ("");
__imag__ res = __copysign (0.0, __imag__ x);
__real__ res = M_NAN;
__imag__ res = M_COPYSIGN (0, __imag__ x);
}
else if (icls == FP_ZERO || icls == FP_INFINITE)
{
__real__ res = __nan ("");
__imag__ res = __copysign (0.0, __imag__ x);
__real__ res = M_NAN;
__imag__ res = M_COPYSIGN (0, __imag__ x);
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
@ -61,72 +61,73 @@ __catan (__complex__ double x)
}
else
{
if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
|| fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
if (M_FABS (__real__ x) >= 16 / M_EPSILON
|| M_FABS (__imag__ x) >= 16 / M_EPSILON)
{
__real__ res = __copysign (M_PI_2, __real__ x);
if (fabs (__real__ x) <= 1.0)
__imag__ res = 1.0 / __imag__ x;
else if (fabs (__imag__ x) <= 1.0)
__real__ res = M_COPYSIGN (M_MLIT (M_PI_2), __real__ x);
if (M_FABS (__real__ x) <= 1)
__imag__ res = 1 / __imag__ x;
else if (M_FABS (__imag__ x) <= 1)
__imag__ res = __imag__ x / __real__ x / __real__ x;
else
{
double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
__imag__ res = __imag__ x / h / h / 4.0;
FLOAT h = M_HYPOT (__real__ x / 2, __imag__ x / 2);
__imag__ res = __imag__ x / h / h / 4;
}
}
else
{
double den, absx, absy;
FLOAT den, absx, absy;
absx = fabs (__real__ x);
absy = fabs (__imag__ x);
absx = M_FABS (__real__ x);
absy = M_FABS (__imag__ x);
if (absx < absy)
{
double t = absx;
FLOAT t = absx;
absx = absy;
absy = t;
}
if (absy < DBL_EPSILON / 2.0)
if (absy < M_EPSILON / 2)
{
den = (1.0 - absx) * (1.0 + absx);
if (den == -0.0)
den = 0.0;
den = (1 - absx) * (1 + absx);
if (den == 0)
den = 0;
}
else if (absx >= 1.0)
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
else if (absx >= 0.75 || absy >= 0.5)
den = -__x2y2m1 (absx, absy);
else if (absx >= 1)
den = (1 - absx) * (1 + absx) - absy * absy;
else if (absx >= M_LIT (0.75) || absy >= M_LIT (0.5))
den = -M_SUF (__x2y2m1) (absx, absy);
else
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
den = (1 - absx) * (1 + absx) - absy * absy;
__real__ res = 0.5 * __ieee754_atan2 (2.0 * __real__ x, den);
__real__ res = M_LIT (0.5) * M_ATAN2 (2 * __real__ x, den);
if (fabs (__imag__ x) == 1.0
&& fabs (__real__ x) < DBL_EPSILON * DBL_EPSILON)
__imag__ res = (__copysign (0.5, __imag__ x)
* (M_LN2 - __ieee754_log (fabs (__real__ x))));
if (M_FABS (__imag__ x) == 1
&& M_FABS (__real__ x) < M_EPSILON * M_EPSILON)
__imag__ res = (M_COPYSIGN (M_LIT (0.5), __imag__ x)
* ((FLOAT) M_MLIT (M_LN2)
- M_LOG (M_FABS (__real__ x))));
else
{
double r2 = 0.0, num, f;
FLOAT r2 = 0, num, f;
if (fabs (__real__ x) >= DBL_EPSILON * DBL_EPSILON)
if (M_FABS (__real__ x) >= M_EPSILON * M_EPSILON)
r2 = __real__ x * __real__ x;
num = __imag__ x + 1.0;
num = __imag__ x + 1;
num = r2 + num * num;
den = __imag__ x - 1.0;
den = __imag__ x - 1;
den = r2 + den * den;
f = num / den;
if (f < 0.5)
__imag__ res = 0.25 * __ieee754_log (f);
if (f < M_LIT (0.5))
__imag__ res = M_LIT (0.25) * M_LOG (f);
else
{
num = 4.0 * __imag__ x;
__imag__ res = 0.25 * __log1p (num / den);
num = 4 * __imag__ x;
__imag__ res = M_LIT (0.25) * M_LOG1P (num / den);
}
}
}
@ -136,8 +137,9 @@ __catan (__complex__ double x)
return res;
}
weak_alias (__catan, catan)
#ifdef NO_LONG_DOUBLE
strong_alias (__catan, __catanl)
weak_alias (__catan, catanl)
declare_mgen_alias (__catan, catan)
#if M_LIBM_NEED_COMPAT (catan)
declare_mgen_libm_compat (__catan, catan)
#endif

View File

@ -1,143 +0,0 @@
/* Return arc tangent of complex float value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__catanf (__complex__ float x)
{
__complex__ float res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (rcls == FP_INFINITE)
{
__real__ res = __copysignf (M_PI_2, __real__ x);
__imag__ res = __copysignf (0.0, __imag__ x);
}
else if (icls == FP_INFINITE)
{
if (rcls >= FP_ZERO)
__real__ res = __copysignf (M_PI_2, __real__ x);
else
__real__ res = __nanf ("");
__imag__ res = __copysignf (0.0, __imag__ x);
}
else if (icls == FP_ZERO || icls == FP_INFINITE)
{
__real__ res = __nanf ("");
__imag__ res = __copysignf (0.0, __imag__ x);
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabsf (__real__ x) >= 16.0f / FLT_EPSILON
|| fabsf (__imag__ x) >= 16.0f / FLT_EPSILON)
{
__real__ res = __copysignf ((float) M_PI_2, __real__ x);
if (fabsf (__real__ x) <= 1.0f)
__imag__ res = 1.0f / __imag__ x;
else if (fabsf (__imag__ x) <= 1.0f)
__imag__ res = __imag__ x / __real__ x / __real__ x;
else
{
float h = __ieee754_hypotf (__real__ x / 2.0f,
__imag__ x / 2.0f);
__imag__ res = __imag__ x / h / h / 4.0f;
}
}
else
{
float den, absx, absy;
absx = fabsf (__real__ x);
absy = fabsf (__imag__ x);
if (absx < absy)
{
float t = absx;
absx = absy;
absy = t;
}
if (absy < FLT_EPSILON / 2.0f)
{
den = (1.0f - absx) * (1.0f + absx);
if (den == -0.0f)
den = 0.0f;
}
else if (absx >= 1.0f)
den = (1.0f - absx) * (1.0f + absx) - absy * absy;
else if (absx >= 0.75f || absy >= 0.5f)
den = -__x2y2m1f (absx, absy);
else
den = (1.0f - absx) * (1.0f + absx) - absy * absy;
__real__ res = 0.5f * __ieee754_atan2f (2.0f * __real__ x, den);
if (fabsf (__imag__ x) == 1.0f
&& fabsf (__real__ x) < FLT_EPSILON * FLT_EPSILON)
__imag__ res = (__copysignf (0.5f, __imag__ x)
* ((float) M_LN2
- __ieee754_logf (fabsf (__real__ x))));
else
{
float r2 = 0.0f, num, f;
if (fabsf (__real__ x) >= FLT_EPSILON * FLT_EPSILON)
r2 = __real__ x * __real__ x;
num = __imag__ x + 1.0f;
num = r2 + num * num;
den = __imag__ x - 1.0f;
den = r2 + den * den;
f = num / den;
if (f < 0.5f)
__imag__ res = 0.25f * __ieee754_logf (f);
else
{
num = 4.0f * __imag__ x;
__imag__ res = 0.25f * __log1pf (num / den);
}
}
}
math_check_force_underflow_complex (res);
}
return res;
}
#ifndef __catanf
weak_alias (__catanf, catanf)
#endif

View File

@ -1,137 +0,0 @@
/* Return arc hyperbole tangent for double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__catanh (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (M_PI_2, __imag__ x);
}
else if (rcls == FP_INFINITE || rcls == FP_ZERO)
{
__real__ res = __copysign (0.0, __real__ x);
if (icls >= FP_ZERO)
__imag__ res = __copysign (M_PI_2, __imag__ x);
else
__imag__ res = __nan ("");
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
|| fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
{
__imag__ res = __copysign (M_PI_2, __imag__ x);
if (fabs (__imag__ x) <= 1.0)
__real__ res = 1.0 / __real__ x;
else if (fabs (__real__ x) <= 1.0)
__real__ res = __real__ x / __imag__ x / __imag__ x;
else
{
double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
__real__ res = __real__ x / h / h / 4.0;
}
}
else
{
if (fabs (__real__ x) == 1.0
&& fabs (__imag__ x) < DBL_EPSILON * DBL_EPSILON)
__real__ res = (__copysign (0.5, __real__ x)
* (M_LN2 - __ieee754_log (fabs (__imag__ x))));
else
{
double i2 = 0.0;
if (fabs (__imag__ x) >= DBL_EPSILON * DBL_EPSILON)
i2 = __imag__ x * __imag__ x;
double num = 1.0 + __real__ x;
num = i2 + num * num;
double den = 1.0 - __real__ x;
den = i2 + den * den;
double f = num / den;
if (f < 0.5)
__real__ res = 0.25 * __ieee754_log (f);
else
{
num = 4.0 * __real__ x;
__real__ res = 0.25 * __log1p (num / den);
}
}
double absx, absy, den;
absx = fabs (__real__ x);
absy = fabs (__imag__ x);
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absy < DBL_EPSILON / 2.0)
{
den = (1.0 - absx) * (1.0 + absx);
if (den == -0.0)
den = 0.0;
}
else if (absx >= 1.0)
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
else if (absx >= 0.75 || absy >= 0.5)
den = -__x2y2m1 (absx, absy);
else
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
__imag__ res = 0.5 * __ieee754_atan2 (2.0 * __imag__ x, den);
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__catanh, catanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__catanh, __catanhl)
weak_alias (__catanh, catanhl)
#endif

View File

@ -1,4 +1,4 @@
/* Return arc hyperbole tangent for double value.
/* Return arc hyperbolic tangent for a complex float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -22,10 +22,10 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__catanh (__complex__ double x)
CFLOAT
M_DECL_FUNC (__catanh) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@ -33,21 +33,21 @@ __catanh (__complex__ double x)
{
if (icls == FP_INFINITE)
{
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (M_PI_2, __imag__ x);
__real__ res = M_COPYSIGN (0, __real__ x);
__imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
}
else if (rcls == FP_INFINITE || rcls == FP_ZERO)
{
__real__ res = __copysign (0.0, __real__ x);
__real__ res = M_COPYSIGN (0, __real__ x);
if (icls >= FP_ZERO)
__imag__ res = __copysign (M_PI_2, __imag__ x);
__imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
else
__imag__ res = __nan ("");
__imag__ res = M_NAN;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
@ -56,73 +56,74 @@ __catanh (__complex__ double x)
}
else
{
if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
|| fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
if (M_FABS (__real__ x) >= 16 / M_EPSILON
|| M_FABS (__imag__ x) >= 16 / M_EPSILON)
{
__imag__ res = __copysign (M_PI_2, __imag__ x);
if (fabs (__imag__ x) <= 1.0)
__real__ res = 1.0 / __real__ x;
else if (fabs (__real__ x) <= 1.0)
__imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
if (M_FABS (__imag__ x) <= 1)
__real__ res = 1 / __real__ x;
else if (M_FABS (__real__ x) <= 1)
__real__ res = __real__ x / __imag__ x / __imag__ x;
else
{
double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
__real__ res = __real__ x / h / h / 4.0;
FLOAT h = M_HYPOT (__real__ x / 2, __imag__ x / 2);
__real__ res = __real__ x / h / h / 4;
}
}
else
{
if (fabs (__real__ x) == 1.0
&& fabs (__imag__ x) < DBL_EPSILON * DBL_EPSILON)
__real__ res = (__copysign (0.5, __real__ x)
* (M_LN2 - __ieee754_log (fabs (__imag__ x))));
if (M_FABS (__real__ x) == 1
&& M_FABS (__imag__ x) < M_EPSILON * M_EPSILON)
__real__ res = (M_COPYSIGN (M_LIT (0.5), __real__ x)
* ((FLOAT) M_MLIT (M_LN2)
- M_LOG (M_FABS (__imag__ x))));
else
{
double i2 = 0.0;
if (fabs (__imag__ x) >= DBL_EPSILON * DBL_EPSILON)
FLOAT i2 = 0;
if (M_FABS (__imag__ x) >= M_EPSILON * M_EPSILON)
i2 = __imag__ x * __imag__ x;
double num = 1.0 + __real__ x;
FLOAT num = 1 + __real__ x;
num = i2 + num * num;
double den = 1.0 - __real__ x;
FLOAT den = 1 - __real__ x;
den = i2 + den * den;
double f = num / den;
if (f < 0.5)
__real__ res = 0.25 * __ieee754_log (f);
FLOAT f = num / den;
if (f < M_LIT (0.5))
__real__ res = M_LIT (0.25) * M_LOG (f);
else
{
num = 4.0 * __real__ x;
__real__ res = 0.25 * __log1p (num / den);
num = 4 * __real__ x;
__real__ res = M_LIT (0.25) * M_LOG1P (num / den);
}
}
double absx, absy, den;
FLOAT absx, absy, den;
absx = fabs (__real__ x);
absy = fabs (__imag__ x);
absx = M_FABS (__real__ x);
absy = M_FABS (__imag__ x);
if (absx < absy)
{
double t = absx;
FLOAT t = absx;
absx = absy;
absy = t;
}
if (absy < DBL_EPSILON / 2.0)
if (absy < M_EPSILON / 2)
{
den = (1.0 - absx) * (1.0 + absx);
if (den == -0.0)
den = 0.0;
den = (1 - absx) * (1 + absx);
if (den == 0)
den = 0;
}
else if (absx >= 1.0)
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
else if (absx >= 0.75 || absy >= 0.5)
den = -__x2y2m1 (absx, absy);
else if (absx >= 1)
den = (1 - absx) * (1 + absx) - absy * absy;
else if (absx >= M_LIT (0.75) || absy >= M_LIT (0.5))
den = -M_SUF (__x2y2m1) (absx, absy);
else
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
den = (1 - absx) * (1 + absx) - absy * absy;
__imag__ res = 0.5 * __ieee754_atan2 (2.0 * __imag__ x, den);
__imag__ res = M_LIT (0.5) * M_ATAN2 (2 * __imag__ x, den);
}
math_check_force_underflow_complex (res);
@ -130,8 +131,9 @@ __catanh (__complex__ double x)
return res;
}
weak_alias (__catanh, catanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__catanh, __catanhl)
weak_alias (__catanh, catanhl)
declare_mgen_alias (__catanh, catanh)
#if M_LIBM_NEED_COMPAT (catanh)
declare_mgen_libm_compat (__catanh, catanh)
#endif

View File

@ -1,137 +0,0 @@
/* Return arc hyperbole tangent for float value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__catanhf (__complex__ float x)
{
__complex__ float res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = __copysignf (0.0, __real__ x);
__imag__ res = __copysignf (M_PI_2, __imag__ x);
}
else if (rcls == FP_INFINITE || rcls == FP_ZERO)
{
__real__ res = __copysignf (0.0, __real__ x);
if (icls >= FP_ZERO)
__imag__ res = __copysignf (M_PI_2, __imag__ x);
else
__imag__ res = __nanf ("");
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabsf (__real__ x) >= 16.0f / FLT_EPSILON
|| fabsf (__imag__ x) >= 16.0f / FLT_EPSILON)
{
__imag__ res = __copysignf ((float) M_PI_2, __imag__ x);
if (fabsf (__imag__ x) <= 1.0f)
__real__ res = 1.0f / __real__ x;
else if (fabsf (__real__ x) <= 1.0f)
__real__ res = __real__ x / __imag__ x / __imag__ x;
else
{
float h = __ieee754_hypotf (__real__ x / 2.0f,
__imag__ x / 2.0f);
__real__ res = __real__ x / h / h / 4.0f;
}
}
else
{
if (fabsf (__real__ x) == 1.0f
&& fabsf (__imag__ x) < FLT_EPSILON * FLT_EPSILON)
__real__ res = (__copysignf (0.5f, __real__ x)
* ((float) M_LN2
- __ieee754_logf (fabsf (__imag__ x))));
else
{
float i2 = 0.0f;
if (fabsf (__imag__ x) >= FLT_EPSILON * FLT_EPSILON)
i2 = __imag__ x * __imag__ x;
float num = 1.0f + __real__ x;
num = i2 + num * num;
float den = 1.0f - __real__ x;
den = i2 + den * den;
float f = num / den;
if (f < 0.5f)
__real__ res = 0.25f * __ieee754_logf (f);
else
{
num = 4.0f * __real__ x;
__real__ res = 0.25f * __log1pf (num / den);
}
}
float absx, absy, den;
absx = fabsf (__real__ x);
absy = fabsf (__imag__ x);
if (absx < absy)
{
float t = absx;
absx = absy;
absy = t;
}
if (absy < FLT_EPSILON / 2.0f)
{
den = (1.0f - absx) * (1.0f + absx);
if (den == -0.0f)
den = 0.0f;
}
else if (absx >= 1.0f)
den = (1.0f - absx) * (1.0f + absx) - absy * absy;
else if (absx >= 0.75f || absy >= 0.5f)
den = -__x2y2m1f (absx, absy);
else
den = (1.0f - absx) * (1.0f + absx) - absy * absy;
__imag__ res = 0.5f * __ieee754_atan2f (2.0f * __imag__ x, den);
}
math_check_force_underflow_complex (res);
}
return res;
}
#ifndef __catanhf
weak_alias (__catanhf, catanhf)
#endif

View File

@ -1,141 +0,0 @@
/* Return arc hyperbole tangent for long double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious overflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__catanhl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = __copysignl (0.0, __real__ x);
__imag__ res = __copysignl (M_PI_2l, __imag__ x);
}
else if (rcls == FP_INFINITE || rcls == FP_ZERO)
{
__real__ res = __copysignl (0.0, __real__ x);
if (icls >= FP_ZERO)
__imag__ res = __copysignl (M_PI_2l, __imag__ x);
else
__imag__ res = __nanl ("");
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON
|| fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON)
{
__imag__ res = __copysignl (M_PI_2l, __imag__ x);
if (fabsl (__imag__ x) <= 1.0L)
__real__ res = 1.0L / __real__ x;
else if (fabsl (__real__ x) <= 1.0L)
__real__ res = __real__ x / __imag__ x / __imag__ x;
else
{
long double h = __ieee754_hypotl (__real__ x / 2.0L,
__imag__ x / 2.0L);
__real__ res = __real__ x / h / h / 4.0L;
}
}
else
{
if (fabsl (__real__ x) == 1.0L
&& fabsl (__imag__ x) < LDBL_EPSILON * LDBL_EPSILON)
__real__ res = (__copysignl (0.5L, __real__ x)
* (M_LN2l - __ieee754_logl (fabsl (__imag__ x))));
else
{
long double i2 = 0.0;
if (fabsl (__imag__ x) >= LDBL_EPSILON * LDBL_EPSILON)
i2 = __imag__ x * __imag__ x;
long double num = 1.0L + __real__ x;
num = i2 + num * num;
long double den = 1.0L - __real__ x;
den = i2 + den * den;
long double f = num / den;
if (f < 0.5L)
__real__ res = 0.25L * __ieee754_logl (f);
else
{
num = 4.0L * __real__ x;
__real__ res = 0.25L * __log1pl (num / den);
}
}
long double absx, absy, den;
absx = fabsl (__real__ x);
absy = fabsl (__imag__ x);
if (absx < absy)
{
long double t = absx;
absx = absy;
absy = t;
}
if (absy < LDBL_EPSILON / 2.0L)
{
den = (1.0L - absx) * (1.0L + absx);
if (den == -0.0L)
den = 0.0L;
}
else if (absx >= 1.0L)
den = (1.0L - absx) * (1.0L + absx) - absy * absy;
else if (absx >= 0.75L || absy >= 0.5L)
den = -__x2y2m1l (absx, absy);
else
den = (1.0L - absx) * (1.0L + absx) - absy * absy;
__imag__ res = 0.5L * __ieee754_atan2l (2.0L * __imag__ x, den);
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__catanhl, catanhl)

View File

@ -1,147 +0,0 @@
/* Return arc tangent of complex long double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious overflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__catanl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (rcls == FP_INFINITE)
{
__real__ res = __copysignl (M_PI_2l, __real__ x);
__imag__ res = __copysignl (0.0, __imag__ x);
}
else if (icls == FP_INFINITE)
{
if (rcls >= FP_ZERO)
__real__ res = __copysignl (M_PI_2l, __real__ x);
else
__real__ res = __nanl ("");
__imag__ res = __copysignl (0.0, __imag__ x);
}
else if (icls == FP_ZERO || icls == FP_INFINITE)
{
__real__ res = __nanl ("");
__imag__ res = __copysignl (0.0, __imag__ x);
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON
|| fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON)
{
__real__ res = __copysignl (M_PI_2l, __real__ x);
if (fabsl (__real__ x) <= 1.0L)
__imag__ res = 1.0L / __imag__ x;
else if (fabsl (__imag__ x) <= 1.0L)
__imag__ res = __imag__ x / __real__ x / __real__ x;
else
{
long double h = __ieee754_hypotl (__real__ x / 2.0L,
__imag__ x / 2.0L);
__imag__ res = __imag__ x / h / h / 4.0L;
}
}
else
{
long double den, absx, absy;
absx = fabsl (__real__ x);
absy = fabsl (__imag__ x);
if (absx < absy)
{
long double t = absx;
absx = absy;
absy = t;
}
if (absy < LDBL_EPSILON / 2.0L)
{
den = (1.0L - absx) * (1.0L + absx);
if (den == -0.0L)
den = 0.0L;
}
else if (absx >= 1.0L)
den = (1.0L - absx) * (1.0L + absx) - absy * absy;
else if (absx >= 0.75L || absy >= 0.5L)
den = -__x2y2m1l (absx, absy);
else
den = (1.0L - absx) * (1.0L + absx) - absy * absy;
__real__ res = 0.5L * __ieee754_atan2l (2.0L * __real__ x, den);
if (fabsl (__imag__ x) == 1.0L
&& fabsl (__real__ x) < LDBL_EPSILON * LDBL_EPSILON)
__imag__ res = (__copysignl (0.5L, __imag__ x)
* (M_LN2l - __ieee754_logl (fabsl (__real__ x))));
else
{
long double r2 = 0.0L, num, f;
if (fabsl (__real__ x) >= LDBL_EPSILON * LDBL_EPSILON)
r2 = __real__ x * __real__ x;
num = __imag__ x + 1.0L;
num = r2 + num * num;
den = __imag__ x - 1.0L;
den = r2 + den * den;
f = num / den;
if (f < 0.5L)
__imag__ res = 0.25L * __ieee754_logl (f);
else
{
num = 4.0L * __imag__ x;
__imag__ res = 0.25L * __log1pl (num / den);
}
}
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__catanl, catanl)

View File

@ -1,129 +0,0 @@
/* Complex tangent function for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__ctan (__complex__ double x)
{
__complex__ double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabs (__real__ x) > 1.0)
{
double sinrx, cosrx;
__sincos (__real__ x, &sinrx, &cosrx);
__real__ res = __copysign (0.0, sinrx * cosrx);
}
else
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
double sinrx, cosrx;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabs (__real__ x) > DBL_MIN))
{
__sincos (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabs (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
double exp_2t = __ieee754_exp (2 * t);
__imag__ res = __copysign (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabs (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_exp (2 * __imag__ x);
}
else
{
double sinhix, coshix;
if (fabs (__imag__ x) > DBL_MIN)
{
sinhix = __ieee754_sinh (__imag__ x);
coshix = __ieee754_cosh (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0;
}
if (fabs (sinhix) > fabs (cosrx) * DBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctan, ctan)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctan, __ctanl)
weak_alias (__ctan, ctanl)
#endif

View File

@ -1,4 +1,4 @@
/* Complex tangent function for double.
/* Complex tangent function for a complex float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -23,33 +23,33 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__ctan (__complex__ double x)
CFLOAT
M_DECL_FUNC (__ctan) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabs (__real__ x) > 1.0)
if (isfinite (__real__ x) && M_FABS (__real__ x) > 1)
{
double sinrx, cosrx;
__sincos (__real__ x, &sinrx, &cosrx);
__real__ res = __copysign (0.0, sinrx * cosrx);
FLOAT sinrx, cosrx;
M_SINCOS (__real__ x, &sinrx, &cosrx);
__real__ res = M_COPYSIGN (0, sinrx * cosrx);
}
else
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (1.0, __imag__ x);
__real__ res = M_COPYSIGN (0, __real__ x);
__imag__ res = M_COPYSIGN (1, __imag__ x);
}
else if (__real__ x == 0.0)
else if (__real__ x == 0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
@ -57,34 +57,34 @@ __ctan (__complex__ double x)
}
else
{
double sinrx, cosrx;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
FLOAT sinrx, cosrx;
FLOAT den;
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2) / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabs (__real__ x) > DBL_MIN))
if (__glibc_likely (M_FABS (__real__ x) > M_MIN))
{
__sincos (__real__ x, &sinrx, &cosrx);
M_SINCOS (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
cosrx = 1;
}
if (fabs (__imag__ x) > t)
if (M_FABS (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
double exp_2t = __ieee754_exp (2 * t);
FLOAT exp_2t = M_EXP (2 * t);
__imag__ res = __copysign (1.0, __imag__ x);
__imag__ res = M_COPYSIGN (1, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabs (__imag__ x);
__imag__ x = M_FABS (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
@ -94,23 +94,23 @@ __ctan (__complex__ double x)
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_exp (2 * __imag__ x);
__real__ res /= M_EXP (2 * __imag__ x);
}
else
{
double sinhix, coshix;
if (fabs (__imag__ x) > DBL_MIN)
FLOAT sinhix, coshix;
if (M_FABS (__imag__ x) > M_MIN)
{
sinhix = __ieee754_sinh (__imag__ x);
coshix = __ieee754_cosh (__imag__ x);
sinhix = M_SINH (__imag__ x);
coshix = M_COSH (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0;
coshix = 1;
}
if (fabs (sinhix) > fabs (cosrx) * DBL_EPSILON)
if (M_FABS (sinhix) > M_FABS (cosrx) * M_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
@ -122,8 +122,9 @@ __ctan (__complex__ double x)
return res;
}
weak_alias (__ctan, ctan)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctan, __ctanl)
weak_alias (__ctan, ctanl)
declare_mgen_alias (__ctan, ctan)
#if M_LIBM_NEED_COMPAT (ctan)
declare_mgen_libm_compat (__ctan, ctan)
#endif

View File

@ -1,127 +0,0 @@
/* Complex tangent function for float.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__ctanf (__complex__ float x)
{
__complex__ float res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabsf (__real__ x) > 1.0f)
{
float sinrx, cosrx;
__sincosf (__real__ x, &sinrx, &cosrx);
__real__ res = __copysignf (0.0f, sinrx * cosrx);
}
else
__real__ res = __copysignf (0.0, __real__ x);
__imag__ res = __copysignf (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
float sinrx, cosrx;
float den;
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsf (__real__ x) > FLT_MIN))
{
__sincosf (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0f;
}
if (fabsf (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
float exp_2t = __ieee754_expf (2 * t);
__imag__ res = __copysignf (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsf (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expf (2 * __imag__ x);
}
else
{
float sinhix, coshix;
if (fabsf (__imag__ x) > FLT_MIN)
{
sinhix = __ieee754_sinhf (__imag__ x);
coshix = __ieee754_coshf (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0f;
}
if (fabsf (sinhix) > fabsf (cosrx) * FLT_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
#ifndef __ctanf
weak_alias (__ctanf, ctanf)
#endif

View File

@ -1,129 +0,0 @@
/* Complex hyperbole tangent for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__ctanh (__complex__ double x)
{
__complex__ double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__real__ x))
{
__real__ res = __copysign (1.0, __real__ x);
if (isfinite (__imag__ x) && fabs (__imag__ x) > 1.0)
{
double sinix, cosix;
__sincos (__imag__ x, &sinix, &cosix);
__imag__ res = __copysign (0.0, sinix * cosix);
}
else
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (__imag__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
if (isinf (__imag__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
double sinix, cosix;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (fabs (__real__ x) > t)
{
/* Avoid intermediate overflow when the imaginary part of
the result may be subnormal. Ignoring negligible terms,
the real part is +/- 1, the imaginary part is
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
double exp_2t = __ieee754_exp (2 * t);
__real__ res = __copysign (1.0, __real__ x);
__imag__ res = 4 * sinix * cosix;
__real__ x = fabs (__real__ x);
__real__ x -= t;
__imag__ res /= exp_2t;
if (__real__ x > t)
{
/* Underflow (original real part of x has absolute value
> 2t). */
__imag__ res /= exp_2t;
}
else
__imag__ res /= __ieee754_exp (2 * __real__ x);
}
else
{
double sinhrx, coshrx;
if (fabs (__real__ x) > DBL_MIN)
{
sinhrx = __ieee754_sinh (__real__ x);
coshrx = __ieee754_cosh (__real__ x);
}
else
{
sinhrx = __real__ x;
coshrx = 1.0;
}
if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON)
den = sinhrx * sinhrx + cosix * cosix;
else
den = cosix * cosix;
__real__ res = sinhrx * coshrx / den;
__imag__ res = sinix * cosix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctanh, ctanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctanh, __ctanhl)
weak_alias (__ctanh, ctanhl)
#endif

View File

@ -1,4 +1,4 @@
/* Complex hyperbole tangent for double.
/* Complex hyperbolic tangent for float types.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -23,33 +23,33 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__ctanh (__complex__ double x)
CFLOAT
M_DECL_FUNC (__ctanh) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__real__ x))
{
__real__ res = __copysign (1.0, __real__ x);
if (isfinite (__imag__ x) && fabs (__imag__ x) > 1.0)
__real__ res = M_COPYSIGN (1, __real__ x);
if (isfinite (__imag__ x) && M_FABS (__imag__ x) > 1)
{
double sinix, cosix;
__sincos (__imag__ x, &sinix, &cosix);
__imag__ res = __copysign (0.0, sinix * cosix);
FLOAT sinix, cosix;
M_SINCOS (__imag__ x, &sinix, &cosix);
__imag__ res = M_COPYSIGN (0, sinix * cosix);
}
else
__imag__ res = __copysign (0.0, __imag__ x);
__imag__ res = M_COPYSIGN (0, __imag__ x);
}
else if (__imag__ x == 0.0)
else if (__imag__ x == 0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
if (isinf (__imag__ x))
feraiseexcept (FE_INVALID);
@ -57,34 +57,34 @@ __ctanh (__complex__ double x)
}
else
{
double sinix, cosix;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
FLOAT sinix, cosix;
FLOAT den;
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2) / 2);
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
cosix = 1;
}
if (fabs (__real__ x) > t)
if (M_FABS (__real__ x) > t)
{
/* Avoid intermediate overflow when the imaginary part of
the result may be subnormal. Ignoring negligible terms,
the real part is +/- 1, the imaginary part is
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
double exp_2t = __ieee754_exp (2 * t);
FLOAT exp_2t = M_EXP (2 * t);
__real__ res = __copysign (1.0, __real__ x);
__real__ res = M_COPYSIGN (1, __real__ x);
__imag__ res = 4 * sinix * cosix;
__real__ x = fabs (__real__ x);
__real__ x = M_FABS (__real__ x);
__real__ x -= t;
__imag__ res /= exp_2t;
if (__real__ x > t)
@ -94,23 +94,23 @@ __ctanh (__complex__ double x)
__imag__ res /= exp_2t;
}
else
__imag__ res /= __ieee754_exp (2 * __real__ x);
__imag__ res /= M_EXP (2 * __real__ x);
}
else
{
double sinhrx, coshrx;
if (fabs (__real__ x) > DBL_MIN)
FLOAT sinhrx, coshrx;
if (M_FABS (__real__ x) > M_MIN)
{
sinhrx = __ieee754_sinh (__real__ x);
coshrx = __ieee754_cosh (__real__ x);
sinhrx = M_SINH (__real__ x);
coshrx = M_COSH (__real__ x);
}
else
{
sinhrx = __real__ x;
coshrx = 1.0;
coshrx = 1;
}
if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON)
if (M_FABS (sinhrx) > M_FABS (cosix) * M_EPSILON)
den = sinhrx * sinhrx + cosix * cosix;
else
den = cosix * cosix;
@ -122,8 +122,9 @@ __ctanh (__complex__ double x)
return res;
}
weak_alias (__ctanh, ctanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctanh, __ctanhl)
weak_alias (__ctanh, ctanhl)
declare_mgen_alias (__ctanh, ctanh)
#if M_LIBM_NEED_COMPAT (ctanh)
declare_mgen_libm_compat (__ctanh, ctanh)
#endif

View File

@ -1,127 +0,0 @@
/* Complex hyperbole tangent for float.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__ctanhf (__complex__ float x)
{
__complex__ float res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__real__ x))
{
__real__ res = __copysignf (1.0, __real__ x);
if (isfinite (__imag__ x) && fabsf (__imag__ x) > 1.0f)
{
float sinix, cosix;
__sincosf (__imag__ x, &sinix, &cosix);
__imag__ res = __copysignf (0.0f, sinix * cosix);
}
else
__imag__ res = __copysignf (0.0, __imag__ x);
}
else if (__imag__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
if (isinf (__imag__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
float sinix, cosix;
float den;
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2);
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
if (fabsf (__real__ x) > t)
{
/* Avoid intermediate overflow when the imaginary part of
the result may be subnormal. Ignoring negligible terms,
the real part is +/- 1, the imaginary part is
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
float exp_2t = __ieee754_expf (2 * t);
__real__ res = __copysignf (1.0, __real__ x);
__imag__ res = 4 * sinix * cosix;
__real__ x = fabsf (__real__ x);
__real__ x -= t;
__imag__ res /= exp_2t;
if (__real__ x > t)
{
/* Underflow (original real part of x has absolute value
> 2t). */
__imag__ res /= exp_2t;
}
else
__imag__ res /= __ieee754_expf (2 * __real__ x);
}
else
{
float sinhrx, coshrx;
if (fabsf (__real__ x) > FLT_MIN)
{
sinhrx = __ieee754_sinhf (__real__ x);
coshrx = __ieee754_coshf (__real__ x);
}
else
{
sinhrx = __real__ x;
coshrx = 1.0f;
}
if (fabsf (sinhrx) > fabsf (cosix) * FLT_EPSILON)
den = sinhrx * sinhrx + cosix * cosix;
else
den = cosix * cosix;
__real__ res = sinhrx * coshrx / den;
__imag__ res = sinix * cosix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
#ifndef __ctanhf
weak_alias (__ctanhf, ctanhf)
#endif

View File

@ -1,132 +0,0 @@
/* Complex hyperbole tangent for long double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__ctanhl (__complex__ long double x)
{
__complex__ long double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__real__ x))
{
__real__ res = __copysignl (1.0, __real__ x);
if (isfinite (__imag__ x) && fabsl (__imag__ x) > 1.0L)
{
long double sinix, cosix;
__sincosl (__imag__ x, &sinix, &cosix);
__imag__ res = __copysignl (0.0L, sinix * cosix);
}
else
__imag__ res = __copysignl (0.0, __imag__ x);
}
else if (__imag__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
if (isinf (__imag__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
long double sinix, cosix;
long double den;
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2);
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (fabsl (__real__ x) > t)
{
/* Avoid intermediate overflow when the imaginary part of
the result may be subnormal. Ignoring negligible terms,
the real part is +/- 1, the imaginary part is
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
long double exp_2t = __ieee754_expl (2 * t);
__real__ res = __copysignl (1.0, __real__ x);
__imag__ res = 4 * sinix * cosix;
__real__ x = fabsl (__real__ x);
__real__ x -= t;
__imag__ res /= exp_2t;
if (__real__ x > t)
{
/* Underflow (original real part of x has absolute value
> 2t). */
__imag__ res /= exp_2t;
}
else
__imag__ res /= __ieee754_expl (2 * __real__ x);
}
else
{
long double sinhrx, coshrx;
if (fabsl (__real__ x) > LDBL_MIN)
{
sinhrx = __ieee754_sinhl (__real__ x);
coshrx = __ieee754_coshl (__real__ x);
}
else
{
sinhrx = __real__ x;
coshrx = 1.0L;
}
if (fabsl (sinhrx) > fabsl (cosix) * LDBL_EPSILON)
den = sinhrx * sinhrx + cosix * cosix;
else
den = cosix * cosix;
__real__ res = sinhrx * coshrx / den;
__imag__ res = sinix * cosix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctanhl, ctanhl)

View File

@ -1,132 +0,0 @@
/* Complex tangent function for long double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__ctanl (__complex__ long double x)
{
__complex__ long double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabsl (__real__ x) > 1.0L)
{
long double sinrx, cosrx;
__sincosl (__real__ x, &sinrx, &cosrx);
__real__ res = __copysignl (0.0L, sinrx * cosrx);
}
else
__real__ res = __copysignl (0.0, __real__ x);
__imag__ res = __copysignl (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
long double sinrx, cosrx;
long double den;
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsl (__real__ x) > LDBL_MIN))
{
__sincosl (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabsl (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
long double exp_2t = __ieee754_expl (2 * t);
__imag__ res = __copysignl (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsl (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expl (2 * __imag__ x);
}
else
{
long double sinhix, coshix;
if (fabsl (__imag__ x) > LDBL_MIN)
{
sinhix = __ieee754_sinhl (__imag__ x);
coshix = __ieee754_coshl (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0L;
}
if (fabsl (sinhix) > fabsl (cosrx) * LDBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctanl, ctanl)

View File

@ -24,14 +24,18 @@
#undef __catanf
#undef catanf
#define __catanf internal_catanf
static _Complex float internal_catanf (_Complex float x);
#include <math/s_catanf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_catanf
#include <math-type-macros-float.h>
#undef __catanf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_catan_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_catanf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __catanhf
#undef catanhf
#define __catanhf internal_catanhf
static _Complex float internal_catanhf (_Complex float x);
#include <math/s_catanhf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_catanhf
#include <math-type-macros-float.h>
#undef __catanhf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_catanh_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_catanhf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __ctanf
#undef ctanf
#define __ctanf internal_ctanf
static _Complex float internal_ctanf (_Complex float x);
#include <math/s_ctanf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_ctanf
#include <math-type-macros-float.h>
#undef __ctanf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_ctan_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_ctanf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __ctanhf
#undef ctanhf
#define __ctanhf internal_ctanhf
static _Complex float internal_ctanhf (_Complex float x);
#include <math/s_ctanhf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_ctanhf
#include <math-type-macros-float.h>
#undef __ctanhf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_ctanh_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_ctanhf (c1_cfloat_decl (x))

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_catan.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __catan, catanl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_catanh.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __catanh, catanhl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_catanhl.c>
long_double_symbol (libm, __catanhl, catanhl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_catanl.c>
long_double_symbol (libm, __catanl, catanl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_ctan.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __ctan, ctanl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_ctanh.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __ctanh, ctanhl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_ctanhl.c>
long_double_symbol (libm, __ctanhl, ctanhl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_ctanl.c>
long_double_symbol (libm, __ctanl, ctanl);