mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-09 23:00:07 +00:00
Use math_force_eval in more places
This commit is contained in:
parent
31ea014d8b
commit
d7826aa149
22
ChangeLog
22
ChangeLog
@ -1,5 +1,27 @@
|
||||
2011-10-25 Ulrich Drepper <drepper@gmail.com>
|
||||
|
||||
* sysdeps/ieee754/dbl-64/e_atanh.c: Use math_force_eval instead of a
|
||||
useful if() expression.
|
||||
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_ceil.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_expm1.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_log1p.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_round.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/wordsize-64/s_ceil.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/e_atanhf.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/s_ceilf.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/s_log1pf.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/s_roundf.c: Likewise.
|
||||
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise.
|
||||
* sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise.
|
||||
* sysdeps/ieee754/ldbl-96/s_roundl.c: Likewise.
|
||||
|
||||
* sysdeps/x86_64/fpu/math_private.h: Use VEX encoding when possible.
|
||||
|
||||
2011-10-25 Andreas Schwab <schwab@redhat.com>
|
||||
|
@ -49,8 +49,11 @@ __ieee754_atanh (double x)
|
||||
double t;
|
||||
if (xa < 0.5)
|
||||
{
|
||||
if (__builtin_expect (xa < 0x1.0p-28, 0) && (huge + x) > 0.0)
|
||||
return x;
|
||||
if (__builtin_expect (xa < 0x1.0p-28, 0))
|
||||
{
|
||||
math_force_eval (huge + x);
|
||||
return x;
|
||||
}
|
||||
|
||||
t = xa + xa;
|
||||
t = 0.5 * __log1p (t + t * xa / (1.0 - xa));
|
||||
|
@ -111,10 +111,9 @@ __ieee754_j0(double x)
|
||||
return z;
|
||||
}
|
||||
if(ix<0x3f200000) { /* |x| < 2**-13 */
|
||||
if(huge+x>one) { /* raise inexact if x != 0 */
|
||||
if(ix<0x3e400000) return one; /* |x|<2**-27 */
|
||||
else return one - 0.25*x*x;
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact if x != 0 */
|
||||
if(ix<0x3e400000) return one; /* |x|<2**-27 */
|
||||
else return one - 0.25*x*x;
|
||||
}
|
||||
z = x*x;
|
||||
#ifdef DO_NOT_USE_THIS
|
||||
|
@ -32,18 +32,17 @@ __ceil(double x)
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
|
||||
}
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
math_force_eval(huge+x);
|
||||
/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
@ -51,17 +50,16 @@ __ceil(double x)
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1 + (1<<(52-j0));
|
||||
if(j<i1) i0+=1; /* got a carry */
|
||||
i1 = j;
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0>0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1 + (1<<(52-j0));
|
||||
if(j<i1) i0+=1; /* got a carry */
|
||||
i1 = j;
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
|
@ -13,10 +13,6 @@
|
||||
for performance improvement on pipelined processors.
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* expm1(x)
|
||||
* Returns exp(x)-1, the exponential of x minus 1.
|
||||
*
|
||||
@ -40,38 +36,38 @@ static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
|
||||
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
||||
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
||||
* We use a special Reme algorithm on [0,0.347] to generate
|
||||
* a polynomial of degree 5 in r*r to approximate R1. The
|
||||
* a polynomial of degree 5 in r*r to approximate R1. The
|
||||
* maximum error of this polynomial approximation is bounded
|
||||
* by 2**-61. In other words,
|
||||
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
||||
* where Q1 = -1.6666666666666567384E-2,
|
||||
* Q2 = 3.9682539681370365873E-4,
|
||||
* Q3 = -9.9206344733435987357E-6,
|
||||
* Q4 = 2.5051361420808517002E-7,
|
||||
* Q5 = -6.2843505682382617102E-9;
|
||||
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
||||
* where Q1 = -1.6666666666666567384E-2,
|
||||
* Q2 = 3.9682539681370365873E-4,
|
||||
* Q3 = -9.9206344733435987357E-6,
|
||||
* Q4 = 2.5051361420808517002E-7,
|
||||
* Q5 = -6.2843505682382617102E-9;
|
||||
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
||||
* with error bounded by
|
||||
* | 5 | -61
|
||||
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
||||
* | |
|
||||
*
|
||||
* expm1(r) = exp(r)-1 is then computed by the following
|
||||
* specific way which minimize the accumulation rounding error:
|
||||
* specific way which minimize the accumulation rounding error:
|
||||
* 2 3
|
||||
* r r [ 3 - (R1 + R1*r/2) ]
|
||||
* expm1(r) = r + --- + --- * [--------------------]
|
||||
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
||||
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
||||
*
|
||||
* To compensate the error in the argument reduction, we use
|
||||
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
||||
* ~ expm1(r) + c + r*c
|
||||
* Thus c+r*c will be added in as the correction terms for
|
||||
* expm1(r+c). Now rearrange the term to avoid optimization
|
||||
* screw up:
|
||||
* ( 2 2 )
|
||||
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
||||
* screw up:
|
||||
* ( 2 2 )
|
||||
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
||||
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
||||
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
||||
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
||||
* ( )
|
||||
*
|
||||
* = r - E
|
||||
@ -87,7 +83,7 @@ static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
|
||||
* (ii) if k=0, return r-E
|
||||
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
||||
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
||||
* else return 1.0+2.0*(r-E);
|
||||
* else return 1.0+2.0*(r-E);
|
||||
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
||||
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
||||
* (vii) return 2^k(1-((E+2^-k)-r))
|
||||
@ -116,11 +112,7 @@ static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#define one Q[0]
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
huge = 1.0e+300,
|
||||
tiny = 1.0e-300,
|
||||
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
|
||||
@ -134,12 +126,8 @@ Q[] = {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
||||
-2.01099218183624371326e-07}; /* BE8AFDB7 6E09C32D */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __expm1(double x)
|
||||
#else
|
||||
double __expm1(x)
|
||||
double x;
|
||||
#endif
|
||||
double
|
||||
__expm1(double x)
|
||||
{
|
||||
double y,hi,lo,c,t,e,hxs,hfx,r1,h2,h4,R1,R2,R3;
|
||||
int32_t k,xsb;
|
||||
@ -153,20 +141,20 @@ Q[] = {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
/* filter out huge and non-finite argument */
|
||||
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx>=0x7ff00000) {
|
||||
if(hx>=0x7ff00000) {
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,x);
|
||||
if(((hx&0xfffff)|low)!=0)
|
||||
return x+x; /* NaN */
|
||||
return x+x; /* NaN */
|
||||
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
||||
}
|
||||
if(x > o_threshold) {
|
||||
}
|
||||
if(x > o_threshold) {
|
||||
__set_errno (ERANGE);
|
||||
return huge*huge; /* overflow */
|
||||
}
|
||||
}
|
||||
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
||||
if(x+tiny<0.0) /* raise inexact */
|
||||
math_force_eval(x+tiny); /* raise inexact */
|
||||
return tiny-one; /* return -1 */
|
||||
}
|
||||
}
|
||||
@ -187,7 +175,7 @@ Q[] = {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
x = hi - lo;
|
||||
c = (hi-x)-lo;
|
||||
}
|
||||
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
||||
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
||||
t = huge+x; /* return x with inexact flags when x!=0 */
|
||||
return x - (t-(huge+x));
|
||||
}
|
||||
@ -212,28 +200,28 @@ Q[] = {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
e -= hxs;
|
||||
if(k== -1) return 0.5*(x-e)-0.5;
|
||||
if(k==1) {
|
||||
if(x < -0.25) return -2.0*(e-(x+0.5));
|
||||
else return one+2.0*(x-e);
|
||||
if(x < -0.25) return -2.0*(e-(x+0.5));
|
||||
else return one+2.0*(x-e);
|
||||
}
|
||||
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
||||
u_int32_t high;
|
||||
y = one-(e-x);
|
||||
u_int32_t high;
|
||||
y = one-(e-x);
|
||||
GET_HIGH_WORD(high,y);
|
||||
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
||||
return y-one;
|
||||
return y-one;
|
||||
}
|
||||
t = one;
|
||||
if(k<20) {
|
||||
u_int32_t high;
|
||||
SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
||||
y = t-(e-x);
|
||||
u_int32_t high;
|
||||
SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
||||
y = t-(e-x);
|
||||
GET_HIGH_WORD(high,y);
|
||||
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
||||
} else {
|
||||
u_int32_t high;
|
||||
u_int32_t high;
|
||||
SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
|
||||
y = x-(e+t);
|
||||
y += one;
|
||||
y = x-(e+t);
|
||||
y += one;
|
||||
GET_HIGH_WORD(high,y);
|
||||
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
||||
}
|
||||
|
@ -41,18 +41,16 @@ static double huge = 1.0e300;
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
else if(((i0&0x7fffffff)|i1)!=0)
|
||||
{ i0=0xbff00000;i1=0;}
|
||||
}
|
||||
math_force_eval(huge+x);/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
else if(((i0&0x7fffffff)|i1)!=0)
|
||||
{ i0=0xbff00000;i1=0;}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
@ -60,17 +58,16 @@ static double huge = 1.0e300;
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1+(1<<(52-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0<0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1+(1<<(52-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
|
@ -13,10 +13,6 @@
|
||||
for performance improvement on pipelined processors.
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* double log1p(double x)
|
||||
*
|
||||
* Method :
|
||||
@ -34,14 +30,14 @@ static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
|
||||
* 2. Approximation of log1p(f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
||||
* (the values of Lp1 to Lp7 are listed in the program)
|
||||
* (the values of Lp1 to Lp7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
||||
@ -52,7 +48,7 @@ static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
|
||||
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
@ -73,7 +69,7 @@ static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
@ -85,11 +81,7 @@ static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
@ -101,18 +93,10 @@ Lp[] = {0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
1.479819860511658591e-01}; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.0;
|
||||
#else
|
||||
static double zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __log1p(double x)
|
||||
#else
|
||||
double __log1p(x)
|
||||
double x;
|
||||
#endif
|
||||
double
|
||||
__log1p(double x)
|
||||
{
|
||||
double hfsq,f,c,s,z,R,u,z2,z4,z6,R1,R2,R3,R4;
|
||||
int32_t k,hx,hu,ax;
|
||||
@ -127,8 +111,8 @@ static double zero = 0.0;
|
||||
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if(ax<0x3e200000) { /* |x| < 2**-29 */
|
||||
if(two54+x>zero /* raise inexact */
|
||||
&&ax<0x3c900000) /* |x| < 2**-54 */
|
||||
math_force_eval(two54+x); /* raise inexact */
|
||||
if (ax<0x3c900000) /* |x| < 2**-54 */
|
||||
return x;
|
||||
else
|
||||
return x - x*x*0.5;
|
||||
@ -141,22 +125,22 @@ static double zero = 0.0;
|
||||
if(hx<0x43400000) {
|
||||
u = 1.0+x;
|
||||
GET_HIGH_WORD(hu,u);
|
||||
k = (hu>>20)-1023;
|
||||
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
||||
k = (hu>>20)-1023;
|
||||
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
||||
c /= u;
|
||||
} else {
|
||||
u = x;
|
||||
GET_HIGH_WORD(hu,u);
|
||||
k = (hu>>20)-1023;
|
||||
k = (hu>>20)-1023;
|
||||
c = 0;
|
||||
}
|
||||
hu &= 0x000fffff;
|
||||
if(hu<0x6a09e) {
|
||||
SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
|
||||
SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
|
||||
} else {
|
||||
k += 1;
|
||||
k += 1;
|
||||
SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
|
||||
hu = (0x00100000-hu)>>2;
|
||||
hu = (0x00100000-hu)>>2;
|
||||
}
|
||||
f = u-1.0;
|
||||
}
|
||||
@ -168,9 +152,9 @@ static double zero = 0.0;
|
||||
}
|
||||
R = hfsq*(1.0-0.66666666666666666*f);
|
||||
if(k==0) return f-R; else
|
||||
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||
}
|
||||
s = f/(2.0+f);
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
#ifdef DO_NOT_USE_THIS
|
||||
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Round double to integer away from zero.
|
||||
Copyright (C) 1997 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997, 2011 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||
|
||||
@ -38,13 +38,12 @@ __round (double x)
|
||||
{
|
||||
if (j0 < 0)
|
||||
{
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
i0 &= 0x80000000;
|
||||
if (j0 == -1)
|
||||
i0 |= 0x3ff00000;
|
||||
i1 = 0;
|
||||
}
|
||||
math_force_eval (huge + x > 0.0);
|
||||
|
||||
i0 &= 0x80000000;
|
||||
if (j0 == -1)
|
||||
i0 |= 0x3ff00000;
|
||||
i1 = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -52,13 +51,12 @@ __round (double x)
|
||||
if (((i0 & i) | i1) == 0)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += 0x00080000 >> j0;
|
||||
i0 &= ~i;
|
||||
i1 = 0;
|
||||
}
|
||||
math_force_eval (huge + x > 0.0);
|
||||
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += 0x00080000 >> j0;
|
||||
i0 &= ~i;
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
else if (j0 > 51)
|
||||
@ -76,14 +74,13 @@ __round (double x)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
u_int32_t j = i1 + (1 << (51 - j0));
|
||||
if (j < i1)
|
||||
i0 += 1;
|
||||
i1 = j;
|
||||
}
|
||||
math_force_eval (huge + x > 0.0);
|
||||
|
||||
/* Raise inexact if x != 0. */
|
||||
u_int32_t j = i1 + (1 << (51 - j0));
|
||||
if (j < i1)
|
||||
i0 += 1;
|
||||
i1 = j;
|
||||
i1 &= ~i;
|
||||
}
|
||||
|
||||
|
@ -32,18 +32,16 @@ __ceil(double x)
|
||||
EXTRACT_WORDS64(i0,x);
|
||||
j0 = ((i0>>52)&0x7ff)-0x3ff;
|
||||
if(j0<=51) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=INT64_C(0x8000000000000000);}
|
||||
else if(i0!=0) { i0=INT64_C(0x3ff0000000000000);}
|
||||
}
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
math_force_eval(huge+x);/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=INT64_C(0x8000000000000000);}
|
||||
else if(i0!=0) { i0=INT64_C(0x3ff0000000000000);}
|
||||
} else {
|
||||
i = INT64_C(0x000fffffffffffff)>>j0;
|
||||
if((i0&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += UINT64_C(0x0010000000000000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0>0) i0 += UINT64_C(0x0010000000000000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
} else {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
|
@ -54,18 +54,16 @@ __floor (double x)
|
||||
int32_t j0 = ((i0>>52)&0x7ff)-0x3ff;
|
||||
if(__builtin_expect(j0<52, 1)) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=0;}
|
||||
else if((i0&0x7fffffffffffffffl)!=0)
|
||||
{ i0=0xbff0000000000000l;}
|
||||
}
|
||||
math_force_eval(huge+x);/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=0;}
|
||||
else if((i0&0x7fffffffffffffffl)!=0)
|
||||
{ i0=0xbff0000000000000l;}
|
||||
} else {
|
||||
uint64_t i = (0x000fffffffffffffl)>>j0;
|
||||
if((i0&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x0010000000000000l)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x0010000000000000l)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
INSERT_WORDS64(x,i0);
|
||||
} else if (j0==0x400)
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Round double to integer away from zero.
|
||||
Copyright (C) 1997, 2009 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997, 2009, 2011 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||
|
||||
@ -37,12 +37,11 @@ __round (double x)
|
||||
{
|
||||
if (j0 < 0)
|
||||
{
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
i0 &= UINT64_C(0x8000000000000000);
|
||||
if (j0 == -1)
|
||||
i0 |= UINT64_C(0x3ff0000000000000);
|
||||
}
|
||||
math_force_eval (huge + x);
|
||||
|
||||
i0 &= UINT64_C(0x8000000000000000);
|
||||
if (j0 == -1)
|
||||
i0 |= UINT64_C(0x3ff0000000000000);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -50,12 +49,11 @@ __round (double x)
|
||||
if ((i0 & i) == 0)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += UINT64_C(0x0008000000000000) >> j0;
|
||||
i0 &= ~i;
|
||||
}
|
||||
math_force_eval (huge + x);
|
||||
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += UINT64_C(0x0008000000000000) >> j0;
|
||||
i0 &= ~i;
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -49,8 +49,11 @@ __ieee754_atanhf (float x)
|
||||
float t;
|
||||
if (xa < 0.5f)
|
||||
{
|
||||
if (__builtin_expect (xa < 0x1.0p-28f, 0) && (huge + x) > 0.0f)
|
||||
return x;
|
||||
if (__builtin_expect (xa < 0x1.0p-28f, 0))
|
||||
{
|
||||
math_force_eval (huge + x);
|
||||
return x;
|
||||
}
|
||||
|
||||
t = xa + xa;
|
||||
t = 0.5f * __log1pf (t + t * xa / (1.0f - xa));
|
||||
|
@ -66,10 +66,9 @@ __ieee754_j0f(float x)
|
||||
return z;
|
||||
}
|
||||
if(ix<0x39000000) { /* |x| < 2**-13 */
|
||||
if(huge+x>one) { /* raise inexact if x != 0 */
|
||||
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
||||
else return one - (float)0.25*x*x;
|
||||
}
|
||||
math_force_eval(huge+x>one); /* raise inexact if x != 0 */
|
||||
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
||||
else return one - (float)0.25*x*x;
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
||||
|
@ -29,17 +29,15 @@ __ceilf(float x)
|
||||
j0 = ((i0>>23)&0xff)-0x7f;
|
||||
if(j0<23) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;}
|
||||
else if(i0!=0) { i0=0x3f800000;}
|
||||
}
|
||||
math_force_eval(huge+x);/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;}
|
||||
else if(i0!=0) { i0=0x3f800000;}
|
||||
} else {
|
||||
i = (0x007fffff)>>j0;
|
||||
if((i0&i)==0) return x; /* x is integral */
|
||||
if(huge+x>(float)0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00800000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00800000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
} else {
|
||||
if(__builtin_expect(j0==0x80, 0)) return x+x; /* inf or NaN */
|
||||
|
@ -13,22 +13,14 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$NetBSD: s_expm1f.c,v 1.5 1995/05/10 20:47:11 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include <errno.h>
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const volatile float huge = 1.0e+30;
|
||||
static const volatile float tiny = 1.0e-30;
|
||||
static const float huge = 1.0e+30;
|
||||
static const float tiny = 1.0e-30;
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0,
|
||||
o_threshold = 8.8721679688e+01,/* 0x42b17180 */
|
||||
ln2_hi = 6.9313812256e-01,/* 0x3f317180 */
|
||||
@ -41,12 +33,8 @@ Q3 = -7.9365076090e-05, /* 0xb8a670cd */
|
||||
Q4 = 4.0082177293e-06, /* 0x36867e54 */
|
||||
Q5 = -2.0109921195e-07; /* 0xb457edbb */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __expm1f(float x)
|
||||
#else
|
||||
float __expm1f(x)
|
||||
float x;
|
||||
#endif
|
||||
float
|
||||
__expm1f(float x)
|
||||
{
|
||||
float y,hi,lo,c,t,e,hxs,hfx,r1;
|
||||
int32_t k,xsb;
|
||||
@ -60,17 +48,17 @@ Q5 = -2.0109921195e-07; /* 0xb457edbb */
|
||||
/* filter out huge and non-finite argument */
|
||||
if(hx >= 0x4195b844) { /* if |x|>=27*ln2 */
|
||||
if(hx >= 0x42b17218) { /* if |x|>=88.721... */
|
||||
if(hx>0x7f800000)
|
||||
return x+x; /* NaN */
|
||||
if(hx>0x7f800000)
|
||||
return x+x; /* NaN */
|
||||
if(hx==0x7f800000)
|
||||
return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
||||
if(x > o_threshold) {
|
||||
if(x > o_threshold) {
|
||||
__set_errno (ERANGE);
|
||||
return huge*huge; /* overflow */
|
||||
}
|
||||
}
|
||||
if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */
|
||||
if(x+tiny<(float)0.0) /* raise inexact */
|
||||
math_force_eval(x+tiny);/* raise inexact */
|
||||
return tiny-one; /* return -1 */
|
||||
}
|
||||
}
|
||||
@ -91,7 +79,7 @@ Q5 = -2.0109921195e-07; /* 0xb457edbb */
|
||||
x = hi - lo;
|
||||
c = (hi-x)-lo;
|
||||
}
|
||||
else if(hx < 0x33000000) { /* when |x|<2**-25, return x */
|
||||
else if(hx < 0x33000000) { /* when |x|<2**-25, return x */
|
||||
t = huge+x; /* return x with inexact flags when x!=0 */
|
||||
return x - (t-(huge+x));
|
||||
}
|
||||
@ -109,28 +97,28 @@ Q5 = -2.0109921195e-07; /* 0xb457edbb */
|
||||
e -= hxs;
|
||||
if(k== -1) return (float)0.5*(x-e)-(float)0.5;
|
||||
if(k==1) {
|
||||
if(x < (float)-0.25) return -(float)2.0*(e-(x+(float)0.5));
|
||||
else return one+(float)2.0*(x-e);
|
||||
if(x < (float)-0.25) return -(float)2.0*(e-(x+(float)0.5));
|
||||
else return one+(float)2.0*(x-e);
|
||||
}
|
||||
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
||||
int32_t i;
|
||||
y = one-(e-x);
|
||||
int32_t i;
|
||||
y = one-(e-x);
|
||||
GET_FLOAT_WORD(i,y);
|
||||
SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
|
||||
return y-one;
|
||||
return y-one;
|
||||
}
|
||||
t = one;
|
||||
if(k<23) {
|
||||
int32_t i;
|
||||
SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */
|
||||
y = t-(e-x);
|
||||
int32_t i;
|
||||
SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */
|
||||
y = t-(e-x);
|
||||
GET_FLOAT_WORD(i,y);
|
||||
SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
|
||||
} else {
|
||||
int32_t i;
|
||||
int32_t i;
|
||||
SET_FLOAT_WORD(t,((0x7f-k)<<23)); /* 2^-k */
|
||||
y = x-(e+t);
|
||||
y += one;
|
||||
y = x-(e+t);
|
||||
y += one;
|
||||
GET_FLOAT_WORD(i,y);
|
||||
SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
|
||||
}
|
||||
|
@ -36,18 +36,16 @@ __floorf(float x)
|
||||
j0 = ((i0>>23)&0xff)-0x7f;
|
||||
if(j0<23) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=0;}
|
||||
else if((i0&0x7fffffff)!=0)
|
||||
{ i0=0xbf800000;}
|
||||
}
|
||||
math_force_eval(huge+x);/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=0;}
|
||||
else if((i0&0x7fffffff)!=0)
|
||||
{ i0=0xbf800000;}
|
||||
} else {
|
||||
i = (0x007fffff)>>j0;
|
||||
if((i0&i)==0) return x; /* x is integral */
|
||||
if(huge+x>(float)0.0) { /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x00800000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
math_force_eval(huge+x); /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x00800000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
} else {
|
||||
if(__builtin_expect(j0==0x80, 0)) return x+x; /* inf or NaN */
|
||||
|
@ -13,18 +13,10 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$NetBSD: s_log1pf.c,v 1.4 1995/05/10 20:47:48 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
|
||||
ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
|
||||
two25 = 3.355443200e+07, /* 0x4c000000 */
|
||||
@ -36,18 +28,10 @@ Lp5 = 1.8183572590e-01, /* 3E3A3325 */
|
||||
Lp6 = 1.5313838422e-01, /* 3E1CD04F */
|
||||
Lp7 = 1.4798198640e-01; /* 3E178897 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float zero = 0.0;
|
||||
#else
|
||||
static float zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __log1pf(float x)
|
||||
#else
|
||||
float __log1pf(x)
|
||||
float x;
|
||||
#endif
|
||||
float
|
||||
__log1pf(float x)
|
||||
{
|
||||
float hfsq,f,c,s,z,R,u;
|
||||
int32_t k,hx,hu,ax;
|
||||
@ -62,8 +46,8 @@ static float zero = 0.0;
|
||||
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if(ax<0x31000000) { /* |x| < 2**-29 */
|
||||
if(two25+x>zero /* raise inexact */
|
||||
&&ax<0x24800000) /* |x| < 2**-54 */
|
||||
math_force_eval(two25+x); /* raise inexact */
|
||||
if (ax<0x24800000) /* |x| < 2**-54 */
|
||||
return x;
|
||||
else
|
||||
return x - x*x*(float)0.5;
|
||||
@ -76,37 +60,37 @@ static float zero = 0.0;
|
||||
if(hx<0x5a000000) {
|
||||
u = (float)1.0+x;
|
||||
GET_FLOAT_WORD(hu,u);
|
||||
k = (hu>>23)-127;
|
||||
k = (hu>>23)-127;
|
||||
/* correction term */
|
||||
c = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0);
|
||||
c = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0);
|
||||
c /= u;
|
||||
} else {
|
||||
u = x;
|
||||
GET_FLOAT_WORD(hu,u);
|
||||
k = (hu>>23)-127;
|
||||
k = (hu>>23)-127;
|
||||
c = 0;
|
||||
}
|
||||
hu &= 0x007fffff;
|
||||
if(hu<0x3504f7) {
|
||||
SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */
|
||||
SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */
|
||||
} else {
|
||||
k += 1;
|
||||
k += 1;
|
||||
SET_FLOAT_WORD(u,hu|0x3f000000); /* normalize u/2 */
|
||||
hu = (0x00800000-hu)>>2;
|
||||
hu = (0x00800000-hu)>>2;
|
||||
}
|
||||
f = u-(float)1.0;
|
||||
}
|
||||
hfsq=(float)0.5*f*f;
|
||||
if(hu==0) { /* |f| < 2**-20 */
|
||||
if(f==zero) {
|
||||
if(k==0) return zero;
|
||||
if(k==0) return zero;
|
||||
else {c += k*ln2_lo; return k*ln2_hi+c;}
|
||||
}
|
||||
R = hfsq*((float)1.0-(float)0.66666666666666666*f);
|
||||
if(k==0) return f-R; else
|
||||
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||
}
|
||||
s = f/((float)2.0+f);
|
||||
s = f/((float)2.0+f);
|
||||
z = s*s;
|
||||
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
||||
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Round float to integer away from zero.
|
||||
Copyright (C) 1997 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997, 2011 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||
|
||||
@ -37,12 +37,11 @@ __roundf (float x)
|
||||
{
|
||||
if (j0 < 0)
|
||||
{
|
||||
if (huge + x > 0.0F)
|
||||
{
|
||||
i0 &= 0x80000000;
|
||||
if (j0 == -1)
|
||||
i0 |= 0x3f800000;
|
||||
}
|
||||
math_force_eval (huge + x > 0.0F);
|
||||
|
||||
i0 &= 0x80000000;
|
||||
if (j0 == -1)
|
||||
i0 |= 0x3f800000;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -50,12 +49,11 @@ __roundf (float x)
|
||||
if ((i0 & i) == 0)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
if (huge + x > 0.0F)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += 0x00400000 >> j0;
|
||||
i0 &= ~i;
|
||||
}
|
||||
math_force_eval (huge + x > 0.0F);
|
||||
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += 0x00400000 >> j0;
|
||||
i0 &= ~i;
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -52,7 +52,10 @@ __ieee754_atanhl(long double x)
|
||||
return (x-x)/(x-x);
|
||||
if(ix==0x3fff)
|
||||
return x/zero;
|
||||
if(ix<0x3fe3&&(huge+x)>zero) return x; /* x<2**-28 */
|
||||
if(ix<0x3fe3) {
|
||||
math_force_eval(huge+x);
|
||||
return x; /* x<2**-28 */
|
||||
}
|
||||
SET_LDOUBLE_EXP(x,ix);
|
||||
if(ix<0x3ffe) { /* x < 0.5 */
|
||||
t = x+x;
|
||||
|
@ -144,13 +144,12 @@ __ieee754_j0l (long double x)
|
||||
}
|
||||
if (__builtin_expect (ix < 0x3fef, 0)) /* |x| < 2**-16 */
|
||||
{
|
||||
if (huge + x > one)
|
||||
{ /* raise inexact if x != 0 */
|
||||
if (ix < 0x3fde) /* |x| < 2^-33 */
|
||||
return one;
|
||||
else
|
||||
return one - 0.25 * x * x;
|
||||
}
|
||||
/* raise inexact if x != 0 */
|
||||
math_force_eval (huge + x);
|
||||
if (ix < 0x3fde) /* |x| < 2^-33 */
|
||||
return one;
|
||||
else
|
||||
return one - 0.25 * x * x;
|
||||
}
|
||||
z = x * x;
|
||||
r = z * (R[0] + z * (R[1] + z * (R[2] + z * (R[3] + z * R[4]))));
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Round long double to integer away from zero.
|
||||
Copyright (C) 1997, 2007 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997, 2007, 2011 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||
|
||||
@ -38,15 +38,13 @@ __roundl (long double x)
|
||||
{
|
||||
if (j0 < 0)
|
||||
{
|
||||
if (huge + x > 0.0)
|
||||
math_force_eval (huge + x);
|
||||
se &= 0x8000;
|
||||
i0 = i1 = 0;
|
||||
if (j0 == -1)
|
||||
{
|
||||
se &= 0x8000;
|
||||
i0 = i1 = 0;
|
||||
if (j0 == -1)
|
||||
{
|
||||
se |= 0x3fff;
|
||||
i0 = 0x80000000;
|
||||
}
|
||||
se |= 0x3fff;
|
||||
i0 = 0x80000000;
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -55,15 +53,14 @@ __roundl (long double x)
|
||||
if (((i0 & i) | i1) == 0)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
u_int32_t j = i0 + (0x40000000 >> j0);
|
||||
if (j < i0)
|
||||
se += 1;
|
||||
i0 = (j & ~i) | 0x80000000;
|
||||
i1 = 0;
|
||||
}
|
||||
|
||||
/* Raise inexact if x != 0. */
|
||||
math_force_eval (huge + x);
|
||||
u_int32_t j = i0 + (0x40000000 >> j0);
|
||||
if (j < i0)
|
||||
se += 1;
|
||||
i0 = (j & ~i) | 0x80000000;
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
else if (j0 > 62)
|
||||
@ -81,22 +78,20 @@ __roundl (long double x)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
|
||||
if (huge + x > 0.0)
|
||||
math_force_eval (huge + x);
|
||||
/* Raise inexact if x != 0. */
|
||||
u_int32_t j = i1 + (1 << (62 - j0));
|
||||
if (j < i1)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
u_int32_t j = i1 + (1 << (62 - j0));
|
||||
if (j < i1)
|
||||
u_int32_t k = i0 + 1;
|
||||
if (k < i0)
|
||||
{
|
||||
u_int32_t k = i0 + 1;
|
||||
if (k < i0)
|
||||
{
|
||||
se += 1;
|
||||
k |= 0x80000000;
|
||||
}
|
||||
i0 = k;
|
||||
se += 1;
|
||||
k |= 0x80000000;
|
||||
}
|
||||
i1 = j;
|
||||
i0 = k;
|
||||
}
|
||||
i1 = j;
|
||||
i1 &= ~i;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user