gitlog-to-changelog: Drop scripts in favour of gnulib version

The ChangeLog automation scripts were incorporated in gnulib as
vcs-to-changelog for a while now since other projects expressed the
desire to use and extend this script.  In the interest of avoiding
duplication of code, drop the glibc version of gitlog-to-changelog and
use the gnulib one directly.

The only file that remains is vcstocl_quirks.py, which specifies
properties and quirks of the glibc project source code.  This patch
also drops the shebang at the start of vcstocl_quirks.py since the
file is not intended to be directly executable.
This commit is contained in:
Siddhesh Poyarekar 2020-01-17 09:11:49 +05:30
parent ba44e5b508
commit de077de10f
5 changed files with 0 additions and 1181 deletions

View File

@ -1,138 +0,0 @@
#!/usr/bin/python3
# Main VCSToChangeLog script.
# Copyright (C) 2019-2020 Free Software Foundation, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
''' Generate a ChangeLog style output based on a VCS log.
This script takes two revisions as input and generates a ChangeLog style output
for all revisions between the two revisions.
This script is intended to be executed from the project parent directory.
The vcs_to_changelog directory has a file vcstocl_quirks.py that defines a
function called get_project_quirks that returns a object of class type
ProjectQuirks or a subclass of the same. The definition of the ProjectQuirks
class is below and it specifies the properties that the project must set to
ensure correct parsing of its contents.
Among other things, ProjectQurks specifies the VCS to read from; the default is
assumed to be git. The script then studies the VCS log and for each change,
list out the nature of changes in the constituent files.
Each file type may have parser frontends that can read files and construct
objects that may be compared to determine the minimal changes that occured in
each revision. For files that do not have parsers, we may only know the nature
of changes at the top level depending on the information that the VCS stores.
The parser frontend must have a compare() method that takes the old and new
files as arrays of strings and prints the output in ChangeLog format.
Currently implemented VCS:
git
Currently implemented frontends:
C
'''
import sys
import os
import re
import argparse
from vcs_to_changelog.misc_util import *
from vcs_to_changelog import frontend_c
from vcs_to_changelog.vcs_git import *
debug = DebugUtil(False)
class ProjectQuirks:
# This is a list of regex substitutions for C/C++ macros that are known to
# break parsing of the C programs. Each member of this list is a dict with
# the key 'orig' having the regex and 'sub' having the substitution of the
# regex.
MACRO_QUIRKS = []
# This is a list of macro definitions that are extensively used and are
# known to break parsing due to some characteristic, mainly the lack of a
# semicolon at the end.
C_MACROS = []
# The repo type, defaults to git.
repo = 'git'
# List of files to ignore either because they are not needed (such as the
# ChangeLog) or because they are non-parseable. For example, glibc has a
# header file that is only assembly code, which breaks the C parser.
IGNORE_LIST = ['ChangeLog']
# Load quirks file. We assume that the script is run from the top level source
# directory.
sys.path.append('/'.join([os.getcwd(), 'scripts', 'vcs_to_changelog']))
try:
from vcstocl_quirks import *
project_quirks = get_project_quirks(debug)
except:
project_quirks = ProjectQuirks()
def analyze_diff(filename, oldfile, newfile, frontends):
''' Parse the output of the old and new files and print the difference.
For input files OLDFILE and NEWFILE with name FILENAME, generate reduced
trees for them and compare them. We limit our comparison to only C source
files.
'''
name, ext = os.path.splitext(filename)
if not ext in frontends.keys():
return None
else:
frontend = frontends[ext]
frontend.compare(oldfile, newfile)
def main(repo, frontends, refs):
''' ChangeLog Generator Entry Point.
'''
commits = repo.list_commits(args.refs)
for commit in commits:
repo.list_changes(commit, frontends)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('refs', metavar='ref', type=str, nargs=2,
help='Refs to print ChangeLog entries between')
parser.add_argument('-d', '--debug', required=False, action='store_true',
help='Run the file parser debugger.')
args = parser.parse_args()
debug.debug = args.debug
if len(args.refs) < 2:
debug.eprint('Two refs needed to get a ChangeLog.')
sys.exit(os.EX_USAGE)
REPO = {'git': GitRepo(project_quirks.IGNORE_LIST, debug)}
fe_c = frontend_c.Frontend(project_quirks, debug)
FRONTENDS = {'.c': fe_c,
'.h': fe_c}
main(REPO[project_quirks.repo], FRONTENDS, args.refs)

View File

@ -1,827 +0,0 @@
#!/usr/bin/python3
# The C Parser.
# Copyright (C) 2019-2020 Free Software Foundation, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from enum import Enum
import re
from vcs_to_changelog.misc_util import *
class block_flags(Enum):
''' Flags for the code block.
'''
else_block = 1
macro_defined = 2
macro_redefined = 3
class block_type(Enum):
''' Type of code block.
'''
file = 1
macro_cond = 2
macro_def = 3
macro_undef = 4
macro_include = 5
macro_info = 6
decl = 7
func = 8
composite = 9
macrocall = 10
fndecl = 11
assign = 12
struct = 13
union = 14
enum = 15
# A dictionary describing what each action (add, modify, delete) show up as in
# the ChangeLog output.
actions = {0:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'},
block_type.file:{'new': 'New file', 'mod': 'Modified file',
'del': 'Remove file'},
block_type.macro_cond:{'new': 'New', 'mod': 'Modified',
'del': 'Remove'},
block_type.macro_def:{'new': 'New', 'mod': 'Modified',
'del': 'Remove'},
block_type.macro_include:{'new': 'Include file', 'mod': 'Modified',
'del': 'Remove include'},
block_type.macro_info:{'new': 'New preprocessor message',
'mod': 'Modified', 'del': 'Remove'},
block_type.decl:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'},
block_type.func:{'new': 'New function', 'mod': 'Modified function',
'del': 'Remove function'},
block_type.composite:{'new': 'New', 'mod': 'Modified',
'del': 'Remove'},
block_type.struct:{'new': 'New struct', 'mod': 'Modified struct',
'del': 'Remove struct'},
block_type.union:{'new': 'New union', 'mod': 'Modified union',
'del': 'Remove union'},
block_type.enum:{'new': 'New enum', 'mod': 'Modified enum',
'del': 'Remove enum'},
block_type.macrocall:{'new': 'New', 'mod': 'Modified',
'del': 'Remove'},
block_type.fndecl:{'new': 'New function', 'mod': 'Modified',
'del': 'Remove'},
block_type.assign:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'}}
def new_block(name, type, contents, parent, flags = 0):
''' Create a new code block with the parent as PARENT.
The code block is a basic structure around which the tree representation of
the source code is built. It has the following attributes:
- name: A name to refer it by in the ChangeLog
- type: Any one of the following types in BLOCK_TYPE.
- contents: The contents of the block. For a block of types file or
macro_cond, this would be a list of blocks that it nests. For other types
it is a list with a single string specifying its contents.
- parent: This is the parent of the current block, useful in setting up
#elif or #else blocks in the tree.
- flags: A special field to indicate some properties of the block. See
BLOCK_FLAGS for values.
'''
block = {}
block['matched'] = False
block['name'] = name
block['type'] = type
block['contents'] = contents
block['parent'] = parent
if parent:
parent['contents'].append(block)
block['flags'] = flags
block['actions'] = actions[type]
return block
class ExprParser:
''' Parent class of all of the C expression parsers.
It is necessary that the children override the parse_line() method.
'''
ATTRIBUTE = r'(((__attribute__\s*\(\([^;]+\)\))|(asm\s*\([?)]+\)))\s*)*'
def __init__(self, project_quirks, debug):
self.project_quirks = project_quirks
self.debug = debug
def fast_forward_scope(self, cur, op, loc):
''' Consume lines in a code block.
Consume all lines of a block of code such as a composite type declaration or
a function declaration.
- CUR is the string to consume this expression from
- OP is the string array for the file
- LOC is the first unread location in CUR
- Returns: The next location to be read in the array as well as the updated
value of CUR, which will now have the body of the function or composite
type.
'''
nesting = cur.count('{') - cur.count('}')
while nesting > 0 and loc < len(op):
cur = cur + ' ' + op[loc]
nesting = nesting + op[loc].count('{')
nesting = nesting - op[loc].count('}')
loc = loc + 1
return (cur, loc)
def parse_line(self, cur, op, loc, code, macros):
''' The parse method should always be overridden by the child.
'''
raise
class FuncParser(ExprParser):
REGEX = re.compile(ExprParser.ATTRIBUTE + r'\s*(\w+)\s*\([^(][^{]+\)\s*{')
def parse_line(self, cur, op, loc, code, macros):
''' Parse a function.
Match a function definition.
- CUR is the string to consume this expression from
- OP is the string array for the file
- LOC is the first unread location in CUR
- CODE is the block to which we add this
- Returns: The next location to be read in the array.
'''
found = re.search(self.REGEX, cur)
if not found:
return cur, loc
name = found.group(5)
self.debug.print('FOUND FUNC: %s' % name)
# Consume everything up to the ending brace of the function.
(cur, loc) = self.fast_forward_scope(cur, op, loc)
new_block(name, block_type.func, [cur], code)
return '', loc
class CompositeParser(ExprParser):
# Composite types such as structs and unions.
REGEX = re.compile(r'(struct|union|enum)\s*(\w*)\s*{')
def parse_line(self, cur, op, loc, code, macros):
''' Parse a composite type.
Match declaration of a composite type such as a sruct or a union..
- CUR is the string to consume this expression from
- OP is the string array for the file
- LOC is the first unread location in CUR
- CODE is the block to which we add this
- Returns: The next location to be read in the array.
'''
found = re.search(self.REGEX, cur)
if not found:
return cur, loc
# Lap up all of the struct definition.
(cur, loc) = self.fast_forward_scope(cur, op, loc)
name = found.group(2)
if not name:
if 'typedef' in cur:
name = re.sub(r'.*}\s*(\w+);$', r'\1', cur)
else:
name= '<anoymous>'
ctype = found.group(1)
if ctype == 'struct':
blocktype = block_type.struct
if ctype == 'enum':
blocktype = block_type.enum
if ctype == 'union':
blocktype = block_type.union
new_block(name, block_type.composite, [cur], code)
return '', loc
class AssignParser(ExprParser):
# Static assignments.
REGEX = re.compile(r'(\w+)\s*(\[[^\]]*\])*\s*([^\s]*attribute[\s\w()]+)?\s*=')
def parse_line(self, cur, op, loc, code, macros):
''' Parse an assignment statement.
This includes array assignments.
- CUR is the string to consume this expression from
- OP is the string array for the file
- LOC is the first unread location in CUR
- CODE is the block to which we add this
- Returns: The next location to be read in the array.
'''
found = re.search(self.REGEX, cur)
if not found:
return cur, loc
name = found.group(1)
self.debug.print('FOUND ASSIGN: %s' % name)
# Lap up everything up to semicolon.
while ';' not in cur and loc < len(op):
cur = op[loc]
loc = loc + 1
new_block(name, block_type.assign, [cur], code)
return '', loc
class DeclParser(ExprParser):
# Function pointer typedefs.
TYPEDEF_FN_RE = re.compile(r'\(\*(\w+)\)\s*\([^)]+\);')
# Simple decls.
DECL_RE = re.compile(r'(\w+)(\[\w*\])*\s*' + ExprParser.ATTRIBUTE + ';')
# __typeof decls.
TYPEOF_RE = re.compile(r'__typeof\s*\([\w\s]+\)\s*(\w+)\s*' + \
ExprParser.ATTRIBUTE + ';')
# Function Declarations.
FNDECL_RE = re.compile(r'\s*(\w+)\s*\([^\(][^;]*\)\s*' +
ExprParser.ATTRIBUTE + ';')
def __init__(self, regex, blocktype, project_quirks, debug):
# The regex for the current instance.
self.REGEX = regex
self.blocktype = blocktype
super().__init__(project_quirks, debug)
def parse_line(self, cur, op, loc, code, macros):
''' Parse a top level declaration.
All types of declarations except function declarations.
- CUR is the string to consume this expression from
- OP is the string array for the file
- LOC is the first unread location in CUR
- CODE is the block to which we add this function
- Returns: The next location to be read in the array.
'''
found = re.search(self.REGEX, cur)
if not found:
return cur, loc
# The name is the first group for all of the above regexes. This is a
# coincidence, so care must be taken if regexes are added or changed to
# ensure that this is true.
name = found.group(1)
self.debug.print('FOUND DECL: %s' % name)
new_block(name, self.blocktype, [cur], code)
return '', loc
class MacroParser(ExprParser):
# The macrocall_re peeks into the next line to ensure that it doesn't
# eat up a FUNC by accident. The func_re regex is also quite crude and
# only intends to ensure that the function name gets picked up
# correctly.
MACROCALL_RE = re.compile(r'(\w+)\s*(\(.*\))*$')
def parse_line(self, cur, op, loc, code, macros):
''' Parse a macro call.
Match a symbol hack macro calls that get added without semicolons.
- CUR is the string to consume this expression from
- OP is the string array for the file
- LOC is the first unread location in CUR
- CODE is the block to which we add this
- MACROS is the regex match object.
- Returns: The next location to be read in the array.
'''
# First we have the macros for symbol hacks and all macros we identified so
# far.
if cur.count('(') != cur.count(')'):
return cur, loc
if loc < len(op) and '{' in op[loc]:
return cur, loc
found = re.search(self.MACROCALL_RE, cur)
if found:
sym = found.group(1)
name = found.group(2)
if sym in macros or self.project_quirks and \
sym in self.project_quirks.C_MACROS:
self.debug.print('FOUND MACROCALL: %s (%s)' % (sym, name))
new_block(sym, block_type.macrocall, [cur], code)
return '', loc
# Next, there could be macros that get called right inside their #ifdef, but
# without the semi-colon.
if cur.strip() == code['name'].strip():
self.debug.print('FOUND MACROCALL (without brackets): %s' % (cur))
new_block(cur, block_type.macrocall, [cur], code)
return '',loc
return cur, loc
class Frontend:
''' The C Frontend implementation.
'''
KNOWN_MACROS = []
def __init__(self, project_quirks, debug):
self.op = []
self.debug = debug
self.project_quirks = project_quirks
self.c_expr_parsers = [
CompositeParser(project_quirks, debug),
AssignParser(project_quirks, debug),
DeclParser(DeclParser.TYPEOF_RE, block_type.decl,
project_quirks, debug),
DeclParser(DeclParser.TYPEDEF_FN_RE, block_type.decl,
project_quirks, debug),
DeclParser(DeclParser.FNDECL_RE, block_type.fndecl,
project_quirks, debug),
FuncParser(project_quirks, debug),
DeclParser(DeclParser.DECL_RE, block_type.decl, project_quirks,
debug),
MacroParser(project_quirks, debug)]
def remove_extern_c(self):
''' Process extern "C"/"C++" block nesting.
The extern "C" nesting does not add much value so it's safe to almost always
drop it. Also drop extern "C++"
'''
new_op = []
nesting = 0
extern_nesting = 0
for l in self.op:
if '{' in l:
nesting = nesting + 1
if re.match(r'extern\s*"C"\s*{', l):
extern_nesting = nesting
continue
if '}' in l:
nesting = nesting - 1
if nesting < extern_nesting:
extern_nesting = 0
continue
new_op.append(l)
# Now drop all extern C++ blocks.
self.op = new_op
new_op = []
nesting = 0
extern_nesting = 0
in_cpp = False
for l in self.op:
if re.match(r'extern\s*"C\+\+"\s*{', l):
nesting = nesting + 1
in_cpp = True
if in_cpp:
if '{' in l:
nesting = nesting + 1
if '}' in l:
nesting = nesting - 1
if nesting == 0:
new_op.append(l)
self.op = new_op
def remove_comments(self, op):
''' Remove comments.
Return OP by removing all comments from it.
'''
self.debug.print('REMOVE COMMENTS')
sep='\n'
opstr = sep.join(op)
opstr = re.sub(r'/\*.*?\*/', r'', opstr, flags=re.MULTILINE | re.DOTALL)
opstr = re.sub(r'\\\n', r' ', opstr, flags=re.MULTILINE | re.DOTALL)
new_op = list(filter(None, opstr.split(sep)))
return new_op
def normalize_condition(self, name):
''' Make some minor transformations on macro conditions to make them more
readable.
'''
# Negation with a redundant bracket.
name = re.sub(r'!\s*\(\s*(\w+)\s*\)', r'! \1', name)
# Pull in negation of equality.
name = re.sub(r'!\s*\(\s*(\w+)\s*==\s*(\w+)\)', r'\1 != \2', name)
# Pull in negation of inequality.
name = re.sub(r'!\s*\(\s*(\w+)\s*!=\s*(\w+)\)', r'\1 == \2', name)
# Fix simple double negation.
name = re.sub(r'!\s*\(\s*!\s*(\w+)\s*\)', r'\1', name)
# Similar, but nesting a complex expression. Because of the greedy match,
# this matches only the outermost brackets.
name = re.sub(r'!\s*\(\s*!\s*\((.*)\)\s*\)$', r'\1', name)
return name
def parse_preprocessor(self, loc, code, start = ''):
''' Parse a preprocessor directive.
In case a preprocessor condition (i.e. if/elif/else), create a new code
block to nest code into and in other cases, identify and add entities suchas
include files, defines, etc.
- OP is the string array for the file
- LOC is the first unread location in CUR
- CODE is the block to which we add this function
- START is the string that should continue to be expanded in case we step
into a new macro scope.
- Returns: The next location to be read in the array.
'''
cur = self.op[loc]
loc = loc + 1
endblock = False
self.debug.print('PARSE_MACRO: %s' % cur)
# Remove the # and strip spaces again.
cur = cur[1:].strip()
# Include file.
if cur.find('include') == 0:
m = re.search(r'include\s*["<]?([^">]+)[">]?', cur)
new_block(m.group(1), block_type.macro_include, [cur], code)
# Macro definition.
if cur.find('define') == 0:
m = re.search(r'define\s+([a-zA-Z0-9_]+)', cur)
name = m.group(1)
exists = False
# Find out if this is a redefinition.
for c in code['contents']:
if c['name'] == name and c['type'] == block_type.macro_def:
c['flags'] = block_flags.macro_redefined
exists = True
break
if not exists:
new_block(m.group(1), block_type.macro_def, [cur], code,
block_flags.macro_defined)
# Add macros as we encounter them.
self.KNOWN_MACROS.append(m.group(1))
# Macro undef.
if cur.find('undef') == 0:
m = re.search(r'undef\s+([a-zA-Z0-9_]+)', cur)
new_block(m.group(1), block_type.macro_def, [cur], code)
# #error and #warning macros.
if cur.find('error') == 0 or cur.find('warning') == 0:
m = re.search(r'(error|warning)\s+"?(.*)"?', cur)
if m:
name = m.group(2)
else:
name = '<blank>'
new_block(name, block_type.macro_info, [cur], code)
# Start of an #if or #ifdef block.
elif cur.find('if') == 0:
rem = re.sub(r'ifndef', r'!', cur).strip()
rem = re.sub(r'(ifdef|defined|if)', r'', rem).strip()
rem = self.normalize_condition(rem)
ifdef = new_block(rem, block_type.macro_cond, [], code)
ifdef['headcond'] = ifdef
ifdef['start'] = start
loc = self.parse_line(loc, ifdef, start)
# End the previous #if/#elif and begin a new block.
elif cur.find('elif') == 0 and code['parent']:
rem = self.normalize_condition(re.sub(r'(elif|defined)', r'', cur).strip())
# The #else and #elif blocks should go into the current block's parent.
ifdef = new_block(rem, block_type.macro_cond, [], code['parent'])
ifdef['headcond'] = code['headcond']
loc = self.parse_line(loc, ifdef, code['headcond']['start'])
endblock = True
# End the previous #if/#elif and begin a new block.
elif cur.find('else') == 0 and code['parent']:
name = self.normalize_condition('!(' + code['name'] + ')')
ifdef = new_block(name, block_type.macro_cond, [], code['parent'],
block_flags.else_block)
ifdef['headcond'] = code['headcond']
loc = self.parse_line(loc, ifdef, code['headcond']['start'])
endblock = True
elif cur.find('endif') == 0 and code['parent']:
# Insert an empty else block if there isn't one.
if code['flags'] != block_flags.else_block:
name = self.normalize_condition('!(' + code['name'] + ')')
ifdef = new_block(name, block_type.macro_cond, [], code['parent'],
block_flags.else_block)
ifdef['headcond'] = code['headcond']
loc = self.parse_line(loc - 1, ifdef, code['headcond']['start'])
endblock = True
return (loc, endblock)
def parse_c_expr(self, cur, loc, code):
''' Parse a C expression.
CUR is the string to be parsed, which continues to grow until a match is
found. OP is the string array and LOC is the first unread location in the
string array. CODE is the block in which any identified expressions should
be added.
'''
self.debug.print('PARSING: %s' % cur)
for p in self.c_expr_parsers:
cur, loc = p.parse_line(cur, self.op, loc, code, self.KNOWN_MACROS)
if not cur:
break
return cur, loc
def expand_problematic_macros(self, cur):
''' Replace problem macros with their substitutes in CUR.
'''
for p in self.project_quirks.MACRO_QUIRKS:
cur = re.sub(p['orig'], p['sub'], cur)
return cur
def parse_line(self, loc, code, start = ''):
'''
Parse the file line by line. The function assumes a mostly GNU coding
standard compliant input so it might barf with anything that is eligible for
the Obfuscated C code contest.
The basic idea of the parser is to identify macro conditional scopes and
definitions, includes, etc. and then parse the remaining C code in the
context of those macro scopes. The parser does not try to understand the
semantics of the code or even validate its syntax. It only records high
level symbols in the source and makes a tree structure to indicate the
declaration/definition of those symbols and their scope in the macro
definitions.
OP is the string array.
LOC is the first unparsed line.
CODE is the block scope within which the parsing is currently going on.
START is the string with which this parsing should start.
'''
cur = start
endblock = False
saved_cur = ''
saved_loc = 0
endblock_loc = loc
while loc < len(self.op):
nextline = self.op[loc]
# Macros.
if nextline[0] == '#':
(loc, endblock) = self.parse_preprocessor(loc, code, cur)
if endblock:
endblock_loc = loc
# Rest of C Code.
else:
cur = cur + ' ' + nextline
cur = self.expand_problematic_macros(cur).strip()
cur, loc = self.parse_c_expr(cur, loc + 1, code)
if endblock and not cur:
# If we are returning from the first #if block, we want to proceed
# beyond the current block, not repeat it for any preceding blocks.
if code['headcond'] == code:
return loc
else:
return endblock_loc
return loc
def drop_empty_blocks(self, tree):
''' Drop empty macro conditional blocks.
'''
newcontents = []
for x in tree['contents']:
if x['type'] != block_type.macro_cond or len(x['contents']) > 0:
newcontents.append(x)
for t in newcontents:
if t['type'] == block_type.macro_cond:
self.drop_empty_blocks(t)
tree['contents'] = newcontents
def consolidate_tree_blocks(self, tree):
''' Consolidate common macro conditional blocks.
Get macro conditional blocks at the same level but scatterred across the
file together into a single common block to allow for better comparison.
'''
# Nothing to do for non-nesting blocks.
if tree['type'] != block_type.macro_cond \
and tree['type'] != block_type.file:
return
# Now for nesting blocks, get the list of unique condition names and
# consolidate code under them. The result also bunches up all the
# conditions at the top.
newcontents = []
macros = [x for x in tree['contents'] \
if x['type'] == block_type.macro_cond]
macro_names = sorted(set([x['name'] for x in macros]))
for m in macro_names:
nc = [x['contents'] for x in tree['contents'] if x['name'] == m \
and x['type'] == block_type.macro_cond]
b = new_block(m, block_type.macro_cond, sum(nc, []), tree)
self.consolidate_tree_blocks(b)
newcontents.append(b)
newcontents.extend([x for x in tree['contents'] \
if x['type'] != block_type.macro_cond])
tree['contents'] = newcontents
def compact_tree(self, tree):
''' Try to reduce the tree to its minimal form.
A source code tree in its simplest form may have a lot of duplicated
information that may be difficult to compare and come up with a minimal
difference.
'''
# First, drop all empty blocks.
self.drop_empty_blocks(tree)
# Macro conditions that nest the entire file aren't very interesting. This
# should take care of the header guards.
if tree['type'] == block_type.file \
and len(tree['contents']) == 1 \
and tree['contents'][0]['type'] == block_type.macro_cond:
tree['contents'] = tree['contents'][0]['contents']
# Finally consolidate all macro conditional blocks.
self.consolidate_tree_blocks(tree)
def parse(self, op):
''' File parser.
Parse the input array of lines OP and generate a tree structure to
represent the file. This tree structure is then used for comparison between
the old and new file.
'''
self.KNOWN_MACROS = []
tree = new_block('', block_type.file, [], None)
self.op = self.remove_comments(op)
self.remove_extern_c()
self.op = [re.sub(r'#\s+', '#', x) for x in self.op]
self.parse_line(0, tree)
self.compact_tree(tree)
self.dump_tree(tree, 0)
return tree
def print_change(self, tree, action, prologue = ''):
''' Print the nature of the differences found in the tree compared to the
other tree. TREE is the tree that changed, action is what the change was
(Added, Removed, Modified) and prologue specifies the macro scope the change
is in. The function calls itself recursively for all macro condition tree
nodes.
'''
if tree['type'] != block_type.macro_cond:
print('\t%s(%s): %s.' % (prologue, tree['name'], action))
return
prologue = '%s[%s]' % (prologue, tree['name'])
for t in tree['contents']:
if t['type'] == block_type.macro_cond:
self.print_change(t, action, prologue)
else:
print('\t%s(%s): %s.' % (prologue, t['name'], action))
def compare_trees(self, left, right, prologue = ''):
''' Compare two trees and print the difference.
This routine is the entry point to compare two trees and print out their
differences. LEFT and RIGHT will always have the same name and type,
starting with block_type.file and '' at the top level.
'''
if left['type'] == block_type.macro_cond or left['type'] == block_type.file:
if left['type'] == block_type.macro_cond:
prologue = '%s[%s]' % (prologue, left['name'])
# Make sure that everything in the left tree exists in the right tree.
for cl in left['contents']:
found = False
for cr in right['contents']:
if not cl['matched'] and not cr['matched'] and \
cl['name'] == cr['name'] and cl['type'] == cr['type']:
cl['matched'] = cr['matched'] = True
self.compare_trees(cl, cr, prologue)
found = True
break
if not found:
self.print_change(cl, cl['actions']['del'], prologue)
# ... and vice versa. This time we only need to look at unmatched
# contents.
for cr in right['contents']:
if not cr['matched']:
self.print_change(cr, cr['actions']['new'], prologue)
else:
if left['contents'] != right['contents']:
self.print_change(left, left['actions']['mod'], prologue)
def dump_tree(self, tree, indent):
''' Print the entire tree.
'''
if not self.debug.debug:
return
if tree['type'] == block_type.macro_cond or tree['type'] == block_type.file:
print('%sScope: %s' % (' ' * indent, tree['name']))
for c in tree['contents']:
self.dump_tree(c, indent + 4)
print('%sEndScope: %s' % (' ' * indent, tree['name']))
else:
if tree['type'] == block_type.func:
print('%sFUNC: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.composite:
print('%sCOMPOSITE: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.assign:
print('%sASSIGN: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.fndecl:
print('%sFNDECL: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.decl:
print('%sDECL: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.macrocall:
print('%sMACROCALL: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.macro_def:
print('%sDEFINE: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.macro_include:
print('%sINCLUDE: %s' % (' ' * indent, tree['name']))
elif tree['type'] == block_type.macro_undef:
print('%sUNDEF: %s' % (' ' * indent, tree['name']))
else:
print('%sMACRO LEAF: %s' % (' ' * indent, tree['name']))
def compare(self, oldfile, newfile):
''' Entry point for the C backend.
Parse the two files into trees and compare them. Print the result of the
comparison in the ChangeLog-like format.
'''
self.debug.print('LEFT TREE')
self.debug.print('-' * 80)
left = self.parse(oldfile)
self.debug.print('RIGHT TREE')
self.debug.print('-' * 80)
right = self.parse(newfile)
self.compare_trees(left, right)

View File

@ -1,51 +0,0 @@
# General Utility functions.
# Copyright (C) 2019-2020 Free Software Foundation, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import sys
class DebugUtil:
debug = False
def __init__(self, debug):
self.debug = debug
def eprint(self, *args, **kwargs):
''' Print to stderr.
'''
print(*args, file=sys.stderr, **kwargs)
def print(self, *args, **kwargs):
''' Convenience function to print diagnostic information in the program.
'''
if self.debug:
self.eprint(*args, **kwargs)
def decode(string):
''' Attempt to decode a string.
Decode a string read from the source file. The multiple attempts are needed
due to the presence of the page break characters and some tests in locales.
'''
codecs = ['utf8', 'cp1252']
for i in codecs:
try:
return string.decode(i)
except UnicodeDecodeError:
pass
DebugUtil.eprint('Failed to decode: %s' % string)

View File

@ -1,164 +0,0 @@
# Git repo support.
# Copyright (C) 2019-2020 Free Software Foundation, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from gitlog_to_changelog import analyze_diff
import subprocess
import re
from misc_util import *
class GitRepo:
def __init__(self, ignore_list, debug):
self.ignore_list = ignore_list
self.debug = debug
def exec_git_cmd(self, args):
''' Execute a git command and return its result as a list of strings.
'''
args.insert(0, 'git')
self.debug.print(args)
proc = subprocess.Popen(args, stdout=subprocess.PIPE)
# Clean up the output by removing trailing spaces, newlines and dropping
# blank lines.
op = [decode(x[:-1]).strip() for x in proc.stdout]
op = [re.sub(r'[\s\f]+', ' ', x) for x in op]
op = [x for x in op if x]
return op
def list_changes(self, commit, frontends):
''' List changes in a single commit.
For the input commit id COMMIT, identify the files that have changed and the
nature of their changes. Print commit information in the ChangeLog format,
calling into helper functions as necessary.
'''
op = self.exec_git_cmd(['show', '--pretty=fuller', '--date=short',
'--raw', commit])
authors = []
date = ''
merge = False
copyright_exempt=''
subject= ''
for l in op:
if l.lower().find('copyright-paperwork-exempt:') == 0 \
and 'yes' in l.lower():
copyright_exempt=' (tiny change)'
elif l.lower().find('co-authored-by:') == 0 or \
l.find('Author:') == 0:
author = l.split(':')[1]
author = re.sub(r'([^ ]*)\s*(<.*)', r'\1 \2', author.strip())
authors.append(author)
elif l.find('CommitDate:') == 0:
date = l[11:].strip()
elif l.find('Merge:') == 0:
merge = True
elif not subject and date:
subject = l.strip()
# Find raw commit information for all non-ChangeLog files.
op = [x[1:] for x in op if len(x) > 0 and re.match(r'^:[0-9]+', x)]
# Skip all ignored files.
for ign in self.ignore_list:
op = [x for x in op if ign not in x]
# It was only the ChangeLog, ignore.
if len(op) == 0:
return
print('%s %s' % (date, authors[0]))
if (len(authors) > 1):
authors = authors[1:]
for author in authors:
print(' %s' % author)
print()
if merge:
print('\t MERGE COMMIT: %s\n' % commit)
return
print('\tCOMMIT%s: %s\n\t%s\n' % (copyright_exempt, commit, subject))
# Changes across a large number of files are typically mechanical (URL
# updates, copyright notice changes, etc.) and likely not interesting
# enough to produce a detailed ChangeLog entry.
if len(op) > 100:
print('\t* Suppressing diff as too many files differ.\n')
return
# Each of these lines has a space separated format like so:
# :<OLD MODE> <NEW MODE> <OLD REF> <NEW REF> <OPERATION> <FILE1> <FILE2>
#
# where OPERATION can be one of the following:
# A: File added
# D: File removed
# M[0-9]{3}: File modified
# R[0-9]{3}: File renamed, with the 3 digit number following it indicating
# what percentage of the file is intact.
# C[0-9]{3}: File copied. Same semantics as R.
# T: The permission bits of the file changed
# U: Unmerged. We should not encounter this, so we ignore it/
# X, or anything else: Most likely a bug. Report it.
#
# FILE2 is set only when OPERATION is R or C, to indicate the new file name.
#
# Also note that merge commits have a different format here, with three
# entries each for the modes and refs, but we don't bother with it for now.
#
# For more details: https://git-scm.com/docs/diff-format
for f in op:
data = f.split()
if data[4] == 'A':
print('\t* %s: New file.' % data[5])
elif data[4] == 'D':
print('\t* %s: Delete file.' % data[5])
elif data[4] == 'T':
print('\t* %s: Changed file permission bits from %s to %s' % \
(data[5], data[0], data[1]))
elif data[4][0] == 'M':
print('\t* %s: Modified.' % data[5])
analyze_diff(data[5],
self.exec_git_cmd(['show', data[2]]),
self.exec_git_cmd(['show', data[3]]), frontends)
elif data[4][0] == 'R' or data[4][0] == 'C':
change = int(data[4][1:])
print('\t* %s: Move to...' % data[5])
print('\t* %s: ... here.' % data[6])
if change < 100:
analyze_diff(data[6],
self.exec_git_cmd(['show', data[2]]),
self.exec_git_cmd(['show', data[3]]), frontends)
# We should never encounter this, so ignore for now.
elif data[4] == 'U':
pass
else:
eprint('%s: Unknown line format %s' % (commit, data[4]))
sys.exit(42)
print('')
def list_commits(self, revs):
''' List commit IDs between the two revs in the REVS list.
'''
ref = revs[0] + '..' + revs[1]
return self.exec_git_cmd(['log', '--pretty=%H', ref])

View File

@ -1,4 +1,3 @@
#!/usr/bin/python3
# VCSToChangeLog Quirks for the GNU C Library.
# Copyright (C) 2019-2020 Free Software Foundation, Inc.