mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-22 02:40:08 +00:00
Update.
2003-03-28 Thorsten Kukuk <kukuk@suse.de> * sysdeps/unix/sysv/linux/ifaddrs.c: New file. * inet/test-ifaddrs.c: Allow AF_PACKET. * sysdeps/unix/sysv/linux/kernel-features.h: Add __ASSUME_NETLINK_SUPPORT.
This commit is contained in:
parent
129422e1e8
commit
e0c09a4362
@ -1,3 +1,10 @@
|
||||
2003-03-28 Thorsten Kukuk <kukuk@suse.de>
|
||||
|
||||
* sysdeps/unix/sysv/linux/ifaddrs.c: New file.
|
||||
* inet/test-ifaddrs.c: Allow AF_PACKET.
|
||||
* sysdeps/unix/sysv/linux/kernel-features.h: Add
|
||||
__ASSUME_NETLINK_SUPPORT.
|
||||
|
||||
2003-03-28 Ulrich Drepper <drepper@redhat.com>
|
||||
|
||||
* elf/vismain.c (do_test): Comment out tests which fail in the moment.
|
||||
|
@ -69,6 +69,10 @@ Name Flags Address Netmask Broadcast/Destination");
|
||||
#endif
|
||||
case AF_UNSPEC:
|
||||
return "---";
|
||||
|
||||
case AF_PACKET:
|
||||
return "<packet>";
|
||||
|
||||
default:
|
||||
++failures;
|
||||
printf ("sa_family=%d %08x\n", sa->sa_family,
|
||||
|
770
sysdeps/unix/sysv/linux/ifaddrs.c
Normal file
770
sysdeps/unix/sysv/linux/ifaddrs.c
Normal file
@ -0,0 +1,770 @@
|
||||
/* getifaddrs -- get names and addresses of all network interfaces
|
||||
Copyright (C) 2003 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
#include <assert.h>
|
||||
#include <errno.h>
|
||||
#include <ifaddrs.h>
|
||||
#include <net/if.h>
|
||||
#include <netinet/in.h>
|
||||
#include <netpacket/packet.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <sys/socket.h>
|
||||
#include <sysdep.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <asm/types.h>
|
||||
#include <linux/netlink.h>
|
||||
#include <linux/rtnetlink.h>
|
||||
|
||||
#include "kernel-features.h"
|
||||
|
||||
/* We don't know if we have NETLINK support compiled in in our
|
||||
Kernel, so include the old implementation as fallback. */
|
||||
#if __ASSUME_NETLINK_SUPPORT == 0
|
||||
static int no_netlink_support;
|
||||
|
||||
#define getifaddrs fallback_getifaddrs
|
||||
#include "sysdeps/gnu/ifaddrs.c"
|
||||
#undef getifaddrs
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
struct netlink_res
|
||||
{
|
||||
struct netlink_res *next;
|
||||
struct nlmsghdr *nlh;
|
||||
size_t size; /* Size of response. */
|
||||
uint32_t seq; /* sequential number we used. */
|
||||
};
|
||||
|
||||
|
||||
struct netlink_handle
|
||||
{
|
||||
int fd; /* Netlink file descriptor. */
|
||||
pid_t pid; /* Process ID. */
|
||||
uint32_t seq; /* The sequence number we use currently. */
|
||||
struct netlink_res *nlm_list; /* Pointer to list of responses. */
|
||||
struct netlink_res *end_ptr; /* For faster append of new entries. */
|
||||
};
|
||||
|
||||
|
||||
/* struct to hold the data for one ifaddrs entry, so we can allocate
|
||||
everything at once. */
|
||||
struct ifaddrs_storage
|
||||
{
|
||||
struct ifaddrs ifa;
|
||||
union
|
||||
{
|
||||
/* Save space for the biggest of the four used sockaddr types and
|
||||
avoid a lot of casts. */
|
||||
struct sockaddr sa;
|
||||
struct sockaddr_ll sl;
|
||||
struct sockaddr_in s4;
|
||||
struct sockaddr_in6 s6;
|
||||
} addr, netmask, broadaddr;
|
||||
char name[IF_NAMESIZE + 1];
|
||||
};
|
||||
|
||||
|
||||
static void
|
||||
free_netlink_handle (struct netlink_handle *h)
|
||||
{
|
||||
struct netlink_res *ptr;
|
||||
int saved_errno = errno;
|
||||
|
||||
ptr = h->nlm_list;
|
||||
while (ptr != NULL)
|
||||
{
|
||||
struct netlink_res *tmpptr;
|
||||
|
||||
free (ptr->nlh);
|
||||
tmpptr = ptr->next;
|
||||
free (ptr);
|
||||
ptr = tmpptr;
|
||||
}
|
||||
|
||||
errno = saved_errno;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
netlink_sendreq (struct netlink_handle *h, int type)
|
||||
{
|
||||
struct
|
||||
{
|
||||
struct nlmsghdr nlh;
|
||||
struct rtgenmsg g;
|
||||
} req;
|
||||
struct sockaddr_nl nladdr;
|
||||
|
||||
if (h->seq == 0)
|
||||
h->seq = time (NULL);
|
||||
|
||||
req.nlh.nlmsg_len = sizeof (req);
|
||||
req.nlh.nlmsg_type = type;
|
||||
req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
|
||||
req.nlh.nlmsg_pid = 0;
|
||||
req.nlh.nlmsg_seq = h->seq;
|
||||
req.g.rtgen_family = AF_UNSPEC;
|
||||
|
||||
memset (&nladdr, '\0', sizeof (nladdr));
|
||||
nladdr.nl_family = AF_NETLINK;
|
||||
|
||||
return TEMP_FAILURE_RETRY (sendto (h->fd, (void *) &req, sizeof (req), 0,
|
||||
(struct sockaddr *) &nladdr,
|
||||
sizeof (nladdr)));
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
netlink_receive (struct netlink_handle *h)
|
||||
{
|
||||
struct netlink_res *nlm_next;
|
||||
char buf[4096];
|
||||
struct iovec iov = { buf, sizeof (buf) };
|
||||
struct sockaddr_nl nladdr;
|
||||
struct nlmsghdr *nlmh;
|
||||
int read_len;
|
||||
bool done = false;
|
||||
|
||||
while (! done)
|
||||
{
|
||||
struct msghdr msg =
|
||||
{
|
||||
(void *) &nladdr, sizeof (nladdr),
|
||||
&iov, 1,
|
||||
NULL, 0,
|
||||
0
|
||||
};
|
||||
|
||||
read_len = TEMP_FAILURE_RETRY (recvmsg (h->fd, &msg, 0));
|
||||
if (read_len < 0)
|
||||
return -1;
|
||||
|
||||
if (msg.msg_flags & MSG_TRUNC)
|
||||
return -1;
|
||||
|
||||
nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res));
|
||||
if (nlm_next == NULL)
|
||||
return -1;
|
||||
nlm_next->next = NULL;
|
||||
nlm_next->nlh = (struct nlmsghdr *) malloc (read_len);
|
||||
if (nlm_next->nlh == NULL)
|
||||
{
|
||||
free (nlm_next);
|
||||
return -1;
|
||||
}
|
||||
memcpy (nlm_next->nlh, buf, read_len);
|
||||
nlm_next->size = read_len;
|
||||
nlm_next->seq = h->seq;
|
||||
if (h->nlm_list == NULL)
|
||||
{
|
||||
h->nlm_list = nlm_next;
|
||||
h->end_ptr = nlm_next;
|
||||
}
|
||||
else
|
||||
{
|
||||
h->end_ptr->next = nlm_next;
|
||||
h->end_ptr = nlm_next;
|
||||
}
|
||||
|
||||
for (nlmh = (struct nlmsghdr *) buf;
|
||||
NLMSG_OK (nlmh, (size_t) read_len);
|
||||
nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, read_len))
|
||||
{
|
||||
if ((pid_t) nlmh->nlmsg_pid != h->pid || nlmh->nlmsg_seq != h->seq)
|
||||
continue;
|
||||
|
||||
if (nlmh->nlmsg_type == NLMSG_DONE)
|
||||
{
|
||||
/* we found the end, leave the loop. */
|
||||
done = true;
|
||||
break;
|
||||
}
|
||||
if (nlmh->nlmsg_type == NLMSG_ERROR)
|
||||
{
|
||||
struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
|
||||
if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
|
||||
errno = EIO;
|
||||
else
|
||||
errno = -nlerr->error;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
netlink_close (struct netlink_handle *h)
|
||||
{
|
||||
/* Don't modify errno. */
|
||||
INTERNAL_SYSCALL_DECL (err);
|
||||
(void) INTERNAL_SYSCALL (close, err, 1, h->fd);
|
||||
}
|
||||
|
||||
|
||||
/* Open a NETLINK socket. */
|
||||
static int
|
||||
netlink_open (struct netlink_handle *h)
|
||||
{
|
||||
struct sockaddr_nl nladdr;
|
||||
|
||||
h->fd = socket (PF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
|
||||
if (h->fd < 0)
|
||||
return -1;
|
||||
|
||||
memset (&nladdr, '\0', sizeof (nladdr));
|
||||
nladdr.nl_family = AF_NETLINK;
|
||||
if (bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
|
||||
{
|
||||
netlink_close (h);
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* We know the number of RTM_NEWLINK entries, so we reserve the first
|
||||
# of entries for this type. All RTM_NEWADDR entries have an index
|
||||
pointer to the RTM_NEWLINK entry. To find the entry, create
|
||||
a table to map kernel index entries to our index numbers.
|
||||
Since we get at first all RTM_NEWLINK entries, it can never happen
|
||||
that a RTM_NEWADDR index is not known to this map. */
|
||||
static int
|
||||
map_newlink (int index, int *map, int max)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < max; i++)
|
||||
{
|
||||
if (map[i] == -1)
|
||||
{
|
||||
map[i] = index;
|
||||
return i;
|
||||
}
|
||||
else if (map[i] == index)
|
||||
return i;
|
||||
}
|
||||
/* This should never be reached. If this will be reached, we have
|
||||
very big problem. */
|
||||
abort ();
|
||||
}
|
||||
|
||||
|
||||
/* Create a linked list of `struct ifaddrs' structures, one for each
|
||||
network interface on the host machine. If successful, store the
|
||||
list in *IFAP and return 0. On errors, return -1 and set `errno'. */
|
||||
int
|
||||
getifaddrs (struct ifaddrs **ifap)
|
||||
{
|
||||
struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
|
||||
struct netlink_res *nlp;
|
||||
struct ifaddrs_storage *ifas;
|
||||
unsigned int i, newlink, newaddr, newaddr_idx;
|
||||
int *map_newlink_data;
|
||||
size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
|
||||
char *ifa_data_ptr; /* Pointer to the unused part of memory for
|
||||
ifa_data. */
|
||||
|
||||
if (ifap)
|
||||
*ifap = NULL;
|
||||
|
||||
if (netlink_open (&nh) < 0)
|
||||
{
|
||||
#if __ASSUME_NETLINK_SUPPORT == 0
|
||||
no_netlink_support = 1;
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if __ASSUME_NETLINK_SUPPORT == 0
|
||||
if (no_netlink_support)
|
||||
return fallback_getifaddrs (ifap);
|
||||
#endif
|
||||
|
||||
nh.pid = getpid ();
|
||||
|
||||
/* Tell the kernel that we wish to get a list of all
|
||||
active interfaces. */
|
||||
if (netlink_sendreq (&nh, RTM_GETLINK) < 0)
|
||||
{
|
||||
netlink_close (&nh);
|
||||
return -1;
|
||||
}
|
||||
/* Collect all data for every interface. */
|
||||
if (netlink_receive (&nh) < 0)
|
||||
{
|
||||
free_netlink_handle (&nh);
|
||||
netlink_close (&nh);
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/* Now ask the kernel for all addresses which are assigned
|
||||
to an interface. Since we store the addresses after the
|
||||
interfaces in the list, we will later always find the
|
||||
interface before the corresponding addresses. */
|
||||
++nh.seq;
|
||||
if (netlink_sendreq (&nh, RTM_GETADDR) < 0)
|
||||
{
|
||||
free_netlink_handle (&nh);
|
||||
netlink_close (&nh);
|
||||
return -1;
|
||||
}
|
||||
/* Collect all data for every inerface. */
|
||||
if (netlink_receive (&nh) < 0)
|
||||
{
|
||||
free_netlink_handle (&nh);
|
||||
netlink_close (&nh);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
|
||||
enough memory. */
|
||||
newlink = newaddr = 0;
|
||||
for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
|
||||
{
|
||||
struct nlmsghdr *nlh;
|
||||
size_t size = nlp->size;
|
||||
|
||||
if (nlp->nlh == NULL)
|
||||
continue;
|
||||
|
||||
/* Walk through all entries we got from the kernel and look, which
|
||||
message type they contain. */
|
||||
for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
|
||||
{
|
||||
/* check if the message is what we want */
|
||||
if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
|
||||
continue;
|
||||
|
||||
if (nlh->nlmsg_type == NLMSG_DONE)
|
||||
break; /* ok */
|
||||
|
||||
if (nlh->nlmsg_type == RTM_NEWLINK)
|
||||
{
|
||||
/* A RTM_NEWLINK message can have IFLA_STATS data. We need to
|
||||
know the size before creating the list to allocate enough
|
||||
memory. */
|
||||
struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
|
||||
struct rtattr *rta = IFLA_RTA (ifim);
|
||||
size_t rtasize = IFLA_PAYLOAD (nlh);
|
||||
|
||||
while (RTA_OK (rta, rtasize))
|
||||
{
|
||||
size_t rta_payload = RTA_PAYLOAD (rta);
|
||||
|
||||
if (rta->rta_type == IFLA_STATS)
|
||||
{
|
||||
ifa_data_size += rta_payload;
|
||||
break;
|
||||
}
|
||||
else
|
||||
rta = RTA_NEXT (rta, rtasize);
|
||||
}
|
||||
++newlink;
|
||||
}
|
||||
else if (nlh->nlmsg_type == RTM_NEWADDR)
|
||||
++newaddr;
|
||||
}
|
||||
}
|
||||
|
||||
/* Return if no interface is up. */
|
||||
if ((newlink + newaddr) == 0)
|
||||
{
|
||||
free_netlink_handle (&nh);
|
||||
netlink_close (&nh);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Table for mapping kernel index to entry in our list. */
|
||||
map_newlink_data = alloca (newlink * sizeof (int));
|
||||
|
||||
/* Allocate memory for all entries we have and initialize next
|
||||
pointer. */
|
||||
ifas = (struct ifaddrs_storage *) calloc (1,
|
||||
(newlink + newaddr)
|
||||
* sizeof (struct ifaddrs_storage)
|
||||
+ ifa_data_size);
|
||||
if (ifas == NULL)
|
||||
{
|
||||
free_netlink_handle (&nh);
|
||||
netlink_close (&nh);
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (i = 0; i < newlink + newaddr - 1; i++)
|
||||
{
|
||||
ifas[i].ifa.ifa_next = &ifas[i + 1].ifa;
|
||||
map_newlink_data[i] = -1;
|
||||
}
|
||||
ifa_data_ptr = (char *)&ifas[newlink + newaddr];
|
||||
newaddr_idx = 0; /* Counter for newaddr index. */
|
||||
|
||||
/* Walk through the list of data we got from the kernel. */
|
||||
for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
|
||||
{
|
||||
struct nlmsghdr *nlh;
|
||||
size_t size = nlp->size;
|
||||
|
||||
if (nlp->nlh == NULL)
|
||||
continue;
|
||||
|
||||
/* Walk through one message and look at the type: If it is our
|
||||
message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
|
||||
the end or we find the end marker (in this case we ignore the
|
||||
following data. */
|
||||
for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
|
||||
{
|
||||
int ifa_index = 0;
|
||||
|
||||
/* check if the message is the one we want */
|
||||
if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
|
||||
continue;
|
||||
|
||||
if (nlh->nlmsg_type == NLMSG_DONE)
|
||||
break; /* ok */
|
||||
else if (nlh->nlmsg_type == RTM_NEWLINK)
|
||||
{
|
||||
/* We found a new interface. Now extract everything from the
|
||||
interface data we got and need. */
|
||||
struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
|
||||
struct rtattr *rta = IFLA_RTA (ifim);
|
||||
size_t rtasize = IFLA_PAYLOAD (nlh);
|
||||
|
||||
/* interfaces are stored in the first "newlink" entries
|
||||
of our list, starting in the order as we got from the
|
||||
kernel. */
|
||||
ifa_index = map_newlink (ifim->ifi_index - 1,
|
||||
map_newlink_data, newlink);
|
||||
ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
|
||||
|
||||
while (RTA_OK (rta, rtasize))
|
||||
{
|
||||
char *rta_data = RTA_DATA (rta);
|
||||
size_t rta_payload = RTA_PAYLOAD (rta);
|
||||
|
||||
switch (rta->rta_type)
|
||||
{
|
||||
case IFLA_ADDRESS:
|
||||
ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
|
||||
memcpy (ifas[ifa_index].addr.sl.sll_addr,
|
||||
(char *) rta_data, rta_payload);
|
||||
ifas[ifa_index].addr.sl.sll_halen = rta_payload;
|
||||
ifas[ifa_index].addr.sl.sll_ifindex = ifim->ifi_index;
|
||||
ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
|
||||
|
||||
ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
|
||||
break;
|
||||
|
||||
case IFLA_BROADCAST:
|
||||
ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
|
||||
memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
|
||||
(char *) rta_data, rta_payload);
|
||||
ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
|
||||
ifas[ifa_index].broadaddr.sl.sll_ifindex
|
||||
= ifim->ifi_index;
|
||||
ifas[ifa_index].broadaddr.sl.sll_hatype = ifim->ifi_type;
|
||||
|
||||
ifas[ifa_index].ifa.ifa_broadaddr
|
||||
= &ifas[ifa_index].broadaddr.sa;
|
||||
break;
|
||||
|
||||
case IFLA_IFNAME: /* Name of Interface */
|
||||
if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
|
||||
{
|
||||
ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
|
||||
strncpy (ifas[ifa_index].name, rta_data,
|
||||
rta_payload);
|
||||
ifas[ifa_index].name[rta_payload] = '\0';
|
||||
}
|
||||
break;
|
||||
|
||||
case IFLA_STATS: /* Statistics of Interface */
|
||||
ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
|
||||
ifa_data_ptr += rta_payload;
|
||||
memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
|
||||
rta_payload);
|
||||
break;
|
||||
|
||||
case IFLA_UNSPEC:
|
||||
break;
|
||||
case IFLA_MTU:
|
||||
break;
|
||||
case IFLA_LINK:
|
||||
break;
|
||||
case IFLA_QDISC:
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
rta = RTA_NEXT (rta, rtasize);
|
||||
}
|
||||
}
|
||||
else if (nlh->nlmsg_type == RTM_NEWADDR)
|
||||
{
|
||||
struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
|
||||
struct rtattr *rta = IFA_RTA (ifam);
|
||||
size_t rtasize = IFA_PAYLOAD (nlh);
|
||||
|
||||
/* New Addresses are stored in the order we got them from
|
||||
the kernel after interfaces. Theoretical it is possible
|
||||
that we have holes in the interface part of the list,
|
||||
but we always have already the interface for this address. */
|
||||
ifa_index = newlink + newaddr_idx;
|
||||
ifas[ifa_index].ifa.ifa_flags
|
||||
= ifas[map_newlink (ifam->ifa_index - 1,
|
||||
map_newlink_data, newlink)].ifa.ifa_flags;
|
||||
++newaddr_idx;
|
||||
|
||||
while (RTA_OK (rta, rtasize))
|
||||
{
|
||||
char *rta_data = RTA_DATA (rta);
|
||||
size_t rta_payload = RTA_PAYLOAD (rta);
|
||||
|
||||
switch (rta->rta_type)
|
||||
{
|
||||
case IFA_ADDRESS:
|
||||
{
|
||||
struct sockaddr *sa;
|
||||
|
||||
if (ifas[ifa_index].ifa.ifa_addr != NULL)
|
||||
{
|
||||
/* In a point-to-poing network IFA_ADDRESS
|
||||
contains the destination address, local
|
||||
address is supplied in IFA_LOCAL attribute.
|
||||
destination address and broadcast address
|
||||
are stored in an union, so it doesn't matter
|
||||
which name we use. */
|
||||
ifas[ifa_index].ifa.ifa_broadaddr
|
||||
= &ifas[ifa_index].broadaddr.sa;
|
||||
sa = &ifas[ifa_index].broadaddr.sa;
|
||||
}
|
||||
else
|
||||
{
|
||||
ifas[ifa_index].ifa.ifa_addr
|
||||
= &ifas[ifa_index].addr.sa;
|
||||
sa = &ifas[ifa_index].addr.sa;
|
||||
}
|
||||
|
||||
sa->sa_family = ifam->ifa_family;
|
||||
|
||||
switch (ifam->ifa_family)
|
||||
{
|
||||
case AF_INET:
|
||||
memcpy (&((struct sockaddr_in *) sa)->sin_addr,
|
||||
rta_data, rta_payload);
|
||||
break;
|
||||
|
||||
case AF_INET6:
|
||||
memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
|
||||
rta_data, rta_payload);
|
||||
if (IN6_IS_ADDR_LINKLOCAL (rta_data) ||
|
||||
IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
|
||||
((struct sockaddr_in6 *) sa)->sin6_scope_id =
|
||||
ifam->ifa_scope;
|
||||
break;
|
||||
|
||||
default:
|
||||
memcpy (sa->sa_data, rta_data, rta_payload);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case IFA_LOCAL:
|
||||
if (ifas[ifa_index].ifa.ifa_addr != NULL)
|
||||
{
|
||||
/* If ifa_addr is set and we get IFA_LOCAL,
|
||||
assume we have a point-to-point network.
|
||||
Move address to correct field. */
|
||||
ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
|
||||
ifas[ifa_index].ifa.ifa_broadaddr
|
||||
= &ifas[ifa_index].broadaddr.sa;
|
||||
memset (&ifas[ifa_index].addr, '\0',
|
||||
sizeof (ifas[ifa_index].addr));
|
||||
}
|
||||
|
||||
ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
|
||||
ifas[ifa_index].ifa.ifa_addr->sa_family
|
||||
= ifam->ifa_family;
|
||||
|
||||
switch (ifam->ifa_family)
|
||||
{
|
||||
case AF_INET:
|
||||
memcpy (&ifas[ifa_index].addr.s4.sin_addr,
|
||||
rta_data, rta_payload);
|
||||
break;
|
||||
|
||||
case AF_INET6:
|
||||
memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
|
||||
rta_data, rta_payload);
|
||||
if (IN6_IS_ADDR_LINKLOCAL (rta_data) ||
|
||||
IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
|
||||
ifas[ifa_index].addr.s6.sin6_scope_id =
|
||||
ifam->ifa_scope;
|
||||
break;
|
||||
|
||||
default:
|
||||
memcpy (ifas[ifa_index].addr.sa.sa_data,
|
||||
rta_data, rta_payload);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
case IFA_BROADCAST:
|
||||
/* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
|
||||
if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
|
||||
memset (&ifas[ifa_index].broadaddr, '\0',
|
||||
sizeof (ifas[ifa_index].broadaddr));
|
||||
|
||||
ifas[ifa_index].ifa.ifa_broadaddr
|
||||
= &ifas[ifa_index].broadaddr.sa;
|
||||
ifas[ifa_index].ifa.ifa_broadaddr->sa_family
|
||||
= ifam->ifa_family;
|
||||
|
||||
switch (ifam->ifa_family)
|
||||
{
|
||||
case AF_INET:
|
||||
memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
|
||||
rta_data, rta_payload);
|
||||
break;
|
||||
|
||||
case AF_INET6:
|
||||
memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
|
||||
rta_data, rta_payload);
|
||||
if (IN6_IS_ADDR_LINKLOCAL (rta_data) ||
|
||||
IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
|
||||
ifas[ifa_index].broadaddr.s6.sin6_scope_id =
|
||||
ifam->ifa_scope;
|
||||
break;
|
||||
|
||||
default:
|
||||
memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
|
||||
rta_data, rta_payload);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
case IFA_LABEL:
|
||||
if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
|
||||
{
|
||||
ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
|
||||
strncpy (ifas[ifa_index].name, rta_data,
|
||||
rta_payload);
|
||||
ifas[ifa_index].name[rta_payload] = '\0';
|
||||
}
|
||||
else
|
||||
abort ();
|
||||
break;
|
||||
|
||||
case IFA_UNSPEC:
|
||||
break;
|
||||
case IFA_CACHEINFO:
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
rta = RTA_NEXT (rta, rtasize);
|
||||
}
|
||||
|
||||
/* If we didn't get the interface name with the
|
||||
address, use the name from the interface entry. */
|
||||
if (ifas[ifa_index].ifa.ifa_name == NULL)
|
||||
ifas[ifa_index].ifa.ifa_name
|
||||
= ifas[map_newlink (ifam->ifa_index - 1,
|
||||
map_newlink_data, newlink)].ifa.ifa_name;
|
||||
|
||||
/* Calculate the netmask. */
|
||||
if (ifas[ifa_index].ifa.ifa_addr
|
||||
&& ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
|
||||
&& ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
|
||||
{
|
||||
uint32_t max_prefixlen = 0;
|
||||
char *cp = NULL;
|
||||
|
||||
ifas[ifa_index].ifa.ifa_netmask
|
||||
= &ifas[ifa_index].netmask.sa;
|
||||
|
||||
switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
|
||||
{
|
||||
case AF_INET:
|
||||
cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
|
||||
max_prefixlen = 32;
|
||||
break;
|
||||
|
||||
case AF_INET6:
|
||||
cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
|
||||
max_prefixlen = 128;
|
||||
break;
|
||||
}
|
||||
|
||||
ifas[ifa_index].ifa.ifa_netmask->sa_family
|
||||
= ifas[ifa_index].ifa.ifa_addr->sa_family;
|
||||
|
||||
if (cp != NULL)
|
||||
{
|
||||
char c;
|
||||
unsigned int preflen;
|
||||
|
||||
if ((max_prefixlen > 0) &&
|
||||
(ifam->ifa_prefixlen > max_prefixlen))
|
||||
preflen = max_prefixlen;
|
||||
else
|
||||
preflen = ifam->ifa_prefixlen;
|
||||
|
||||
for (i = 0; i < (preflen / 8); i++)
|
||||
*cp++ = 0xff;
|
||||
c = 0xff;
|
||||
c <<= (8 - (preflen % 8));
|
||||
*cp = c;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free_netlink_handle (&nh);
|
||||
|
||||
netlink_close (&nh);
|
||||
|
||||
if (ifap != NULL)
|
||||
*ifap = &ifas[0].ifa;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#if __ASSUME_NETLINK_SUPPORT != 0
|
||||
void
|
||||
freeifaddrs (struct ifaddrs *ifa)
|
||||
{
|
||||
free (ifa);
|
||||
}
|
||||
#endif
|
@ -279,3 +279,9 @@
|
||||
&& (defined __ia64__ || defined __s390__ || defined __powerpc__)
|
||||
# define __ASSUME_CLONE_THREAD_FLAGS 1
|
||||
#endif
|
||||
|
||||
/* With kernel 2.4.17 we always have netlink support. */
|
||||
#if __LINUX_KERNEL_VERSION >= (132096+17)
|
||||
# define __ASSUME_NETLINK_SUPPORT 1
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user