mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 22:10:13 +00:00
Update.
2001-03-11 Ulrich Drepper <drepper@redhat.com> Last-bit accurate math library implementation by IBM Haifa. Contributed by Abraham Ziv <ziv@il.ibm.com>, Moshe Olshansky <olshansk@il.ibm.com>, Ealan Henis <ealan@il.ibm.com>, and Anna Reitman <reitman@il.ibm.com>. * math/Makefile (dbl-only-routines): New variable. (libm-routines): Add $(dbl-only-routines). * sysdeps/ieee754/dbl-64/e_acos.c: Empty, definition is in e_asin.c. * sysdeps/ieee754/dbl-64/e_asin.c: Replaced with accurate asin implementation. * sysdeps/ieee754/dbl-64/e_atan2.c: Replaced with accurate atan2 implementation. * sysdeps/ieee754/dbl-64/e_exp.c: Replaced with accurate exp implementation. * sysdeps/ieee754/dbl-64/e_lgamma_r.c: Don't use __kernel_sin and __kernel_cos. * sysdeps/ieee754/dbl-64/e_log.c: Replaced with accurate log implementation. * sysdeps/ieee754/dbl-64/e_remainder.c: Replaced with accurate remainder implementation. * sysdeps/ieee754/dbl-64/e_pow.c: Replaced with accurate pow implementation. * sysdeps/ieee754/dbl-64/e_sqrt.c: Replaced with accurate sqrt implementation. * sysdeps/ieee754/dbl-64/k_cos.c: Empty, definition is in s_sin.c. * sysdeps/ieee754/dbl-64/k_sin.c: Empty, definition is in s_sin.c. * sysdeps/ieee754/dbl-64/s_atan.c: Replaced with accurate atan implementation. * sysdeps/ieee754/dbl-64/s_cos.c: Empty, definition is in s_sin.c. * sysdeps/ieee754/dbl-64/s_sin.c: Replaced with accurate sin/cos implementation. * sysdeps/ieee754/dbl-64/s_sincos.c: Rewritten to not use __kernel_sin and __kernel_cos. * sysdeps/ieee754/dbl-64/s_tan.c: Replaced with accurate tan implementation. * sysdeps/ieee754/dbl-64/Dist: Add new non-code files. * sysdeps/ieee754/dbl-64/MathLib.h: New file. * sysdeps/ieee754/dbl-64/asincos.tbl: New file. * sysdeps/ieee754/dbl-64/atnat.h: New file. * sysdeps/ieee754/dbl-64/atnat2.h: New file. * sysdeps/ieee754/dbl-64/branred.c: New file. * sysdeps/ieee754/dbl-64/branred.h: New file. * sysdeps/ieee754/dbl-64/dla.h: New file. * sysdeps/ieee754/dbl-64/doasin.c: New file. * sysdeps/ieee754/dbl-64/doasin.h: New file. * sysdeps/ieee754/dbl-64/dosincos.c: New file. * sysdeps/ieee754/dbl-64/dosincos.h: New file. * sysdeps/ieee754/dbl-64/endian.h: New file. * sysdeps/ieee754/dbl-64/halfulp.c: New file. * sysdeps/ieee754/dbl-64/mpa.c: New file. * sysdeps/ieee754/dbl-64/mpa.h: New file. * sysdeps/ieee754/dbl-64/mpa2.h: New file. * sysdeps/ieee754/dbl-64/mpatan.c: New file. * sysdeps/ieee754/dbl-64/mpatan.h: New file. * sysdeps/ieee754/dbl-64/mpatan2.c: New file. * sysdeps/ieee754/dbl-64/mpexp.c: New file. * sysdeps/ieee754/dbl-64/mpexp.h: New file. * sysdeps/ieee754/dbl-64/mplog.c: New file. * sysdeps/ieee754/dbl-64/mplog.h: New file. * sysdeps/ieee754/dbl-64/mpsqrt.c: New file. * sysdeps/ieee754/dbl-64/mpsqrt.h: New file. * sysdeps/ieee754/dbl-64/mptan.c: New file. * sysdeps/ieee754/dbl-64/mydefs.h: New file. * sysdeps/ieee754/dbl-64/powtwo.tbl: New file. * sysdeps/ieee754/dbl-64/root.tbl: New file. * sysdeps/ieee754/dbl-64/sincos.tbl: New file. * sysdeps/ieee754/dbl-64/sincos32.c: New file. * sysdeps/ieee754/dbl-64/sincos32.h: New file. * sysdeps/ieee754/dbl-64/slowexp.c: New file. * sysdeps/ieee754/dbl-64/slowpow.c: New file. * sysdeps/ieee754/dbl-64/uasncs.h: New file. * sysdeps/ieee754/dbl-64/uatan.tbl: New file. * sysdeps/ieee754/dbl-64/uexp.h: New file. * sysdeps/ieee754/dbl-64/uexp.tbl: New file. * sysdeps/ieee754/dbl-64/ulog.h: New file. * sysdeps/ieee754/dbl-64/ulog.tbl: New file. * sysdeps/ieee754/dbl-64/upow.h: New file. * sysdeps/ieee754/dbl-64/upow.tbl: New file. * sysdeps/ieee754/dbl-64/urem.h: New file. * sysdeps/ieee754/dbl-64/uroot.h: New file. * sysdeps/ieee754/dbl-64/usncs.h: New file. * sysdeps/ieee754/dbl-64/utan.h: New file. * sysdeps/ieee754/dbl-64/utan.tbl: New file. * sysdeps/i386/fpu/branred.c: New file. * sysdeps/i386/fpu/doasin.c: New file. * sysdeps/i386/fpu/dosincos.c: New file. * sysdeps/i386/fpu/halfulp.c: New file. * sysdeps/i386/fpu/mpa.c: New file. * sysdeps/i386/fpu/mpatan.c: New file. * sysdeps/i386/fpu/mpatan2.c: New file. * sysdeps/i386/fpu/mpexp.c: New file. * sysdeps/i386/fpu/mplog.c: New file. * sysdeps/i386/fpu/mpsqrt.c: New file. * sysdeps/i386/fpu/mptan.c: New file. * sysdeps/i386/fpu/sincos32.c: New file. * sysdeps/i386/fpu/slowexp.c: New file. * sysdeps/i386/fpu/slowpow.c: New file. * sysdeps/ia64/fpu/branred.c: New file. * sysdeps/ia64/fpu/doasin.c: New file. * sysdeps/ia64/fpu/dosincos.c: New file. * sysdeps/ia64/fpu/halfulp.c: New file. * sysdeps/ia64/fpu/mpa.c: New file. * sysdeps/ia64/fpu/mpatan.c: New file. * sysdeps/ia64/fpu/mpatan2.c: New file. * sysdeps/ia64/fpu/mpexp.c: New file. * sysdeps/ia64/fpu/mplog.c: New file. * sysdeps/ia64/fpu/mpsqrt.c: New file. * sysdeps/ia64/fpu/mptan.c: New file. * sysdeps/ia64/fpu/sincos32.c: New file. * sysdeps/ia64/fpu/slowexp.c: New file. * sysdeps/ia64/fpu/slowpow.c: New file. * sysdeps/m68k/fpu/branred.c: New file. * sysdeps/m68k/fpu/doasin.c: New file. * sysdeps/m68k/fpu/dosincos.c: New file. * sysdeps/m68k/fpu/halfulp.c: New file. * sysdeps/m68k/fpu/mpa.c: New file. * sysdeps/m68k/fpu/mpatan.c: New file. * sysdeps/m68k/fpu/mpatan2.c: New file. * sysdeps/m68k/fpu/mpexp.c: New file. * sysdeps/m68k/fpu/mplog.c: New file. * sysdeps/m68k/fpu/mpsqrt.c: New file. * sysdeps/m68k/fpu/mptan.c: New file. * sysdeps/m68k/fpu/sincos32.c: New file. * sysdeps/m68k/fpu/slowexp.c: New file. * sysdeps/m68k/fpu/slowpow.c: New file. * iconvdata/gconv-modules: Add a number of alias, mostly for IBM codepages.
This commit is contained in:
parent
d3c8723f64
commit
e4d8276142
130
ChangeLog
130
ChangeLog
@ -1,3 +1,133 @@
|
|||||||
|
2001-03-11 Ulrich Drepper <drepper@redhat.com>
|
||||||
|
|
||||||
|
Last-bit accurate math library implementation by IBM Haifa.
|
||||||
|
Contributed by Abraham Ziv <ziv@il.ibm.com>, Moshe Olshansky
|
||||||
|
<olshansk@il.ibm.com>, Ealan Henis <ealan@il.ibm.com>, and
|
||||||
|
Anna Reitman <reitman@il.ibm.com>.
|
||||||
|
* math/Makefile (dbl-only-routines): New variable.
|
||||||
|
(libm-routines): Add $(dbl-only-routines).
|
||||||
|
* sysdeps/ieee754/dbl-64/e_acos.c: Empty, definition is in e_asin.c.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_asin.c: Replaced with accurate asin
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_atan2.c: Replaced with accurate atan2
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_exp.c: Replaced with accurate exp
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Don't use __kernel_sin and
|
||||||
|
__kernel_cos.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_log.c: Replaced with accurate log
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_remainder.c: Replaced with accurate
|
||||||
|
remainder implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_pow.c: Replaced with accurate pow
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/e_sqrt.c: Replaced with accurate sqrt
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/k_cos.c: Empty, definition is in s_sin.c.
|
||||||
|
* sysdeps/ieee754/dbl-64/k_sin.c: Empty, definition is in s_sin.c.
|
||||||
|
* sysdeps/ieee754/dbl-64/s_atan.c: Replaced with accurate atan
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/s_cos.c: Empty, definition is in s_sin.c.
|
||||||
|
* sysdeps/ieee754/dbl-64/s_sin.c: Replaced with accurate sin/cos
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/s_sincos.c: Rewritten to not use __kernel_sin
|
||||||
|
and __kernel_cos.
|
||||||
|
* sysdeps/ieee754/dbl-64/s_tan.c: Replaced with accurate tan
|
||||||
|
implementation.
|
||||||
|
* sysdeps/ieee754/dbl-64/Dist: Add new non-code files.
|
||||||
|
* sysdeps/ieee754/dbl-64/MathLib.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/asincos.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/atnat.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/atnat2.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/branred.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/branred.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/dla.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/doasin.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/doasin.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/dosincos.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/dosincos.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/endian.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/halfulp.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpa.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpa.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpa2.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpatan.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpatan.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpatan2.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpexp.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpexp.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mplog.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mplog.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpsqrt.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mpsqrt.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mptan.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/mydefs.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/powtwo.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/root.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/sincos.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/sincos32.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/sincos32.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/slowexp.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/slowpow.c: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/uasncs.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/uatan.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/uexp.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/uexp.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/ulog.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/ulog.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/upow.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/upow.tbl: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/urem.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/uroot.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/usncs.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/utan.h: New file.
|
||||||
|
* sysdeps/ieee754/dbl-64/utan.tbl: New file.
|
||||||
|
* sysdeps/i386/fpu/branred.c: New file.
|
||||||
|
* sysdeps/i386/fpu/doasin.c: New file.
|
||||||
|
* sysdeps/i386/fpu/dosincos.c: New file.
|
||||||
|
* sysdeps/i386/fpu/halfulp.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mpa.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mpatan.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mpatan2.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mpexp.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mplog.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mpsqrt.c: New file.
|
||||||
|
* sysdeps/i386/fpu/mptan.c: New file.
|
||||||
|
* sysdeps/i386/fpu/sincos32.c: New file.
|
||||||
|
* sysdeps/i386/fpu/slowexp.c: New file.
|
||||||
|
* sysdeps/i386/fpu/slowpow.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/branred.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/doasin.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/dosincos.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/halfulp.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mpa.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mpatan.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mpatan2.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mpexp.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mplog.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mpsqrt.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/mptan.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/sincos32.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/slowexp.c: New file.
|
||||||
|
* sysdeps/ia64/fpu/slowpow.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/branred.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/doasin.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/dosincos.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/halfulp.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mpa.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mpatan.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mpatan2.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mpexp.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mplog.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mpsqrt.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/mptan.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/sincos32.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/slowexp.c: New file.
|
||||||
|
* sysdeps/m68k/fpu/slowpow.c: New file.
|
||||||
|
|
||||||
|
* iconvdata/gconv-modules: Add a number of alias, mostly for IBM
|
||||||
|
codepages.
|
||||||
|
|
||||||
2001-03-11 Andreas Jaeger <aj@suse.de>
|
2001-03-11 Andreas Jaeger <aj@suse.de>
|
||||||
|
|
||||||
* elf/elf.h (EM_*): Synch with official list.
|
* elf/elf.h (EM_*): Synch with official list.
|
||||||
|
7
NEWS
7
NEWS
@ -1,4 +1,4 @@
|
|||||||
GNU C Library NEWS -- history of user-visible changes. 2001-3-4
|
GNU C Library NEWS -- history of user-visible changes. 2001-3-11
|
||||||
|
|
||||||
Copyright (C) 1992-1999, 2000, 2001 Free Software Foundation, Inc.
|
Copyright (C) 1992-1999, 2000, 2001 Free Software Foundation, Inc.
|
||||||
See the end for copying conditions.
|
See the end for copying conditions.
|
||||||
@ -16,6 +16,11 @@ Version 2.2.3
|
|||||||
* Stephen Moshier implemented j0, j1, jn, y0, y1, yn, and lgamma for the
|
* Stephen Moshier implemented j0, j1, jn, y0, y1, yn, and lgamma for the
|
||||||
96-bit long double format.
|
96-bit long double format.
|
||||||
|
|
||||||
|
* The beginning of a last-bit accurate math library by IBM Haifa were added.
|
||||||
|
The basic double functions exist today. Contributed by Abraham Ziv
|
||||||
|
<ziv@il.ibm.com>, Moshe Olshansky <olshansk@il.ibm.com>, Ealan Henis
|
||||||
|
<ealan@il.ibm.com>, and Anna Reitman <reitman@il.ibm.com>.
|
||||||
|
|
||||||
* An asynchronous name lookup library was added. The interface is designed
|
* An asynchronous name lookup library was added. The interface is designed
|
||||||
after POSIX AIO. The proposal was circulated beforehand to get comments.
|
after POSIX AIO. The proposal was circulated beforehand to get comments.
|
||||||
No negative ones came in. Implemented by Ulrich Drepper.
|
No negative ones came in. Implemented by Ulrich Drepper.
|
||||||
|
@ -58,9 +58,13 @@ libm-calls = e_acos e_acosh e_asin e_atan2 e_atanh e_cosh e_exp e_fmod \
|
|||||||
s_catan s_casin s_ccos s_csin s_ctan s_ctanh s_cacos \
|
s_catan s_casin s_ccos s_csin s_ctan s_ctanh s_cacos \
|
||||||
s_casinh s_cacosh s_catanh s_csqrt s_cpow s_cproj s_clog10 \
|
s_casinh s_cacosh s_catanh s_csqrt s_cpow s_cproj s_clog10 \
|
||||||
s_fma s_lrint s_llrint s_lround s_llround e_exp10
|
s_fma s_lrint s_llrint s_lround s_llround e_exp10
|
||||||
|
dbl-only-routines := branred doasin dosincos halfulp mpa mpatan2 \
|
||||||
|
mpatan mpexp mplog mpsqrt mptan sincos32 slowexp \
|
||||||
|
slowpow
|
||||||
libm-routines = $(strip $(libm-support) $(libm-calls) \
|
libm-routines = $(strip $(libm-support) $(libm-calls) \
|
||||||
$(patsubst %_rf,%f_r,$(libm-calls:=f)) \
|
$(patsubst %_rf,%f_r,$(libm-calls:=f)) \
|
||||||
$(long-m-$(long-double-fcts)))
|
$(long-m-$(long-double-fcts))) \
|
||||||
|
$(dbl-only-routines)
|
||||||
long-m-routines = $(patsubst %_rl,%l_r,$(libm-calls:=l))
|
long-m-routines = $(patsubst %_rl,%l_r,$(libm-calls:=l))
|
||||||
long-m-support = t_sincosl k_sincosl
|
long-m-support = t_sincosl k_sincosl
|
||||||
long-m-yes = $(long-m-routines) $(long-m-support)
|
long-m-yes = $(long-m-routines) $(long-m-support)
|
||||||
|
1
sysdeps/i386/fpu/branred.c
Normal file
1
sysdeps/i386/fpu/branred.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/doasin.c
Normal file
1
sysdeps/i386/fpu/doasin.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/dosincos.c
Normal file
1
sysdeps/i386/fpu/dosincos.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/halfulp.c
Normal file
1
sysdeps/i386/fpu/halfulp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mpa.c
Normal file
1
sysdeps/i386/fpu/mpa.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mpatan.c
Normal file
1
sysdeps/i386/fpu/mpatan.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mpatan2.c
Normal file
1
sysdeps/i386/fpu/mpatan2.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mpexp.c
Normal file
1
sysdeps/i386/fpu/mpexp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mplog.c
Normal file
1
sysdeps/i386/fpu/mplog.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mpsqrt.c
Normal file
1
sysdeps/i386/fpu/mpsqrt.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/mptan.c
Normal file
1
sysdeps/i386/fpu/mptan.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/sincos32.c
Normal file
1
sysdeps/i386/fpu/sincos32.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/slowexp.c
Normal file
1
sysdeps/i386/fpu/slowexp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/i386/fpu/slowpow.c
Normal file
1
sysdeps/i386/fpu/slowpow.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/branred.c
Normal file
1
sysdeps/ia64/fpu/branred.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/doasin.c
Normal file
1
sysdeps/ia64/fpu/doasin.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/dosincos.c
Normal file
1
sysdeps/ia64/fpu/dosincos.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/halfulp.c
Normal file
1
sysdeps/ia64/fpu/halfulp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mpa.c
Normal file
1
sysdeps/ia64/fpu/mpa.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mpatan.c
Normal file
1
sysdeps/ia64/fpu/mpatan.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mpatan2.c
Normal file
1
sysdeps/ia64/fpu/mpatan2.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mpexp.c
Normal file
1
sysdeps/ia64/fpu/mpexp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mplog.c
Normal file
1
sysdeps/ia64/fpu/mplog.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mpsqrt.c
Normal file
1
sysdeps/ia64/fpu/mpsqrt.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/mptan.c
Normal file
1
sysdeps/ia64/fpu/mptan.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/sincos32.c
Normal file
1
sysdeps/ia64/fpu/sincos32.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/slowexp.c
Normal file
1
sysdeps/ia64/fpu/slowexp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/ia64/fpu/slowpow.c
Normal file
1
sysdeps/ia64/fpu/slowpow.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
@ -1 +1,34 @@
|
|||||||
|
asincos.tbl
|
||||||
|
atnat.h
|
||||||
|
atnat2.h
|
||||||
|
branred.h
|
||||||
|
dla.h
|
||||||
|
doasin.h
|
||||||
|
dosincos.h
|
||||||
|
endian.h
|
||||||
|
MathLib.h
|
||||||
|
mpa.h
|
||||||
|
mpa2.h
|
||||||
|
mpatan.h
|
||||||
|
mpexp.h
|
||||||
|
mplog.h
|
||||||
|
mpsqrt.h
|
||||||
|
mydefs.h
|
||||||
|
powtwo.tbl
|
||||||
|
root.tbl
|
||||||
|
sincos.tbl
|
||||||
|
sincos32.h
|
||||||
t_exp2.h
|
t_exp2.h
|
||||||
|
uasncs.h
|
||||||
|
uatan.tbl
|
||||||
|
uexp.h
|
||||||
|
uexp.tbl
|
||||||
|
ulog.h
|
||||||
|
ulog.tbl
|
||||||
|
upow.h
|
||||||
|
upow.tbl
|
||||||
|
urem.h
|
||||||
|
uroot.h
|
||||||
|
usncs.h
|
||||||
|
utan.h
|
||||||
|
utan.tbl
|
||||||
|
102
sysdeps/ieee754/dbl-64/MathLib.h
Normal file
102
sysdeps/ieee754/dbl-64/MathLib.h
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/********************************************************************/
|
||||||
|
/* Ultimate math functions. Each function computes the exact */
|
||||||
|
/* theoretical value of its argument rounded to nearest or even. */
|
||||||
|
/* */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round nearest mode of IEEE 754 standard. */
|
||||||
|
/********************************************************************/
|
||||||
|
|
||||||
|
#ifndef UMATH_LIB
|
||||||
|
#define UMATH_LIB
|
||||||
|
/********************************************************************/
|
||||||
|
/* Function changes the precision mode to IEEE 754 double precision */
|
||||||
|
/* and the rounding mode to nearest or even. */
|
||||||
|
/* It returns the original status of these modes. */
|
||||||
|
/* See further explanations of usage in DPChange.h */
|
||||||
|
/********************************************************************/
|
||||||
|
unsigned short Init_Lib();
|
||||||
|
|
||||||
|
/********************************************************************/
|
||||||
|
/* Function that changes the precision and rounding modes to the */
|
||||||
|
/* specified by the argument received. See further explanations in */
|
||||||
|
/* DPChange.h */
|
||||||
|
/********************************************************************/
|
||||||
|
void Exit_Lib(unsigned short);
|
||||||
|
|
||||||
|
|
||||||
|
/* The asin() function calculates the arc sine of its argument. */
|
||||||
|
/* The function returns the arc sine in radians */
|
||||||
|
/* (between -PI/2 and PI/2). */
|
||||||
|
/* If the argument is greater than 1 or less than -1 it returns */
|
||||||
|
/* a NaN. */
|
||||||
|
double uasin(double );
|
||||||
|
|
||||||
|
|
||||||
|
/* The acos() function calculates the arc cosine of its argument. */
|
||||||
|
/* The function returns the arc cosine in radians */
|
||||||
|
/* (between -PI/2 and PI/2). */
|
||||||
|
/* If the argument is greater than 1 or less than -1 it returns */
|
||||||
|
/* a NaN. */
|
||||||
|
double uacos(double );
|
||||||
|
|
||||||
|
/* The atan() function calculates the arctanget of its argument. */
|
||||||
|
/* The function returns the arc tangent in radians */
|
||||||
|
/* (between -PI/2 and PI/2). */
|
||||||
|
double uatan(double );
|
||||||
|
|
||||||
|
|
||||||
|
/* The uatan2() function calculates the arc tangent of the two arguments x */
|
||||||
|
/* and y (x is the right argument and y is the left one).The signs of both */
|
||||||
|
/* arguments are used to determine the quadrant of the result. */
|
||||||
|
/* The function returns the result in radians, which is between -PI and PI */
|
||||||
|
double uatan2(double ,double );
|
||||||
|
|
||||||
|
/* Compute log(x). The base of log is e (natural logarithm) */
|
||||||
|
double ulog(double );
|
||||||
|
|
||||||
|
/* Compute e raised to the power of argument x. */
|
||||||
|
double uexp(double );
|
||||||
|
|
||||||
|
/* Compute sin(x). The argument x is assumed to be given in radians.*/
|
||||||
|
double usin(double );
|
||||||
|
|
||||||
|
/* Compute cos(x). The argument x is assumed to be given in radians.*/
|
||||||
|
double ucos(double );
|
||||||
|
|
||||||
|
/* Compute tan(x). The argument x is assumed to be given in radians.*/
|
||||||
|
double utan(double );
|
||||||
|
|
||||||
|
/* Compute the square root of non-negative argument x. */
|
||||||
|
/* If x is negative the returned value is NaN. */
|
||||||
|
double usqrt(double );
|
||||||
|
|
||||||
|
/* Compute x raised to the power of y, where x is the left argument */
|
||||||
|
/* and y is the right argument. The function returns a NaN if x<0. */
|
||||||
|
/* If x equals zero it returns -inf */
|
||||||
|
double upow(double , double );
|
||||||
|
|
||||||
|
/* Computing x mod y, where x is the left argument and y is the */
|
||||||
|
/* right one. */
|
||||||
|
double uremainder(double , double );
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
5149
sysdeps/ieee754/dbl-64/asincos.tbl
Normal file
5149
sysdeps/ieee754/dbl-64/asincos.tbl
Normal file
File diff suppressed because it is too large
Load Diff
166
sysdeps/ieee754/dbl-64/atnat.h
Normal file
166
sysdeps/ieee754/dbl-64/atnat.h
Normal file
@ -0,0 +1,166 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: atnat.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
#ifndef ATNAT_H
|
||||||
|
#define ATNAT_H
|
||||||
|
|
||||||
|
#define M 4
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ d3 = {0xbfd55555, 0x55555555, }, /* -0.333... */
|
||||||
|
/**/ d5 = {0x3fc99999, 0x999997fd, }, /* 0.199... */
|
||||||
|
/**/ d7 = {0xbfc24924, 0x923f7603, }, /* -0.142... */
|
||||||
|
/**/ d9 = {0x3fbc71c6, 0xe5129a3b, }, /* 0.111... */
|
||||||
|
/**/ d11 = {0xbfb74580, 0x22b13c25, }, /* -0.090... */
|
||||||
|
/**/ d13 = {0x3fb375f0, 0x8b31cbce, }, /* 0.076... */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ f3 = {0xbfd55555, 0x55555555, }, /* -1/3 */
|
||||||
|
/**/ ff3 = {0xbc755555, 0x55555555, }, /* -1/3-f3 */
|
||||||
|
/**/ f5 = {0x3fc99999, 0x9999999a, }, /* 1/5 */
|
||||||
|
/**/ ff5 = {0xbc699999, 0x9999999a, }, /* 1/5-f5 */
|
||||||
|
/**/ f7 = {0xbfc24924, 0x92492492, }, /* -1/7 */
|
||||||
|
/**/ ff7 = {0xbc624924, 0x92492492, }, /* -1/7-f7 */
|
||||||
|
/**/ f9 = {0x3fbc71c7, 0x1c71c71c, }, /* 1/9 */
|
||||||
|
/**/ ff9 = {0x3c5c71c7, 0x1c71c71c, }, /* 1/9-f9 */
|
||||||
|
/**/ f11 = {0xbfb745d1, 0x745d1746, }, /* -1/11 */
|
||||||
|
/**/ f13 = {0x3fb3b13b, 0x13b13b14, }, /* 1/13 */
|
||||||
|
/**/ f15 = {0xbfb11111, 0x11111111, }, /* -1/15 */
|
||||||
|
/**/ f17 = {0x3fae1e1e, 0x1e1e1e1e, }, /* 1/17 */
|
||||||
|
/**/ f19 = {0xbfaaf286, 0xbca1af28, }, /* -1/19 */
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ a = {0x3e4bb67a, 0x00000000, }, /* 1.290e-8 */
|
||||||
|
/**/ b = {0x3fb00000, 0x00000000, }, /* 1/16 */
|
||||||
|
/**/ c = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ d = {0x40300000, 0x00000000, }, /* 16 */
|
||||||
|
/**/ e = {0x43349ff2, 0x00000000, }, /* 5.805e15 */
|
||||||
|
/**/ hpi = {0x3ff921fb, 0x54442d18, }, /* pi/2 */
|
||||||
|
/**/ mhpi = {0xbff921fb, 0x54442d18, }, /* -pi/2 */
|
||||||
|
/**/ hpi1 = {0x3c91a626, 0x33145c07, }, /* pi/2-hpi */
|
||||||
|
/**/ u1 = {0x3c2d3382, 0x00000000, }, /* 7.915e-19 */
|
||||||
|
/**/ u21 = {0x3c6dffc0, 0x00000000, }, /* 1.301e-17 */
|
||||||
|
/**/ u22 = {0x3c527bd0, 0x00000000, }, /* 4.008e-18 */
|
||||||
|
/**/ u23 = {0x3c3cd057, 0x00000000, }, /* 1.562e-18 */
|
||||||
|
/**/ u24 = {0x3c329cdf, 0x00000000, }, /* 1.009e-18 */
|
||||||
|
/**/ u31 = {0x3c3a1edf, 0x00000000, }, /* 1.416e-18 */
|
||||||
|
/**/ u32 = {0x3c33f0e1, 0x00000000, }, /* 1.081e-18 */
|
||||||
|
/**/ u4 = {0x3bf955e4, 0x00000000, }, /* 8.584e-20 */
|
||||||
|
/**/ u5 = {0x3aaef2d1, 0x00000000, }, /* 5e-26 */
|
||||||
|
/**/ u6 = {0x3a98c56d, 0x00000000, }, /* 2.001e-26 */
|
||||||
|
/**/ u7 = {0x3a9375de, 0x00000000, }, /* 1.572e-26 */
|
||||||
|
/**/ u8 = {0x3a6eeb36, 0x00000000, }, /* 3.122e-27 */
|
||||||
|
/**/ u9[M] ={{0x38c1aa5b, 0x00000000, }, /* 2.658e-35 */
|
||||||
|
/**/ {0x35c1aa4d, 0x00000000, }, /* 9.443e-50 */
|
||||||
|
/**/ {0x32c1aa88, 0x00000000, }, /* 3.355e-64 */
|
||||||
|
/**/ {0x11c1aa56, 0x00000000, }},/* 3.818e-223 */
|
||||||
|
/**/ two8 = {0x40700000, 0x00000000, }, /* 2**8=256 */
|
||||||
|
/**/ two52 = {0x43300000, 0x00000000, }; /* 2**52 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ d3 = {0x55555555, 0xbfd55555, }, /* -0.333... */
|
||||||
|
/**/ d5 = {0x999997fd, 0x3fc99999, }, /* 0.199... */
|
||||||
|
/**/ d7 = {0x923f7603, 0xbfc24924, }, /* -0.142... */
|
||||||
|
/**/ d9 = {0xe5129a3b, 0x3fbc71c6, }, /* 0.111... */
|
||||||
|
/**/ d11 = {0x22b13c25, 0xbfb74580, }, /* -0.090... */
|
||||||
|
/**/ d13 = {0x8b31cbce, 0x3fb375f0, }, /* 0.076... */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ f3 = {0x55555555, 0xbfd55555, }, /* -1/3 */
|
||||||
|
/**/ ff3 = {0x55555555, 0xbc755555, }, /* -1/3-f3 */
|
||||||
|
/**/ f5 = {0x9999999a, 0x3fc99999, }, /* 1/5 */
|
||||||
|
/**/ ff5 = {0x9999999a, 0xbc699999, }, /* 1/5-f5 */
|
||||||
|
/**/ f7 = {0x92492492, 0xbfc24924, }, /* -1/7 */
|
||||||
|
/**/ ff7 = {0x92492492, 0xbc624924, }, /* -1/7-f7 */
|
||||||
|
/**/ f9 = {0x1c71c71c, 0x3fbc71c7, }, /* 1/9 */
|
||||||
|
/**/ ff9 = {0x1c71c71c, 0x3c5c71c7, }, /* 1/9-f9 */
|
||||||
|
/**/ f11 = {0x745d1746, 0xbfb745d1, }, /* -1/11 */
|
||||||
|
/**/ f13 = {0x13b13b14, 0x3fb3b13b, }, /* 1/13 */
|
||||||
|
/**/ f15 = {0x11111111, 0xbfb11111, }, /* -1/15 */
|
||||||
|
/**/ f17 = {0x1e1e1e1e, 0x3fae1e1e, }, /* 1/17 */
|
||||||
|
/**/ f19 = {0xbca1af28, 0xbfaaf286, }, /* -1/19 */
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ a = {0x00000000, 0x3e4bb67a, }, /* 1.290e-8 */
|
||||||
|
/**/ b = {0x00000000, 0x3fb00000, }, /* 1/16 */
|
||||||
|
/**/ c = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ d = {0x00000000, 0x40300000, }, /* 16 */
|
||||||
|
/**/ e = {0x00000000, 0x43349ff2, }, /* 5.805e15 */
|
||||||
|
/**/ hpi = {0x54442d18, 0x3ff921fb, }, /* pi/2 */
|
||||||
|
/**/ mhpi = {0x54442d18, 0xbff921fb, }, /* -pi/2 */
|
||||||
|
/**/ hpi1 = {0x33145c07, 0x3c91a626, }, /* pi/2-hpi */
|
||||||
|
/**/ u1 = {0x00000000, 0x3c2d3382, }, /* 7.915e-19 */
|
||||||
|
/**/ u21 = {0x00000000, 0x3c6dffc0, }, /* 1.301e-17 */
|
||||||
|
/**/ u22 = {0x00000000, 0x3c527bd0, }, /* 4.008e-18 */
|
||||||
|
/**/ u23 = {0x00000000, 0x3c3cd057, }, /* 1.562e-18 */
|
||||||
|
/**/ u24 = {0x00000000, 0x3c329cdf, }, /* 1.009e-18 */
|
||||||
|
/**/ u31 = {0x00000000, 0x3c3a1edf, }, /* 1.416e-18 */
|
||||||
|
/**/ u32 = {0x00000000, 0x3c33f0e1, }, /* 1.081e-18 */
|
||||||
|
/**/ u4 = {0x00000000, 0x3bf955e4, }, /* 8.584e-20 */
|
||||||
|
/**/ u5 = {0x00000000, 0x3aaef2d1, }, /* 5e-26 */
|
||||||
|
/**/ u6 = {0x00000000, 0x3a98c56d, }, /* 2.001e-26 */
|
||||||
|
/**/ u7 = {0x00000000, 0x3a9375de, }, /* 1.572e-26 */
|
||||||
|
/**/ u8 = {0x00000000, 0x3a6eeb36, }, /* 3.122e-27 */
|
||||||
|
/**/ u9[M] ={{0x00000000, 0x38c1aa5b, }, /* 2.658e-35 */
|
||||||
|
/**/ {0x00000000, 0x35c1aa4d, }, /* 9.443e-50 */
|
||||||
|
/**/ {0x00000000, 0x32c1aa88, }, /* 3.355e-64 */
|
||||||
|
/**/ {0x00000000, 0x11c1aa56, }},/* 3.818e-223 */
|
||||||
|
/**/ two8 = {0x00000000, 0x40700000, }, /* 2**8=256 */
|
||||||
|
/**/ two52 = {0x00000000, 0x43300000, }; /* 2**52 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ZERO zero.d
|
||||||
|
#define ONE one.d
|
||||||
|
#define A a.d
|
||||||
|
#define B b.d
|
||||||
|
#define C c.d
|
||||||
|
#define D d.d
|
||||||
|
#define E e.d
|
||||||
|
#define HPI hpi.d
|
||||||
|
#define MHPI mhpi.d
|
||||||
|
#define HPI1 hpi1.d
|
||||||
|
#define U1 u1.d
|
||||||
|
#define U21 u21.d
|
||||||
|
#define U22 u22.d
|
||||||
|
#define U23 u23.d
|
||||||
|
#define U24 u24.d
|
||||||
|
#define U31 u31.d
|
||||||
|
#define U32 u32.d
|
||||||
|
#define U4 u4.d
|
||||||
|
#define U5 u5.d
|
||||||
|
#define U6 u6.d
|
||||||
|
#define U7 u7.d
|
||||||
|
#define U8 u8.d
|
||||||
|
#define TWO8 two8.d
|
||||||
|
#define TWO52 two52.d
|
||||||
|
|
||||||
|
#endif
|
183
sysdeps/ieee754/dbl-64/atnat2.h
Normal file
183
sysdeps/ieee754/dbl-64/atnat2.h
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: atnat2.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef ATNAT2_H
|
||||||
|
#define ATNAT2_H
|
||||||
|
|
||||||
|
|
||||||
|
#define MM 5
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ d3 = {0xbfd55555, 0x55555555, }, /* -0.333... */
|
||||||
|
/**/ d5 = {0x3fc99999, 0x999997fd, }, /* 0.199... */
|
||||||
|
/**/ d7 = {0xbfc24924, 0x923f7603, }, /* -0.142... */
|
||||||
|
/**/ d9 = {0x3fbc71c6, 0xe5129a3b, }, /* 0.111... */
|
||||||
|
/**/ d11 = {0xbfb74580, 0x22b13c25, }, /* -0.090... */
|
||||||
|
/**/ d13 = {0x3fb375f0, 0x8b31cbce, }, /* 0.076... */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ f3 = {0xbfd55555, 0x55555555, }, /* -1/3 */
|
||||||
|
/**/ ff3 = {0xbc755555, 0x55555555, }, /* -1/3-f3 */
|
||||||
|
/**/ f5 = {0x3fc99999, 0x9999999a, }, /* 1/5 */
|
||||||
|
/**/ ff5 = {0xbc699999, 0x9999999a, }, /* 1/5-f5 */
|
||||||
|
/**/ f7 = {0xbfc24924, 0x92492492, }, /* -1/7 */
|
||||||
|
/**/ ff7 = {0xbc624924, 0x92492492, }, /* -1/7-f7 */
|
||||||
|
/**/ f9 = {0x3fbc71c7, 0x1c71c71c, }, /* 1/9 */
|
||||||
|
/**/ ff9 = {0x3c5c71c7, 0x1c71c71c, }, /* 1/9-f9 */
|
||||||
|
/**/ f11 = {0xbfb745d1, 0x745d1746, }, /* -1/11 */
|
||||||
|
/**/ f13 = {0x3fb3b13b, 0x13b13b14, }, /* 1/13 */
|
||||||
|
/**/ f15 = {0xbfb11111, 0x11111111, }, /* -1/15 */
|
||||||
|
/**/ f17 = {0x3fae1e1e, 0x1e1e1e1e, }, /* 1/17 */
|
||||||
|
/**/ f19 = {0xbfaaf286, 0xbca1af28, }, /* -1/19 */
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ mzero = {0x80000000, 0x00000000, }, /* -0 */
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ inv16 = {0x3fb00000, 0x00000000, }, /* 1/16 */
|
||||||
|
/**/ opi = {0x400921fb, 0x54442d18, }, /* pi */
|
||||||
|
/**/ opi1 = {0x3ca1a626, 0x33145c07, }, /* pi-opi */
|
||||||
|
/**/ mopi = {0xc00921fb, 0x54442d18, }, /* -pi */
|
||||||
|
/**/ hpi = {0x3ff921fb, 0x54442d18, }, /* pi/2 */
|
||||||
|
/**/ hpi1 = {0x3c91a626, 0x33145c07, }, /* pi/2-hpi */
|
||||||
|
/**/ mhpi = {0xbff921fb, 0x54442d18, }, /* -pi/2 */
|
||||||
|
/**/ qpi = {0x3fe921fb, 0x54442d18, }, /* pi/4 */
|
||||||
|
/**/ qpi1 = {0x3c81a626, 0x33145c07, }, /* pi/4-qpi */
|
||||||
|
/**/ mqpi = {0xbfe921fb, 0x54442d18, }, /* -pi/4 */
|
||||||
|
/**/ tqpi = {0x4002d97c, 0x7f3321d2, }, /* 3pi/4 */
|
||||||
|
/**/ tqpi1 = {0x3c9a7939, 0x4c9e8a0a, }, /* 3pi/4-tqpi */
|
||||||
|
/**/ mtqpi = {0xc002d97c, 0x7f3321d2, }, /* -3pi/4 */
|
||||||
|
/**/ u1 = {0x3c314c2a, 0x00000000, }, /* 9.377e-19 */
|
||||||
|
/**/ u2 = {0x3bf955e4, 0x00000000, }, /* 8.584e-20 */
|
||||||
|
/**/ u3 = {0x3bf955e4, 0x00000000, }, /* 8.584e-20 */
|
||||||
|
/**/ u4 = {0x3bf955e4, 0x00000000, }, /* 8.584e-20 */
|
||||||
|
/**/ u5 = {0x3aaef2d1, 0x00000000, }, /* 5e-26 */
|
||||||
|
/**/ u6 = {0x3a6eeb36, 0x00000000, }, /* 3.122e-27 */
|
||||||
|
/**/ u7 = {0x3a6eeb36, 0x00000000, }, /* 3.122e-27 */
|
||||||
|
/**/ u8 = {0x3a6eeb36, 0x00000000, }, /* 3.122e-27 */
|
||||||
|
/**/ u91 = {0x3c6dffc0, 0x00000000, }, /* 1.301e-17 */
|
||||||
|
/**/ u92 = {0x3c527bd0, 0x00000000, }, /* 4.008e-18 */
|
||||||
|
/**/ u93 = {0x3c3cd057, 0x00000000, }, /* 1.562e-18 */
|
||||||
|
/**/ u94 = {0x3c329cdf, 0x00000000, }, /* 1.009e-18 */
|
||||||
|
/**/ ua1 = {0x3c3a1edf, 0x00000000, }, /* 1.416e-18 */
|
||||||
|
/**/ ua2 = {0x3c33f0e1, 0x00000000, }, /* 1.081e-18 */
|
||||||
|
/**/ ub = {0x3a98c56d, 0x00000000, }, /* 2.001e-26 */
|
||||||
|
/**/ uc = {0x3a9375de, 0x00000000, }, /* 1.572e-26 */
|
||||||
|
/**/ ud[MM] ={{0x38c6eddf, 0x00000000, }, /* 3.450e-35 */
|
||||||
|
/**/ {0x35c6ef60, 0x00000000, }, /* 1.226e-49 */
|
||||||
|
/**/ {0x32c6ed2f, 0x00000000, }, /* 4.354e-64 */
|
||||||
|
/**/ {0x23c6eee8, 0x00000000, }, /* 2.465e-136 */
|
||||||
|
/**/ {0x11c6ed16, 0x00000000, }},/* 4.955e-223 */
|
||||||
|
/**/ ue = {0x38900e9d, 0x00000000, }, /* 3.02e-36 */
|
||||||
|
/**/ two8 = {0x40700000, 0x00000000, }, /* 2**8=256 */
|
||||||
|
/**/ two52 = {0x43300000, 0x00000000, }, /* 2**52 */
|
||||||
|
/**/ two500 = {0x5f300000, 0x00000000, }, /* 2**500 */
|
||||||
|
/**/ twom500 = {0x20b00000, 0x00000000, }, /* 2**(-500) */
|
||||||
|
/**/ twom1022 = {0x00100000, 0x00000000, }; /* 2**(-1022) */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ d3 = {0x55555555, 0xbfd55555, }, /* -0.333... */
|
||||||
|
/**/ d5 = {0x999997fd, 0x3fc99999, }, /* 0.199... */
|
||||||
|
/**/ d7 = {0x923f7603, 0xbfc24924, }, /* -0.142... */
|
||||||
|
/**/ d9 = {0xe5129a3b, 0x3fbc71c6, }, /* 0.111... */
|
||||||
|
/**/ d11 = {0x22b13c25, 0xbfb74580, }, /* -0.090... */
|
||||||
|
/**/ d13 = {0x8b31cbce, 0x3fb375f0, }, /* 0.076... */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ f3 = {0x55555555, 0xbfd55555, }, /* -1/3 */
|
||||||
|
/**/ ff3 = {0x55555555, 0xbc755555, }, /* -1/3-f3 */
|
||||||
|
/**/ f5 = {0x9999999a, 0x3fc99999, }, /* 1/5 */
|
||||||
|
/**/ ff5 = {0x9999999a, 0xbc699999, }, /* 1/5-f5 */
|
||||||
|
/**/ f7 = {0x92492492, 0xbfc24924, }, /* -1/7 */
|
||||||
|
/**/ ff7 = {0x92492492, 0xbc624924, }, /* -1/7-f7 */
|
||||||
|
/**/ f9 = {0x1c71c71c, 0x3fbc71c7, }, /* 1/9 */
|
||||||
|
/**/ ff9 = {0x1c71c71c, 0x3c5c71c7, }, /* 1/9-f9 */
|
||||||
|
/**/ f11 = {0x745d1746, 0xbfb745d1, }, /* -1/11 */
|
||||||
|
/**/ f13 = {0x13b13b14, 0x3fb3b13b, }, /* 1/13 */
|
||||||
|
/**/ f15 = {0x11111111, 0xbfb11111, }, /* -1/15 */
|
||||||
|
/**/ f17 = {0x1e1e1e1e, 0x3fae1e1e, }, /* 1/17 */
|
||||||
|
/**/ f19 = {0xbca1af28, 0xbfaaf286, }, /* -1/19 */
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ mzero = {0x00000000, 0x80000000, }, /* -0 */
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ inv16 = {0x00000000, 0x3fb00000, }, /* 1/16 */
|
||||||
|
/**/ opi = {0x54442d18, 0x400921fb, }, /* pi */
|
||||||
|
/**/ opi1 = {0x33145c07, 0x3ca1a626, }, /* pi-opi */
|
||||||
|
/**/ mopi = {0x54442d18, 0xc00921fb, }, /* -pi */
|
||||||
|
/**/ hpi = {0x54442d18, 0x3ff921fb, }, /* pi/2 */
|
||||||
|
/**/ hpi1 = {0x33145c07, 0x3c91a626, }, /* pi/2-hpi */
|
||||||
|
/**/ mhpi = {0x54442d18, 0xbff921fb, }, /* -pi/2 */
|
||||||
|
/**/ qpi = {0x54442d18, 0x3fe921fb, }, /* pi/4 */
|
||||||
|
/**/ qpi1 = {0x33145c07, 0x3c81a626, }, /* pi/4-qpi */
|
||||||
|
/**/ mqpi = {0x54442d18, 0xbfe921fb, }, /* -pi/4 */
|
||||||
|
/**/ tqpi = {0x7f3321d2, 0x4002d97c, }, /* 3pi/4 */
|
||||||
|
/**/ tqpi1 = {0x4c9e8a0a, 0x3c9a7939, }, /* 3pi/4-tqpi */
|
||||||
|
/**/ mtqpi = {0x7f3321d2, 0xc002d97c, }, /* -3pi/4 */
|
||||||
|
/**/ u1 = {0x00000000, 0x3c314c2a, }, /* 9.377e-19 */
|
||||||
|
/**/ u2 = {0x00000000, 0x3bf955e4, }, /* 8.584e-20 */
|
||||||
|
/**/ u3 = {0x00000000, 0x3bf955e4, }, /* 8.584e-20 */
|
||||||
|
/**/ u4 = {0x00000000, 0x3bf955e4, }, /* 8.584e-20 */
|
||||||
|
/**/ u5 = {0x00000000, 0x3aaef2d1, }, /* 5e-26 */
|
||||||
|
/**/ u6 = {0x00000000, 0x3a6eeb36, }, /* 3.122e-27 */
|
||||||
|
/**/ u7 = {0x00000000, 0x3a6eeb36, }, /* 3.122e-27 */
|
||||||
|
/**/ u8 = {0x00000000, 0x3a6eeb36, }, /* 3.122e-27 */
|
||||||
|
/**/ u91 = {0x00000000, 0x3c6dffc0, }, /* 1.301e-17 */
|
||||||
|
/**/ u92 = {0x00000000, 0x3c527bd0, }, /* 4.008e-18 */
|
||||||
|
/**/ u93 = {0x00000000, 0x3c3cd057, }, /* 1.562e-18 */
|
||||||
|
/**/ u94 = {0x00000000, 0x3c329cdf, }, /* 1.009e-18 */
|
||||||
|
/**/ ua1 = {0x00000000, 0x3c3a1edf, }, /* 1.416e-18 */
|
||||||
|
/**/ ua2 = {0x00000000, 0x3c33f0e1, }, /* 1.081e-18 */
|
||||||
|
/**/ ub = {0x00000000, 0x3a98c56d, }, /* 2.001e-26 */
|
||||||
|
/**/ uc = {0x00000000, 0x3a9375de, }, /* 1.572e-26 */
|
||||||
|
/**/ ud[MM] ={{0x00000000, 0x38c6eddf, }, /* 3.450e-35 */
|
||||||
|
/**/ {0x00000000, 0x35c6ef60, }, /* 1.226e-49 */
|
||||||
|
/**/ {0x00000000, 0x32c6ed2f, }, /* 4.354e-64 */
|
||||||
|
/**/ {0x00000000, 0x23c6eee8, }, /* 2.465e-136 */
|
||||||
|
/**/ {0x00000000, 0x11c6ed16, }},/* 4.955e-223 */
|
||||||
|
/**/ ue = {0x00000000, 0x38900e9d, }, /* 3.02e-36 */
|
||||||
|
/**/ two8 = {0x00000000, 0x40700000, }, /* 2**8=256 */
|
||||||
|
/**/ two52 = {0x00000000, 0x43300000, }, /* 2**52 */
|
||||||
|
/**/ two500 = {0x00000000, 0x5f300000, }, /* 2**500 */
|
||||||
|
/**/ twom500 = {0x00000000, 0x20b00000, }, /* 2**(-500) */
|
||||||
|
/**/ twom1022 = {0x00000000, 0x00100000, }; /* 2**(-1022) */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ZERO zero.d
|
||||||
|
#define MZERO mzero.d
|
||||||
|
#define ONE one.d
|
||||||
|
#define TWO8 two8.d
|
||||||
|
#define TWO52 two52.d
|
||||||
|
#define TWOM1022 twom1022.d
|
||||||
|
|
||||||
|
#endif
|
139
sysdeps/ieee754/dbl-64/branred.c
Normal file
139
sysdeps/ieee754/dbl-64/branred.c
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/*******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME: branred.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: branred */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: branred.h mydefs.h endian.h mpa.h */
|
||||||
|
/* mha.c */
|
||||||
|
/* */
|
||||||
|
/* Routine branred() performs range reduction of a double number */
|
||||||
|
/* x into Double length number a+aa,such that */
|
||||||
|
/* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */
|
||||||
|
/* Routine returns the integer (n mod 4) of the above description */
|
||||||
|
/* of x. */
|
||||||
|
/*******************************************************************/
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mydefs.h"
|
||||||
|
#include "branred.h"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*******************************************************************/
|
||||||
|
/* Routine branred() performs range reduction of a double number */
|
||||||
|
/* x into Double length number a+aa,such that */
|
||||||
|
/* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */
|
||||||
|
/* Routine return integer (n mod 4) */
|
||||||
|
/*******************************************************************/
|
||||||
|
int branred(double x, double *a, double *aa)
|
||||||
|
{
|
||||||
|
int i,k,n;
|
||||||
|
mynumber u,v,gor;
|
||||||
|
double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2;
|
||||||
|
|
||||||
|
x*=tm600.x;
|
||||||
|
t=x*split; /* split x to two numbers */
|
||||||
|
x1=t-(t-x);
|
||||||
|
x2=x-x1;
|
||||||
|
sum=0;
|
||||||
|
u.x = x1;
|
||||||
|
k = (u.i[HIGH_HALF]>>20)&2047;
|
||||||
|
k = (k-450)/24;
|
||||||
|
if (k<0)
|
||||||
|
k=0;
|
||||||
|
gor.x = t576.x;
|
||||||
|
gor.i[HIGH_HALF] -= ((k*24)<<20);
|
||||||
|
for (i=0;i<6;i++)
|
||||||
|
{ r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; }
|
||||||
|
for (i=0;i<3;i++) {
|
||||||
|
s=(r[i]+big.x)-big.x;
|
||||||
|
sum+=s;
|
||||||
|
r[i]-=s;
|
||||||
|
}
|
||||||
|
t=0;
|
||||||
|
for (i=0;i<6;i++)
|
||||||
|
t+=r[5-i];
|
||||||
|
bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
|
||||||
|
s=(t+big.x)-big.x;
|
||||||
|
sum+=s;
|
||||||
|
t-=s;
|
||||||
|
b=t+bb;
|
||||||
|
bb=(t-b)+bb;
|
||||||
|
s=(sum+big1.x)-big1.x;
|
||||||
|
sum-=s;
|
||||||
|
b1=b;
|
||||||
|
bb1=bb;
|
||||||
|
sum1=sum;
|
||||||
|
sum=0;
|
||||||
|
|
||||||
|
u.x = x2;
|
||||||
|
k = (u.i[HIGH_HALF]>>20)&2047;
|
||||||
|
k = (k-450)/24;
|
||||||
|
if (k<0)
|
||||||
|
k=0;
|
||||||
|
gor.x = t576.x;
|
||||||
|
gor.i[HIGH_HALF] -= ((k*24)<<20);
|
||||||
|
for (i=0;i<6;i++)
|
||||||
|
{ r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; }
|
||||||
|
for (i=0;i<3;i++) {
|
||||||
|
s=(r[i]+big.x)-big.x;
|
||||||
|
sum+=s;
|
||||||
|
r[i]-=s;
|
||||||
|
}
|
||||||
|
t=0;
|
||||||
|
for (i=0;i<6;i++)
|
||||||
|
t+=r[5-i];
|
||||||
|
bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
|
||||||
|
s=(t+big.x)-big.x;
|
||||||
|
sum+=s;
|
||||||
|
t-=s;
|
||||||
|
b=t+bb;
|
||||||
|
bb=(t-b)+bb;
|
||||||
|
s=(sum+big1.x)-big1.x;
|
||||||
|
sum-=s;
|
||||||
|
|
||||||
|
b2=b;
|
||||||
|
bb2=bb;
|
||||||
|
sum2=sum;
|
||||||
|
|
||||||
|
sum=sum1+sum2;
|
||||||
|
b=b1+b2;
|
||||||
|
bb = (ABS(b1)>ABS(b2))? (b1-b)+b2 : (b2-b)+b1;
|
||||||
|
if (b > 0.5)
|
||||||
|
{b-=1.0; sum+=1.0;}
|
||||||
|
else if (b < -0.5)
|
||||||
|
{b+=1.0; sum-=1.0;}
|
||||||
|
s=b+(bb+bb1+bb2);
|
||||||
|
t=((b-s)+bb)+(bb1+bb2);
|
||||||
|
b=s*split;
|
||||||
|
t1=b-(b-s);
|
||||||
|
t2=s-t1;
|
||||||
|
b=s*hp0.x;
|
||||||
|
bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x);
|
||||||
|
s=b+bb;
|
||||||
|
t=(b-s)+bb;
|
||||||
|
*a=s;
|
||||||
|
*aa=t;
|
||||||
|
return ((int) sum)&3; /* return quater of unit circle */
|
||||||
|
}
|
||||||
|
|
80
sysdeps/ieee754/dbl-64/branred.h
Normal file
80
sysdeps/ieee754/dbl-64/branred.h
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: branred.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
#ifndef BRANRED_H
|
||||||
|
#define BRANRED_H
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const mynumber
|
||||||
|
|
||||||
|
/**/ t576 = {0x63f00000, 0x00000000 }, /* 2 ^ 576 */
|
||||||
|
/**/ tm600 = {0x1a700000, 0x00000000 }, /* 2 ^- 600 */
|
||||||
|
/**/ tm24 = {0x3e700000, 0x00000000 }, /* 2 ^- 24 */
|
||||||
|
/**/ big = {0x43380000, 0x00000000 }, /* 6755399441055744 */
|
||||||
|
/**/ big1 = {0x43580000, 0x00000000 }, /* 27021597764222976 */
|
||||||
|
/**/ hp0 = {0x3FF921FB, 0x54442D18 } ,/* 1.5707963267948966 */
|
||||||
|
/**/ hp1 = {0x3C91A626, 0x33145C07 } ,/* 6.123233995736766e-17 */
|
||||||
|
/**/ mp1 = {0x3FF921FB, 0x58000000 }, /* 1.5707963407039642 */
|
||||||
|
/**/ mp2 = {0xBE4DDE97, 0x40000000 }; /*-1.3909067675399456e-08 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const mynumber
|
||||||
|
|
||||||
|
/**/ t576 = {0x00000000, 0x63f00000 }, /* 2 ^ 576 */
|
||||||
|
/**/ tm600 = {0x00000000, 0x1a700000 }, /* 2 ^- 600 */
|
||||||
|
/**/ tm24 = {0x00000000, 0x3e700000 }, /* 2 ^- 24 */
|
||||||
|
/**/ big = {0x00000000, 0x43380000 }, /* 6755399441055744 */
|
||||||
|
/**/ big1 = {0x00000000, 0x43580000 }, /* 27021597764222976 */
|
||||||
|
/**/ hp0 = {0x54442D18, 0x3FF921FB }, /* 1.5707963267948966 */
|
||||||
|
/**/ hp1 = {0x33145C07, 0x3C91A626 }, /* 6.123233995736766e-17 */
|
||||||
|
/**/ mp1 = {0x58000000, 0x3FF921FB }, /* 1.5707963407039642 */
|
||||||
|
/**/ mp2 = {0x40000000, 0xBE4DDE97 }; /*-1.3909067675399456e-08 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static const double toverp[75] = { /* 2/ PI base 24*/
|
||||||
|
10680707.0, 7228996.0, 1387004.0, 2578385.0, 16069853.0,
|
||||||
|
12639074.0, 9804092.0, 4427841.0, 16666979.0, 11263675.0,
|
||||||
|
12935607.0, 2387514.0, 4345298.0, 14681673.0, 3074569.0,
|
||||||
|
13734428.0, 16653803.0, 1880361.0, 10960616.0, 8533493.0,
|
||||||
|
3062596.0, 8710556.0, 7349940.0, 6258241.0, 3772886.0,
|
||||||
|
3769171.0, 3798172.0, 8675211.0, 12450088.0, 3874808.0,
|
||||||
|
9961438.0, 366607.0, 15675153.0, 9132554.0, 7151469.0,
|
||||||
|
3571407.0, 2607881.0, 12013382.0, 4155038.0, 6285869.0,
|
||||||
|
7677882.0, 13102053.0, 15825725.0, 473591.0, 9065106.0,
|
||||||
|
15363067.0, 6271263.0, 9264392.0, 5636912.0, 4652155.0,
|
||||||
|
7056368.0, 13614112.0, 10155062.0, 1944035.0, 9527646.0,
|
||||||
|
15080200.0, 6658437.0, 6231200.0, 6832269.0, 16767104.0,
|
||||||
|
5075751.0, 3212806.0, 1398474.0, 7579849.0, 6349435.0,
|
||||||
|
12618859.0, 4703257.0, 12806093.0, 14477321.0, 2786137.0,
|
||||||
|
12875403.0, 9837734.0, 14528324.0, 13719321.0, 343717.0 };
|
||||||
|
|
||||||
|
static const double split = 134217729.0;
|
||||||
|
|
||||||
|
#endif
|
173
sysdeps/ieee754/dbl-64/dla.h
Normal file
173
sysdeps/ieee754/dbl-64/dla.h
Normal file
@ -0,0 +1,173 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/***********************************************************************/
|
||||||
|
/*MODULE_NAME: dla.h */
|
||||||
|
/* */
|
||||||
|
/* This file holds C language macros for 'Double Length Floating Point */
|
||||||
|
/* Arithmetic'. The macros are based on the paper: */
|
||||||
|
/* T.J.Dekker, "A floating-point Technique for extending the */
|
||||||
|
/* Available Precision", Number. Math. 18, 224-242 (1971). */
|
||||||
|
/* A Double-Length number is defined by a pair (r,s), of IEEE double */
|
||||||
|
/* precision floating point numbers that satisfy, */
|
||||||
|
/* */
|
||||||
|
/* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
|
||||||
|
/* */
|
||||||
|
/* The computer arithmetic assumed is IEEE double precision in */
|
||||||
|
/* round to nearest mode. All variables in the macros must be of type */
|
||||||
|
/* IEEE double. */
|
||||||
|
/***********************************************************************/
|
||||||
|
|
||||||
|
/* CN = 1+2**27 = '41a0000002000000' IEEE double format */
|
||||||
|
#define CN 134217729.0
|
||||||
|
|
||||||
|
|
||||||
|
/* Exact addition of two single-length floating point numbers, Dekker. */
|
||||||
|
/* The macro produces a double-length number (z,zz) that satisfies */
|
||||||
|
/* z+zz = x+y exactly. */
|
||||||
|
|
||||||
|
#define EADD(x,y,z,zz) \
|
||||||
|
z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
|
||||||
|
|
||||||
|
|
||||||
|
/* Exact subtraction of two single-length floating point numbers, Dekker. */
|
||||||
|
/* The macro produces a double-length number (z,zz) that satisfies */
|
||||||
|
/* z+zz = x-y exactly. */
|
||||||
|
|
||||||
|
#define ESUB(x,y,z,zz) \
|
||||||
|
z=(x)-(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
|
||||||
|
|
||||||
|
|
||||||
|
/* Exact multiplication of two single-length floating point numbers, */
|
||||||
|
/* Veltkamp. The macro produces a double-length number (z,zz) that */
|
||||||
|
/* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
|
||||||
|
/* storage variables of type double. */
|
||||||
|
|
||||||
|
#define EMULV(x,y,z,zz,p,hx,tx,hy,ty) \
|
||||||
|
p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
|
||||||
|
p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
|
||||||
|
z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;
|
||||||
|
|
||||||
|
|
||||||
|
/* Exact multiplication of two single-length floating point numbers, Dekker. */
|
||||||
|
/* The macro produces a nearly double-length number (z,zz) (see Dekker) */
|
||||||
|
/* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
|
||||||
|
/* storage variables of type double. */
|
||||||
|
|
||||||
|
#define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
|
||||||
|
p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
|
||||||
|
p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
|
||||||
|
p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
|
||||||
|
|
||||||
|
|
||||||
|
/* Double-length addition, Dekker. The macro produces a double-length */
|
||||||
|
/* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
|
||||||
|
/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
|
||||||
|
/* are assumed to be double-length numbers. r,s are temporary */
|
||||||
|
/* storage variables of type double. */
|
||||||
|
|
||||||
|
#define ADD2(x,xx,y,yy,z,zz,r,s) \
|
||||||
|
r=(x)+(y); s=(ABS(x)>ABS(y)) ? \
|
||||||
|
(((((x)-r)+(y))+(yy))+(xx)) : \
|
||||||
|
(((((y)-r)+(x))+(xx))+(yy)); \
|
||||||
|
z=r+s; zz=(r-z)+s;
|
||||||
|
|
||||||
|
|
||||||
|
/* Double-length subtraction, Dekker. The macro produces a double-length */
|
||||||
|
/* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
|
||||||
|
/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
|
||||||
|
/* are assumed to be double-length numbers. r,s are temporary */
|
||||||
|
/* storage variables of type double. */
|
||||||
|
|
||||||
|
#define SUB2(x,xx,y,yy,z,zz,r,s) \
|
||||||
|
r=(x)-(y); s=(ABS(x)>ABS(y)) ? \
|
||||||
|
(((((x)-r)-(y))-(yy))+(xx)) : \
|
||||||
|
((((x)-((y)+r))+(xx))-(yy)); \
|
||||||
|
z=r+s; zz=(r-z)+s;
|
||||||
|
|
||||||
|
|
||||||
|
/* Double-length multiplication, Dekker. The macro produces a double-length */
|
||||||
|
/* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
|
||||||
|
/* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
|
||||||
|
/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
|
||||||
|
/* temporary storage variables of type double. */
|
||||||
|
|
||||||
|
#define MUL2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc) \
|
||||||
|
MUL12(x,y,c,cc,p,hx,tx,hy,ty,q) \
|
||||||
|
cc=((x)*(yy)+(xx)*(y))+cc; z=c+cc; zz=(c-z)+cc;
|
||||||
|
|
||||||
|
|
||||||
|
/* Double-length division, Dekker. The macro produces a double-length */
|
||||||
|
/* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
|
||||||
|
/* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
|
||||||
|
/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
|
||||||
|
/* are temporary storage variables of type double. */
|
||||||
|
|
||||||
|
#define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
|
||||||
|
c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
|
||||||
|
cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
|
||||||
|
|
||||||
|
|
||||||
|
/* Double-length addition, slower but more accurate than ADD2. */
|
||||||
|
/* The macro produces a double-length */
|
||||||
|
/* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
|
||||||
|
/* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
|
||||||
|
/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
|
||||||
|
/* are temporary storage variables of type double. */
|
||||||
|
|
||||||
|
#define ADD2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w) \
|
||||||
|
r=(x)+(y); \
|
||||||
|
if (ABS(x)>ABS(y)) { rr=((x)-r)+(y); s=(rr+(yy))+(xx); } \
|
||||||
|
else { rr=((y)-r)+(x); s=(rr+(xx))+(yy); } \
|
||||||
|
if (rr!=0.0) { \
|
||||||
|
z=r+s; zz=(r-z)+s; } \
|
||||||
|
else { \
|
||||||
|
ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)+(yy)) : (((yy)-s)+(xx)); \
|
||||||
|
u=r+s; \
|
||||||
|
uu=(ABS(r)>ABS(s)) ? ((r-u)+s) : ((s-u)+r) ; \
|
||||||
|
w=uu+ss; z=u+w; \
|
||||||
|
zz=(ABS(u)>ABS(w)) ? ((u-z)+w) : ((w-z)+u) ; }
|
||||||
|
|
||||||
|
|
||||||
|
/* Double-length subtraction, slower but more accurate than SUB2. */
|
||||||
|
/* The macro produces a double-length */
|
||||||
|
/* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
|
||||||
|
/* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
|
||||||
|
/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
|
||||||
|
/* are temporary storage variables of type double. */
|
||||||
|
|
||||||
|
#define SUB2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w) \
|
||||||
|
r=(x)-(y); \
|
||||||
|
if (ABS(x)>ABS(y)) { rr=((x)-r)-(y); s=(rr-(yy))+(xx); } \
|
||||||
|
else { rr=(x)-((y)+r); s=(rr+(xx))-(yy); } \
|
||||||
|
if (rr!=0.0) { \
|
||||||
|
z=r+s; zz=(r-z)+s; } \
|
||||||
|
else { \
|
||||||
|
ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)-(yy)) : ((xx)-((yy)+s)); \
|
||||||
|
u=r+s; \
|
||||||
|
uu=(ABS(r)>ABS(s)) ? ((r-u)+s) : ((s-u)+r) ; \
|
||||||
|
w=uu+ss; z=u+w; \
|
||||||
|
zz=(ABS(u)>ABS(w)) ? ((u-z)+w) : ((w-z)+u) ; }
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
81
sysdeps/ieee754/dbl-64/doasin.c
Normal file
81
sysdeps/ieee754/dbl-64/doasin.c
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/**********************************************************************/
|
||||||
|
/* MODULE_NAME: doasin.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION: doasin */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED:endian.h mydefs.h dla.h doasin.h */
|
||||||
|
/* mpa.c */
|
||||||
|
/* */
|
||||||
|
/* Compute arcsin(x,dx,v) of double-length number (x+dx) the result */
|
||||||
|
/* stored in v where v= v[0]+v[1] =arcsin(x+dx) */
|
||||||
|
/**********************************************************************/
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mydefs.h"
|
||||||
|
#include "dla.h"
|
||||||
|
|
||||||
|
/********************************************************************/
|
||||||
|
/* Compute arcsin(x,dx,v) of double-length number (x+dx) the result */
|
||||||
|
/* stored in v where v= v[0]+v[1] =arcsin(x+dx) */
|
||||||
|
/********************************************************************/
|
||||||
|
void doasin(double x, double dx, double v[]) {
|
||||||
|
|
||||||
|
#include "doasin.h"
|
||||||
|
|
||||||
|
static const double
|
||||||
|
d5 = 0.22372159090911789889975459505194491E-01,
|
||||||
|
d6 = 0.17352764422456822913014975683014622E-01,
|
||||||
|
d7 = 0.13964843843786693521653681033981614E-01,
|
||||||
|
d8 = 0.11551791438485242609036067259086589E-01,
|
||||||
|
d9 = 0.97622386568166960207425666787248914E-02,
|
||||||
|
d10 = 0.83638737193775788576092749009744976E-02,
|
||||||
|
d11 = 0.79470250400727425881446981833568758E-02;
|
||||||
|
|
||||||
|
double xx,p,pp,u,uu,r,s;
|
||||||
|
double hx,tx,hy,ty,tp,tq,tc,tcc;
|
||||||
|
|
||||||
|
|
||||||
|
/* Taylor series for arcsin for Double-Length numbers */
|
||||||
|
xx = x*x+2.0*x*dx;
|
||||||
|
p = ((((((d11*xx+d10)*xx+d9)*xx+d8)*xx+d7)*xx+d6)*xx+d5)*xx;
|
||||||
|
pp = 0;
|
||||||
|
|
||||||
|
MUL2(x,dx,x,dx,u,uu,tp,hx,tx,hy,ty,tq,tc,tcc);
|
||||||
|
ADD2(p,pp,c4.x,cc4.x,p,pp,r,s);
|
||||||
|
MUL2(p,pp,u,uu,p,pp,tp,hx,tx,hy,ty,tq,tc,tcc);
|
||||||
|
ADD2(p,pp,c3.x,cc3.x,p,pp,r,s);
|
||||||
|
MUL2(p,pp,u,uu,p,pp,tp,hx,tx,hy,ty,tq,tc,tcc);
|
||||||
|
ADD2(p,pp,c2.x,cc2.x,p,pp,r,s);
|
||||||
|
MUL2(p,pp,u,uu,p,pp,tp,hx,tx,hy,ty,tq,tc,tcc);
|
||||||
|
ADD2(p,pp,c1.x,cc1.x,p,pp,r,s);
|
||||||
|
MUL2(p,pp,u,uu,p,pp,tp,hx,tx,hy,ty,tq,tc,tcc);
|
||||||
|
MUL2(p,pp,x,dx,p,pp,tp,hx,tx,hy,ty,tq,tc,tcc);
|
||||||
|
ADD2(p,pp,x,dx,p,pp,r,s);
|
||||||
|
v[0]=p;
|
||||||
|
v[1]=pp; /* arcsin(x+dx)=v[0]+v[1] */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
62
sysdeps/ieee754/dbl-64/doasin.h
Normal file
62
sysdeps/ieee754/dbl-64/doasin.h
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: doasin.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef DOASIN_H
|
||||||
|
#define DOASIN_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
|
||||||
|
static const mynumber
|
||||||
|
/**/ c1 = {0x3FC55555, 0x55555555}, /* 0.16666666666666666 */
|
||||||
|
/**/ cc1 = {0x3C655555, 0x55775389}, /* 9.2518585419753846e-18 */
|
||||||
|
/**/ c2 = {0x3FB33333, 0x33333333}, /* 0.074999999999999997 */
|
||||||
|
/**/ cc2 = {0x3C499993, 0x63F1A115}, /* 2.7755472886508899e-18 */
|
||||||
|
/**/ c3 = {0x3FA6DB6D, 0xB6DB6DB7}, /* 0.044642857142857144 */
|
||||||
|
/**/ cc3 = {0xBC320FC0, 0x3D5CF0C5}, /* -9.7911734574147224e-19 */
|
||||||
|
/**/ c4 = {0x3F9F1C71, 0xC71C71C5}, /* 0.030381944444444437 */
|
||||||
|
/**/ cc4 = {0xBC02B240, 0xFF23ED1E}; /* -1.2669108566898312e-19 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
|
||||||
|
static const mynumber
|
||||||
|
/**/ c1 = {0x55555555, 0x3FC55555}, /* 0.16666666666666666 */
|
||||||
|
/**/ cc1 = {0x55775389, 0x3C655555}, /* 9.2518585419753846e-18 */
|
||||||
|
/**/ c2 = {0x33333333, 0x3FB33333}, /* 0.074999999999999997 */
|
||||||
|
/**/ cc2 = {0x63F1A115, 0x3C499993}, /* 2.7755472886508899e-18 */
|
||||||
|
/**/ c3 = {0xB6DB6DB7, 0x3FA6DB6D}, /* 0.044642857142857144 */
|
||||||
|
/**/ cc3 = {0x3D5CF0C5, 0xBC320FC0}, /* -9.7911734574147224e-19 */
|
||||||
|
/**/ c4 = {0xC71C71C5, 0x3F9F1C71}, /* 0.030381944444444437 */
|
||||||
|
/**/ cc4 = {0xFF23ED1E, 0xBC02B240}; /* -1.2669108566898312e-19 */
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
181
sysdeps/ieee754/dbl-64/dosincos.c
Normal file
181
sysdeps/ieee754/dbl-64/dosincos.c
Normal file
@ -0,0 +1,181 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/********************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME: dosincos.c */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: dubsin */
|
||||||
|
/* dubcos */
|
||||||
|
/* docos */
|
||||||
|
/* FILES NEEDED: endian.h mydefs.h dla.h dosincos.h */
|
||||||
|
/* sincos.tbl */
|
||||||
|
/* */
|
||||||
|
/* Routines compute sin() and cos() as Double-Length numbers */
|
||||||
|
/********************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mydefs.h"
|
||||||
|
#include "sincos.tbl"
|
||||||
|
#include "dla.h"
|
||||||
|
#include "dosincos.h"
|
||||||
|
/***********************************************************************/
|
||||||
|
/* Routine receive Double-Length number (x+dx) and computing sin(x+dx) */
|
||||||
|
/* as Double-Length number and store it at array v .It computes it by */
|
||||||
|
/* arithmetic action on Double-Length numbers */
|
||||||
|
/*(x+dx) between 0 and PI/4 */
|
||||||
|
/***********************************************************************/
|
||||||
|
|
||||||
|
void dubsin(double x, double dx, double v[]) {
|
||||||
|
double xx,y,yy,z,zz,r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
|
||||||
|
sn,ssn,cs,ccs,ds,dss,dc,dcc;
|
||||||
|
mynumber u;
|
||||||
|
int4 k;
|
||||||
|
|
||||||
|
u.x=x+big.x;
|
||||||
|
k = u.i[LOW_HALF]<<2;
|
||||||
|
x=x-(u.x-big.x);
|
||||||
|
d=x+dx;
|
||||||
|
dd=(x-d)+dx;
|
||||||
|
/* sin(x+dx)=sin(Xi+t)=sin(Xi)*cos(t) + cos(Xi)sin(t) where t ->0 */
|
||||||
|
MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
sn=sincos.x[k]; /* */
|
||||||
|
ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
|
||||||
|
cs=sincos.x[k+2]; /* */
|
||||||
|
ccs=sincos.x[k+3]; /* */
|
||||||
|
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* Taylor */
|
||||||
|
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* series */
|
||||||
|
ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* for sin */
|
||||||
|
MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,d,dd,ds,dss,r,s); /* ds=sin(t) */
|
||||||
|
|
||||||
|
MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc); ;/* Taylor */
|
||||||
|
ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* series */
|
||||||
|
ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* for cos */
|
||||||
|
ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* dc=cos(t) */
|
||||||
|
|
||||||
|
MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
SUB2(e,ee,dc,dcc,e,ee,r,s);
|
||||||
|
ADD2(e,ee,sn,ssn,e,ee,r,s); /* e+ee=sin(x+dx) */
|
||||||
|
|
||||||
|
v[0]=e;
|
||||||
|
v[1]=ee;
|
||||||
|
}
|
||||||
|
/**********************************************************************/
|
||||||
|
/* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
|
||||||
|
/* as Double-Length number and store it in array v .It computes it by */
|
||||||
|
/* arithmetic action on Double-Length numbers */
|
||||||
|
/*(x+dx) between 0 and PI/4 */
|
||||||
|
/**********************************************************************/
|
||||||
|
|
||||||
|
void dubcos(double x, double dx, double v[]) {
|
||||||
|
double xx,y,yy,z,zz,r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
|
||||||
|
sn,ssn,cs,ccs,ds,dss,dc,dcc;
|
||||||
|
mynumber u;
|
||||||
|
int4 k;
|
||||||
|
u.x=x+big.x;
|
||||||
|
k = u.i[LOW_HALF]<<2;
|
||||||
|
x=x-(u.x-big.x);
|
||||||
|
d=x+dx;
|
||||||
|
dd=(x-d)+dx; /* cos(x+dx)=cos(Xi+t)=cos(Xi)cos(t) - sin(Xi)sin(t) */
|
||||||
|
MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
sn=sincos.x[k]; /* */
|
||||||
|
ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
|
||||||
|
cs=sincos.x[k+2]; /* */
|
||||||
|
ccs=sincos.x[k+3]; /* */
|
||||||
|
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,d,dd,ds,dss,r,s);
|
||||||
|
|
||||||
|
MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
|
||||||
|
MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
|
||||||
|
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(ds,dss,d,dd,ds,dss,r,s);
|
||||||
|
MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
|
||||||
|
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
MUL2(sn,ssn,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
MUL2(dc,dcc,cs,ccs,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
|
||||||
|
ADD2(e,ee,dc,dcc,e,ee,r,s);
|
||||||
|
SUB2(cs,ccs,e,ee,e,ee,r,s);
|
||||||
|
|
||||||
|
v[0]=e;
|
||||||
|
v[1]=ee;
|
||||||
|
}
|
||||||
|
/**********************************************************************/
|
||||||
|
/* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
|
||||||
|
/* as Double-Length number and store it in array v */
|
||||||
|
/**********************************************************************/
|
||||||
|
void docos(double x, double dx, double v[]) {
|
||||||
|
double y,yy,p,w[2];
|
||||||
|
if (x>0) {y=x; yy=dx;}
|
||||||
|
else {y=-x; yy=-dx;}
|
||||||
|
if (y<0.5*hp0.x) /* y< PI/4 */
|
||||||
|
{dubcos(y,yy,w); v[0]=w[0]; v[1]=w[1];}
|
||||||
|
else if (y<1.5*hp0.x) { /* y< 3/4 * PI */
|
||||||
|
p=hp0.x-y; /* p = PI/2 - y */
|
||||||
|
yy=hp1.x-yy;
|
||||||
|
y=p+yy;
|
||||||
|
yy=(p-y)+yy;
|
||||||
|
if (y>0) {dubsin(y,yy,w); v[0]=w[0]; v[1]=w[1];}
|
||||||
|
/* cos(x) = sin ( 90 - x ) */
|
||||||
|
else {dubsin(-y,-yy,w); v[0]=-w[0]; v[1]=-w[1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else { /* y>= 3/4 * PI */
|
||||||
|
p=2.0*hp0.x-y; /* p = PI- y */
|
||||||
|
yy=2.0*hp1.x-yy;
|
||||||
|
y=p+yy;
|
||||||
|
yy=(p-y)+yy;
|
||||||
|
dubcos(y,yy,w);
|
||||||
|
v[0]=-w[0];
|
||||||
|
v[1]=-w[1];
|
||||||
|
}
|
||||||
|
}
|
79
sysdeps/ieee754/dbl-64/dosincos.h
Normal file
79
sysdeps/ieee754/dbl-64/dosincos.h
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: dosincos.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef DOSINCOS_H
|
||||||
|
#define DOSINCOS_H
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const mynumber
|
||||||
|
/**/ s3 = {0xBFC55555, 0x55555555}, /* -0.16666666666666666 */
|
||||||
|
/**/ ss3 = {0xBC6553AA, 0xE77EE482}, /* -9.2490366677784492e-18 */
|
||||||
|
/**/ s5 = {0x3F811111, 0x11110F15}, /* 0.008333333333332452 */
|
||||||
|
/**/ ss5 = {0xBC21AC06, 0xDA488820}, /* -4.7899996586987931e-19 */
|
||||||
|
/**/ s7 = {0xBF2A019F, 0x5816C78D}, /* -0.00019841261022928957 */
|
||||||
|
/**/ ss7 = {0x3BCDCEC9, 0x6A18BF2A}, /* 1.2624077757871259e-20 */
|
||||||
|
/**/ c2 = {0x3FE00000, 0x00000000}, /* 0.5 */
|
||||||
|
/**/ cc2 = {0xBA282FD8, 0x00000000}, /* -1.5264073330037701e-28 */
|
||||||
|
/**/ c4 = {0xBFA55555, 0x55555555}, /* -0.041666666666666664 */
|
||||||
|
/**/ cc4 = {0xBC4554BC, 0x2FFF257E}, /* -2.312711276085743e-18 */
|
||||||
|
/**/ c6 = {0x3F56C16C, 0x16C16A96}, /* 0.0013888888888888055 */
|
||||||
|
/**/ cc6 = {0xBBD2E846, 0xE6346F14}, /* -1.6015133010194884e-20 */
|
||||||
|
/**/ c8 = {0xBEFA019F, 0x821D5987}, /* -2.480157866754367e-05 */
|
||||||
|
/**/ cc8 = {0x3B7AB71E, 0x72FFE5CC}, /* 3.5357416224857556e-22 */
|
||||||
|
|
||||||
|
/**/ big = {0x42c80000, 0x00000000}, /* 52776558133248 */
|
||||||
|
|
||||||
|
/**/ hp0 = {0x3FF921FB, 0x54442D18 }, /* PI / 2 */
|
||||||
|
/**/ hp1 = {0x3C91A626, 0x33145C07 }; /* 6.123233995736766e-17 */
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const mynumber
|
||||||
|
/**/ s3 = {0x55555555, 0xBFC55555}, /* -0.16666666666666666 */
|
||||||
|
/**/ ss3 = {0xE77EE482, 0xBC6553AA}, /* -9.2490366677784492e-18 */
|
||||||
|
/**/ s5 = {0x11110F15, 0x3F811111}, /* 0.008333333333332452 */
|
||||||
|
/**/ ss5 = {0xDA488820, 0xBC21AC06}, /* -4.7899996586987931e-19 */
|
||||||
|
/**/ s7 = {0x5816C78D, 0xBF2A019F}, /* -0.00019841261022928957 */
|
||||||
|
/**/ ss7 = {0x6A18BF2A, 0x3BCDCEC9}, /* 1.2624077757871259e-20 */
|
||||||
|
/**/ c2 = {0x00000000, 0x3FE00000}, /* 0.5 */
|
||||||
|
/**/ cc2 = {0x00000000, 0xBA282FD8}, /* -1.5264073330037701e-28 */
|
||||||
|
/**/ c4 = {0x55555555, 0xBFA55555}, /* -0.041666666666666664 */
|
||||||
|
/**/ cc4 = {0x2FFF257E, 0xBC4554BC}, /* -2.312711276085743e-18 */
|
||||||
|
/**/ c6 = {0x16C16A96, 0x3F56C16C}, /* 0.0013888888888888055 */
|
||||||
|
/**/ cc6 = {0xE6346F14, 0xBBD2E846}, /* -1.6015133010194884e-20 */
|
||||||
|
/**/ c8 = {0x821D5987, 0xBEFA019F}, /* -2.480157866754367e-05 */
|
||||||
|
/**/ cc8 = {0x72FFE5CC, 0x3B7AB71E}, /* 3.5357416224857556e-22 */
|
||||||
|
|
||||||
|
/**/ big = {0x00000000, 0x42c80000}, /* 52776558133248 */
|
||||||
|
|
||||||
|
/**/ hp0 = {0x54442D18, 0x3FF921FB }, /* PI / 2 */
|
||||||
|
/**/ hp1 = {0x33145C07, 0x3C91A626 }; /* 6.123233995736766e-17 */
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
@ -1,144 +1 @@
|
|||||||
/* @(#)e_acos.c 5.1 93/09/24 */
|
/* In e_asin.c */
|
||||||
/*
|
|
||||||
* ====================================================
|
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
||||||
*
|
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
||||||
* Permission to use, copy, modify, and distribute this
|
|
||||||
* software is freely granted, provided that this notice
|
|
||||||
* is preserved.
|
|
||||||
* ====================================================
|
|
||||||
*/
|
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
|
||||||
for performance improvement on pipelined processors.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
|
||||||
static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* __ieee754_acos(x)
|
|
||||||
* Method :
|
|
||||||
* acos(x) = pi/2 - asin(x)
|
|
||||||
* acos(-x) = pi/2 + asin(x)
|
|
||||||
* For |x|<=0.5
|
|
||||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
|
||||||
* For x>0.5
|
|
||||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
|
||||||
* = 2asin(sqrt((1-x)/2))
|
|
||||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
|
||||||
* = 2f + (2c + 2s*z*R(z))
|
|
||||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
|
||||||
* for f so that f+c ~ sqrt(z).
|
|
||||||
* For x<-0.5
|
|
||||||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
|
||||||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* if x is NaN, return x itself;
|
|
||||||
* if |x|>1, return NaN with invalid signal.
|
|
||||||
*
|
|
||||||
* Function needed: __ieee754_sqrt
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
|
||||||
#include "math_private.h"
|
|
||||||
#define one qS[0]
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
static const double
|
|
||||||
#else
|
|
||||||
static double
|
|
||||||
#endif
|
|
||||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
|
||||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
||||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
||||||
pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
||||||
-3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
||||||
2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
||||||
-4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
||||||
7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
||||||
3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
|
|
||||||
qS[] ={1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
||||||
2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
||||||
-6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
||||||
7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
double __ieee754_acos(double x)
|
|
||||||
#else
|
|
||||||
double __ieee754_acos(x)
|
|
||||||
double x;
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double z,p,q,r,w,s,c,df,p1,p2,p3,q1,q2,z2,z4,z6;
|
|
||||||
int32_t hx,ix;
|
|
||||||
GET_HIGH_WORD(hx,x);
|
|
||||||
ix = hx&0x7fffffff;
|
|
||||||
if(ix>=0x3ff00000) { /* |x| >= 1 */
|
|
||||||
u_int32_t lx;
|
|
||||||
GET_LOW_WORD(lx,x);
|
|
||||||
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
|
|
||||||
if(hx>0) return 0.0; /* acos(1) = 0 */
|
|
||||||
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
|
||||||
}
|
|
||||||
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
|
||||||
}
|
|
||||||
if(ix<0x3fe00000) { /* |x| < 0.5 */
|
|
||||||
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
|
||||||
z = x*x;
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
||||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
||||||
#else
|
|
||||||
p1 = z*pS[0]; z2=z*z;
|
|
||||||
p2 = pS[1]+z*pS[2]; z4=z2*z2;
|
|
||||||
p3 = pS[3]+z*pS[4]; z6=z4*z2;
|
|
||||||
q1 = one+z*qS[1];
|
|
||||||
q2 = qS[2]+z*qS[3];
|
|
||||||
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
||||||
q = q1 + z2*q2 + z4*qS[4];
|
|
||||||
#endif
|
|
||||||
r = p/q;
|
|
||||||
return pio2_hi - (x - (pio2_lo-x*r));
|
|
||||||
} else if (hx<0) { /* x < -0.5 */
|
|
||||||
z = (one+x)*0.5;
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
||||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
||||||
#else
|
|
||||||
p1 = z*pS[0]; z2=z*z;
|
|
||||||
p2 = pS[1]+z*pS[2]; z4=z2*z2;
|
|
||||||
p3 = pS[3]+z*pS[4]; z6=z4*z2;
|
|
||||||
q1 = one+z*qS[1];
|
|
||||||
q2 = qS[2]+z*qS[3];
|
|
||||||
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
||||||
q = q1 + z2*q2 + z4*qS[4];
|
|
||||||
#endif
|
|
||||||
s = __ieee754_sqrt(z);
|
|
||||||
r = p/q;
|
|
||||||
w = r*s-pio2_lo;
|
|
||||||
return pi - 2.0*(s+w);
|
|
||||||
} else { /* x > 0.5 */
|
|
||||||
z = (one-x)*0.5;
|
|
||||||
s = __ieee754_sqrt(z);
|
|
||||||
df = s;
|
|
||||||
SET_LOW_WORD(df,0);
|
|
||||||
c = (z-df*df)/(s+df);
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
||||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
||||||
#else
|
|
||||||
p1 = z*pS[0]; z2=z*z;
|
|
||||||
p2 = pS[1]+z*pS[2]; z4=z2*z2;
|
|
||||||
p3 = pS[3]+z*pS[4]; z6=z4*z2;
|
|
||||||
q1 = one+z*qS[1];
|
|
||||||
q2 = qS[2]+z*qS[3];
|
|
||||||
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
||||||
q = q1 + z2*q2 + z4*qS[4];
|
|
||||||
#endif
|
|
||||||
r = p/q;
|
|
||||||
w = r*s+c;
|
|
||||||
return 2.0*(df+w);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -1,143 +1,623 @@
|
|||||||
/* @(#)e_asin.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
/******************************************************************/
|
||||||
for performance improvement on pipelined processors.
|
/* MODULE_NAME:uasncs.c */
|
||||||
*/
|
/* */
|
||||||
|
/* FUNCTIONS: uasin */
|
||||||
|
/* uacos */
|
||||||
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
|
||||||
|
/* doasin.c sincos32.c dosincos.c mpa.c */
|
||||||
|
/* sincos.tbl asincos.tbl powtwo.tbl root.tbl */
|
||||||
|
/* */
|
||||||
|
/* Ultimate asin/acos routines. Given an IEEE double machine */
|
||||||
|
/* number x, compute the correctly rounded value of */
|
||||||
|
/* arcsin(x)or arccos(x) according to the function called. */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/******************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mydefs.h"
|
||||||
|
#include "asincos.tbl"
|
||||||
|
#include "root.tbl"
|
||||||
|
#include "powtwo.tbl"
|
||||||
|
#include "MathLib.h"
|
||||||
|
#include "uasncs.h"
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
void __doasin(double x, double dx, double w[]);
|
||||||
static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
|
void __dubsin(double x, double dx, double v[]);
|
||||||
#endif
|
void __dubcos(double x, double dx, double v[]);
|
||||||
|
void __docos(double x, double dx, double v[]);
|
||||||
|
double __sin32(double x, double res, double res1);
|
||||||
|
double __cos32(double x, double res, double res1);
|
||||||
|
|
||||||
/* __ieee754_asin(x)
|
/***************************************************************************/
|
||||||
* Method :
|
/* An ultimate asin routine. Given an IEEE double machine number x */
|
||||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
/* it computes the correctly rounded (to nearest) value of arcsin(x) */
|
||||||
* we approximate asin(x) on [0,0.5] by
|
/***************************************************************************/
|
||||||
* asin(x) = x + x*x^2*R(x^2)
|
double __ieee754_asin(double x){
|
||||||
* where
|
double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2];
|
||||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
mynumber u,v;
|
||||||
* and its remez error is bounded by
|
int4 k,m,n,nn;
|
||||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
|
||||||
*
|
|
||||||
* For x in [0.5,1]
|
|
||||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
|
||||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
|
||||||
* then for x>0.98
|
|
||||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
|
||||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
|
||||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
|
||||||
* f = hi part of s;
|
|
||||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
|
||||||
* and
|
|
||||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
|
||||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
|
||||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* if x is NaN, return x itself;
|
|
||||||
* if |x|>1, return NaN with invalid signal.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
u.x = x;
|
||||||
|
m = u.i[HIGH_HALF];
|
||||||
|
k = 0x7fffffff&m; /* no sign */
|
||||||
|
|
||||||
#include "math.h"
|
if (k < 0x3e500000) return x; /* for x->0 => sin(x)=x */
|
||||||
#include "math_private.h"
|
/*----------------------2^-26 <= |x| < 2^ -3 -----------------*/
|
||||||
#define one qS[0]
|
else
|
||||||
#ifdef __STDC__
|
if (k < 0x3fc00000) {
|
||||||
static const double
|
x2 = x*x;
|
||||||
#else
|
t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
|
||||||
static double
|
res = x+t; /* res=arcsin(x) according to Taylor series */
|
||||||
#endif
|
cor = (x-res)+t;
|
||||||
huge = 1.000e+300,
|
if (res == res+1.025*cor) return res;
|
||||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
else {
|
||||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
x1 = x+big;
|
||||||
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
xx = x*x;
|
||||||
/* coefficient for R(x^2) */
|
x1 -= big;
|
||||||
pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
x2 = x - x1;
|
||||||
-3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
p = x1*x1*x1;
|
||||||
2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
s1 = a1.x*p;
|
||||||
-4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
|
||||||
7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p;
|
||||||
3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
|
res1 = x+s1;
|
||||||
qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
s2 = ((x-res1)+s1)+s2;
|
||||||
2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
res = res1+s2;
|
||||||
-6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
cor = (res1-res)+s2;
|
||||||
7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
|
if (res == res+1.00014*cor) return res;
|
||||||
|
else {
|
||||||
#ifdef __STDC__
|
__doasin(x,0,w);
|
||||||
double __ieee754_asin(double x)
|
if (w[0]==(w[0]+1.00000001*w[1])) return w[0];
|
||||||
#else
|
else {
|
||||||
double __ieee754_asin(x)
|
y=ABS(x);
|
||||||
double x;
|
res=ABS(w[0]);
|
||||||
#endif
|
res1=ABS(w[0]+1.1*w[1]);
|
||||||
{
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,z2,z4,z6;
|
|
||||||
int32_t hx,ix;
|
|
||||||
GET_HIGH_WORD(hx,x);
|
|
||||||
ix = hx&0x7fffffff;
|
|
||||||
if(ix>= 0x3ff00000) { /* |x|>= 1 */
|
|
||||||
u_int32_t lx;
|
|
||||||
GET_LOW_WORD(lx,x);
|
|
||||||
if(((ix-0x3ff00000)|lx)==0)
|
|
||||||
/* asin(1)=+-pi/2 with inexact */
|
|
||||||
return x*pio2_hi+x*pio2_lo;
|
|
||||||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
|
||||||
} else if (ix<0x3fe00000) { /* |x|<0.5 */
|
|
||||||
if(ix<0x3e400000) { /* if |x| < 2**-27 */
|
|
||||||
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
|
||||||
} else {
|
|
||||||
t = x*x;
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
|
||||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
|
||||||
#else
|
|
||||||
p1 = t*pS[0]; z2=t*t;
|
|
||||||
p2 = pS[1]+t*pS[2]; z4=z2*z2;
|
|
||||||
p3 = pS[3]+t*pS[4]; z6=z4*z2;
|
|
||||||
q1 = one+t*qS[1];
|
|
||||||
q2 = qS[2]+t*qS[3];
|
|
||||||
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
|
||||||
q = q1 + z2*q2 + z4*qS[4];
|
|
||||||
#endif
|
|
||||||
w = p/q;
|
|
||||||
return x+x*w;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
/* 1> |x|>= 0.5 */
|
}
|
||||||
w = one-fabs(x);
|
}
|
||||||
t = w*0.5;
|
}
|
||||||
#ifdef DO_NOT_USE_THIS
|
/*---------------------0.125 <= |x| < 0.5 -----------------------------*/
|
||||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
else if (k < 0x3fe00000) {
|
||||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
|
||||||
#else
|
else n = 11*((k&0x000fffff)>>14)+352;
|
||||||
p1 = t*pS[0]; z2=t*t;
|
if (m>0) xx = x - asncs.x[n];
|
||||||
p2 = pS[1]+t*pS[2]; z4=z2*z2;
|
else xx = -x - asncs.x[n];
|
||||||
p3 = pS[3]+t*pS[4]; z6=z4*z2;
|
t = asncs.x[n+1]*xx;
|
||||||
q1 = one+t*qS[1];
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
|
||||||
q2 = qS[2]+t*qS[3];
|
+xx*asncs.x[n+6]))))+asncs.x[n+7];
|
||||||
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
|
t+=p;
|
||||||
q = q1 + z2*q2 + z4*qS[4];
|
res =asncs.x[n+8] +t;
|
||||||
#endif
|
cor = (asncs.x[n+8]-res)+t;
|
||||||
s = __ieee754_sqrt(t);
|
if (res == res+1.05*cor) return (m>0)?res:-res;
|
||||||
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
else {
|
||||||
w = p/q;
|
r=asncs.x[n+8]+xx*asncs.x[n+9];
|
||||||
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]);
|
||||||
} else {
|
res = r+t;
|
||||||
w = s;
|
cor = (r-res)+t;
|
||||||
SET_LOW_WORD(w,0);
|
if (res == res+1.0005*cor) return (m>0)?res:-res;
|
||||||
c = (t-w*w)/(s+w);
|
else {
|
||||||
r = p/q;
|
res1=res+1.1*cor;
|
||||||
p = 2.0*s*r-(pio2_lo-2.0*c);
|
z=0.5*(res1-res);
|
||||||
q = pio4_hi-2.0*w;
|
__dubsin(res,z,w);
|
||||||
t = pio4_hi-(p-q);
|
z=(w[0]-ABS(x))+w[1];
|
||||||
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
||||||
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
||||||
|
else {
|
||||||
|
y=ABS(x);
|
||||||
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
}
|
}
|
||||||
if(hx>0) return t; else return -t;
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fe00000) */
|
||||||
|
/*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fe80000) {
|
||||||
|
n = 1056+((k&0x000fe000)>>11)*3;
|
||||||
|
if (m>0) xx = x - asncs.x[n];
|
||||||
|
else xx = -x - asncs.x[n];
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
|
||||||
|
+xx*(asncs.x[n+6]+xx*asncs.x[n+7])))))+asncs.x[n+8];
|
||||||
|
t+=p;
|
||||||
|
res =asncs.x[n+9] +t;
|
||||||
|
cor = (asncs.x[n+9]-res)+t;
|
||||||
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+9]+xx*asncs.x[n+10];
|
||||||
|
t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]);
|
||||||
|
res = r+t;
|
||||||
|
cor = (r-res)+t;
|
||||||
|
if (res == res+1.0005*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
__dubsin(res,z,w);
|
||||||
|
z=(w[0]-ABS(x))+w[1];
|
||||||
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
||||||
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
||||||
|
else {
|
||||||
|
y=ABS(x);
|
||||||
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fe80000) */
|
||||||
|
/*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fed8000) {
|
||||||
|
n = 992+((k&0x000fe000)>>13)*13;
|
||||||
|
if (m>0) xx = x - asncs.x[n];
|
||||||
|
else xx = -x - asncs.x[n];
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
|
||||||
|
+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+xx*asncs.x[n+8]))))))+asncs.x[n+9];
|
||||||
|
t+=p;
|
||||||
|
res =asncs.x[n+10] +t;
|
||||||
|
cor = (asncs.x[n+10]-res)+t;
|
||||||
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+10]+xx*asncs.x[n+11];
|
||||||
|
t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]);
|
||||||
|
res = r+t;
|
||||||
|
cor = (r-res)+t;
|
||||||
|
if (res == res+1.0008*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
y=hp0.x-res;
|
||||||
|
z=((hp0.x-y)-res)+(hp1.x-z);
|
||||||
|
__dubcos(y,z,w);
|
||||||
|
z=(w[0]-ABS(x))+w[1];
|
||||||
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
||||||
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
||||||
|
else {
|
||||||
|
y=ABS(x);
|
||||||
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fed8000) */
|
||||||
|
/*-------------------0.921875 <= |x| < 0.953125 ------------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fee8000) {
|
||||||
|
n = 884+((k&0x000fe000)>>13)*14;
|
||||||
|
if (m>0) xx = x - asncs.x[n];
|
||||||
|
else xx = -x - asncs.x[n];
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
||||||
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
|
||||||
|
xx*asncs.x[n+9])))))))+asncs.x[n+10];
|
||||||
|
t+=p;
|
||||||
|
res =asncs.x[n+11] +t;
|
||||||
|
cor = (asncs.x[n+11]-res)+t;
|
||||||
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+11]+xx*asncs.x[n+12];
|
||||||
|
t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]);
|
||||||
|
res = r+t;
|
||||||
|
cor = (r-res)+t;
|
||||||
|
if (res == res+1.0007*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
y=(hp0.x-res)-z;
|
||||||
|
z=y+hp1.x;
|
||||||
|
y=(y-z)+hp1.x;
|
||||||
|
__dubcos(z,y,w);
|
||||||
|
z=(w[0]-ABS(x))+w[1];
|
||||||
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
||||||
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
||||||
|
else {
|
||||||
|
y=ABS(x);
|
||||||
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fee8000) */
|
||||||
|
|
||||||
|
/*--------------------0.953125 <= |x| < 0.96875 ------------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fef0000) {
|
||||||
|
n = 768+((k&0x000fe000)>>13)*15;
|
||||||
|
if (m>0) xx = x - asncs.x[n];
|
||||||
|
else xx = -x - asncs.x[n];
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
||||||
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
|
||||||
|
xx*(asncs.x[n+9]+xx*asncs.x[n+10]))))))))+asncs.x[n+11];
|
||||||
|
t+=p;
|
||||||
|
res =asncs.x[n+12] +t;
|
||||||
|
cor = (asncs.x[n+12]-res)+t;
|
||||||
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+12]+xx*asncs.x[n+13];
|
||||||
|
t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]);
|
||||||
|
res = r+t;
|
||||||
|
cor = (r-res)+t;
|
||||||
|
if (res == res+1.0007*cor) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
y=(hp0.x-res)-z;
|
||||||
|
z=y+hp1.x;
|
||||||
|
y=(y-z)+hp1.x;
|
||||||
|
__dubcos(z,y,w);
|
||||||
|
z=(w[0]-ABS(x))+w[1];
|
||||||
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
||||||
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
||||||
|
else {
|
||||||
|
y=ABS(x);
|
||||||
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fef0000) */
|
||||||
|
/*--------------------0.96875 <= |x| < 1 --------------------------------*/
|
||||||
|
else
|
||||||
|
if (k<0x3ff00000) {
|
||||||
|
z = 0.5*((m>0)?(1.0-x):(1.0+x));
|
||||||
|
v.x=z;
|
||||||
|
k=v.i[HIGH_HALF];
|
||||||
|
t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
|
||||||
|
r=1.0-t*t*z;
|
||||||
|
t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
|
||||||
|
c=t*z;
|
||||||
|
t=c*(1.5-0.5*t*c);
|
||||||
|
y=(c+t24)-t24;
|
||||||
|
cc = (z-y*y)/(t+y);
|
||||||
|
p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
|
||||||
|
cor = (hp1.x - 2.0*cc)-2.0*(y+cc)*p;
|
||||||
|
res1 = hp0.x - 2.0*y;
|
||||||
|
res =res1 + cor;
|
||||||
|
if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
c=y+cc;
|
||||||
|
cc=(y-c)+cc;
|
||||||
|
__doasin(c,cc,w);
|
||||||
|
res1=hp0.x-2.0*w[0];
|
||||||
|
cor=((hp0.x-res1)-2.0*w[0])+(hp1.x-2.0*w[1]);
|
||||||
|
res = res1+cor;
|
||||||
|
cor = (res1-res)+cor;
|
||||||
|
if (res==(res+1.0000001*cor)) return (m>0)?res:-res;
|
||||||
|
else {
|
||||||
|
y=ABS(x);
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3ff00000) */
|
||||||
|
/*---------------------------- |x|>=1 -------------------------------*/
|
||||||
|
else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x:-hp0.x;
|
||||||
|
else {
|
||||||
|
u.i[HIGH_HALF]=0x7ff00000;
|
||||||
|
v.i[HIGH_HALF]=0x7ff00000;
|
||||||
|
u.i[LOW_HALF]=0;
|
||||||
|
v.i[LOW_HALF]=0;
|
||||||
|
return u.x/v.x; /* NaN */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* End of arcsine, below is arccosine */
|
||||||
|
/* */
|
||||||
|
/*******************************************************************/
|
||||||
|
|
||||||
|
double __ieee754_acos(double x)
|
||||||
|
{
|
||||||
|
double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2],eps;
|
||||||
|
double fc;
|
||||||
|
mynumber u,v;
|
||||||
|
int4 k,m,n,nn;
|
||||||
|
u.x = x;
|
||||||
|
m = u.i[HIGH_HALF];
|
||||||
|
k = 0x7fffffff&m;
|
||||||
|
/*------------------- |x|<2.77556*10^-17 ----------------------*/
|
||||||
|
if (k < 0x3c880000) return hp0.x;
|
||||||
|
|
||||||
|
/*----------------- 2.77556*10^-17 <= |x| < 2^-3 --------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fc00000) {
|
||||||
|
x2 = x*x;
|
||||||
|
t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
|
||||||
|
r=hp0.x-x;
|
||||||
|
cor=(((hp0.x-r)-x)+hp1.x)-t;
|
||||||
|
res = r+cor;
|
||||||
|
cor = (r-res)+cor;
|
||||||
|
if (res == res+1.004*cor) return res;
|
||||||
|
else {
|
||||||
|
x1 = x+big;
|
||||||
|
xx = x*x;
|
||||||
|
x1 -= big;
|
||||||
|
x2 = x - x1;
|
||||||
|
p = x1*x1*x1;
|
||||||
|
s1 = a1.x*p;
|
||||||
|
s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
|
||||||
|
((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p;
|
||||||
|
res1 = x+s1;
|
||||||
|
s2 = ((x-res1)+s1)+s2;
|
||||||
|
r=hp0.x-res1;
|
||||||
|
cor=(((hp0.x-r)-res1)+hp1.x)-s2;
|
||||||
|
res = r+cor;
|
||||||
|
cor = (r-res)+cor;
|
||||||
|
if (res == res+1.00004*cor) return res;
|
||||||
|
else {
|
||||||
|
__doasin(x,0,w);
|
||||||
|
r=hp0.x-w[0];
|
||||||
|
cor=((hp0.x-r)-w[0])+(hp1.x-w[1]);
|
||||||
|
res=r+cor;
|
||||||
|
cor=(r-res)+cor;
|
||||||
|
if (res ==(res +1.00000001*cor)) return res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fc00000) */
|
||||||
|
/*---------------------- 0.125 <= |x| < 0.5 --------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fe00000) {
|
||||||
|
if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
|
||||||
|
else n = 11*((k&0x000fffff)>>14)+352;
|
||||||
|
if (m>0) xx = x - asncs.x[n];
|
||||||
|
else xx = -x - asncs.x[n];
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*asncs.x[n+6]))))+asncs.x[n+7];
|
||||||
|
t+=p;
|
||||||
|
y = (m>0)?(hp0.x-asncs.x[n+8]):(hp0.x+asncs.x[n+8]);
|
||||||
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
||||||
|
res = y+t;
|
||||||
|
if (res == res+1.02*((y-res)+t)) return res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+8]+xx*asncs.x[n+9];
|
||||||
|
t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]);
|
||||||
|
if (m>0)
|
||||||
|
{p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; }
|
||||||
|
else
|
||||||
|
{p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); }
|
||||||
|
res = p+t;
|
||||||
|
cor = (p-res)+t;
|
||||||
|
if (res == (res+1.0002*cor)) return res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
__docos(res,z,w);
|
||||||
|
z=(w[0]-x)+w[1];
|
||||||
|
if (z>1.0e-27) return max(res,res1);
|
||||||
|
else if (z<-1.0e-27) return min(res,res1);
|
||||||
|
else return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fe00000) */
|
||||||
|
|
||||||
|
/*--------------------------- 0.5 <= |x| < 0.75 ---------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fe80000) {
|
||||||
|
n = 1056+((k&0x000fe000)>>11)*3;
|
||||||
|
if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
|
||||||
|
else {xx = -x - asncs.x[n]; eps=1.02; }
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+
|
||||||
|
xx*asncs.x[n+7])))))+asncs.x[n+8];
|
||||||
|
t+=p;
|
||||||
|
y = (m>0)?(hp0.x-asncs.x[n+9]):(hp0.x+asncs.x[n+9]);
|
||||||
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
||||||
|
res = y+t;
|
||||||
|
if (res == res+eps*((y-res)+t)) return res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+9]+xx*asncs.x[n+10];
|
||||||
|
t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]);
|
||||||
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0004; }
|
||||||
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0002; }
|
||||||
|
res = p+t;
|
||||||
|
cor = (p-res)+t;
|
||||||
|
if (res == (res+eps*cor)) return res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
__docos(res,z,w);
|
||||||
|
z=(w[0]-x)+w[1];
|
||||||
|
if (z>1.0e-27) return max(res,res1);
|
||||||
|
else if (z<-1.0e-27) return min(res,res1);
|
||||||
|
else return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fe80000) */
|
||||||
|
|
||||||
|
/*------------------------- 0.75 <= |x| < 0.921875 -------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fed8000) {
|
||||||
|
n = 992+((k&0x000fe000)>>13)*13;
|
||||||
|
if (m>0) {xx = x - asncs.x[n]; eps = 1.04; }
|
||||||
|
else {xx = -x - asncs.x[n]; eps = 1.01; }
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+
|
||||||
|
xx*asncs.x[n+8]))))))+asncs.x[n+9];
|
||||||
|
t+=p;
|
||||||
|
y = (m>0)?(hp0.x-asncs.x[n+10]):(hp0.x+asncs.x[n+10]);
|
||||||
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
||||||
|
res = y+t;
|
||||||
|
if (res == res+eps*((y-res)+t)) return res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+10]+xx*asncs.x[n+11];
|
||||||
|
t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]);
|
||||||
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0032; }
|
||||||
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0008; }
|
||||||
|
res = p+t;
|
||||||
|
cor = (p-res)+t;
|
||||||
|
if (res == (res+eps*cor)) return res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
__docos(res,z,w);
|
||||||
|
z=(w[0]-x)+w[1];
|
||||||
|
if (z>1.0e-27) return max(res,res1);
|
||||||
|
else if (z<-1.0e-27) return min(res,res1);
|
||||||
|
else return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fed8000) */
|
||||||
|
|
||||||
|
/*-------------------0.921875 <= |x| < 0.953125 ------------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fee8000) {
|
||||||
|
n = 884+((k&0x000fe000)>>13)*14;
|
||||||
|
if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
|
||||||
|
else {xx = -x - asncs.x[n]; eps =1.005; }
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
||||||
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
|
||||||
|
xx*asncs.x[n+9])))))))+asncs.x[n+10];
|
||||||
|
t+=p;
|
||||||
|
y = (m>0)?(hp0.x-asncs.x[n+11]):(hp0.x+asncs.x[n+11]);
|
||||||
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
||||||
|
res = y+t;
|
||||||
|
if (res == res+eps*((y-res)+t)) return res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+11]+xx*asncs.x[n+12];
|
||||||
|
t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]);
|
||||||
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; }
|
||||||
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; }
|
||||||
|
res = p+t;
|
||||||
|
cor = (p-res)+t;
|
||||||
|
if (res == (res+eps*cor)) return res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
__docos(res,z,w);
|
||||||
|
z=(w[0]-x)+w[1];
|
||||||
|
if (z>1.0e-27) return max(res,res1);
|
||||||
|
else if (z<-1.0e-27) return min(res,res1);
|
||||||
|
else return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fee8000) */
|
||||||
|
|
||||||
|
/*--------------------0.953125 <= |x| < 0.96875 ----------------*/
|
||||||
|
else
|
||||||
|
if (k < 0x3fef0000) {
|
||||||
|
n = 768+((k&0x000fe000)>>13)*15;
|
||||||
|
if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
|
||||||
|
else {xx = -x - asncs.x[n]; eps=1.005;}
|
||||||
|
t = asncs.x[n+1]*xx;
|
||||||
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
||||||
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
||||||
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+xx*(asncs.x[n+9]+
|
||||||
|
xx*asncs.x[n+10]))))))))+asncs.x[n+11];
|
||||||
|
t+=p;
|
||||||
|
y = (m>0)?(hp0.x-asncs.x[n+12]):(hp0.x+asncs.x[n+12]);
|
||||||
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
||||||
|
res = y+t;
|
||||||
|
if (res == res+eps*((y-res)+t)) return res;
|
||||||
|
else {
|
||||||
|
r=asncs.x[n+12]+xx*asncs.x[n+13];
|
||||||
|
t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]);
|
||||||
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; }
|
||||||
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; }
|
||||||
|
res = p+t;
|
||||||
|
cor = (p-res)+t;
|
||||||
|
if (res == (res+eps*cor)) return res;
|
||||||
|
else {
|
||||||
|
res1=res+1.1*cor;
|
||||||
|
z=0.5*(res1-res);
|
||||||
|
__docos(res,z,w);
|
||||||
|
z=(w[0]-x)+w[1];
|
||||||
|
if (z>1.0e-27) return max(res,res1);
|
||||||
|
else if (z<-1.0e-27) return min(res,res1);
|
||||||
|
else return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3fef0000) */
|
||||||
|
/*-----------------0.96875 <= |x| < 1 ---------------------------*/
|
||||||
|
|
||||||
|
else
|
||||||
|
if (k<0x3ff00000) {
|
||||||
|
z = 0.5*((m>0)?(1.0-x):(1.0+x));
|
||||||
|
v.x=z;
|
||||||
|
k=v.i[HIGH_HALF];
|
||||||
|
t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
|
||||||
|
r=1.0-t*t*z;
|
||||||
|
t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
|
||||||
|
c=t*z;
|
||||||
|
t=c*(1.5-0.5*t*c);
|
||||||
|
y = (t27*c+c)-t27*c;
|
||||||
|
cc = (z-y*y)/(t+y);
|
||||||
|
p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
|
||||||
|
if (m<0) {
|
||||||
|
cor = (hp1.x - cc)-(y+cc)*p;
|
||||||
|
res1 = hp0.x - y;
|
||||||
|
res =res1 + cor;
|
||||||
|
if (res == res+1.002*((res1-res)+cor)) return (res+res);
|
||||||
|
else {
|
||||||
|
c=y+cc;
|
||||||
|
cc=(y-c)+cc;
|
||||||
|
__doasin(c,cc,w);
|
||||||
|
res1=hp0.x-w[0];
|
||||||
|
cor=((hp0.x-res1)-w[0])+(hp1.x-w[1]);
|
||||||
|
res = res1+cor;
|
||||||
|
cor = (res1-res)+cor;
|
||||||
|
if (res==(res+1.000001*cor)) return (res+res);
|
||||||
|
else {
|
||||||
|
res=res+res;
|
||||||
|
res1=res+1.2*cor;
|
||||||
|
return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
cor = cc+p*(y+cc);
|
||||||
|
res = y + cor;
|
||||||
|
if (res == res+1.03*((y-res)+cor)) return (res+res);
|
||||||
|
else {
|
||||||
|
c=y+cc;
|
||||||
|
cc=(y-c)+cc;
|
||||||
|
__doasin(c,cc,w);
|
||||||
|
res = w[0];
|
||||||
|
cor=w[1];
|
||||||
|
if (res==(res+1.000001*cor)) return (res+res);
|
||||||
|
else {
|
||||||
|
res=res+res;
|
||||||
|
res1=res+1.2*cor;
|
||||||
|
return cos32(x,res,res1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} /* else if (k < 0x3ff00000) */
|
||||||
|
|
||||||
|
/*---------------------------- |x|>=1 -----------------------*/
|
||||||
|
else
|
||||||
|
if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?0:2.0*hp0.x;
|
||||||
|
else {
|
||||||
|
u.i[HIGH_HALF]=0x7ff00000;
|
||||||
|
v.i[HIGH_HALF]=0x7ff00000;
|
||||||
|
u.i[LOW_HALF]=0;
|
||||||
|
v.i[LOW_HALF]=0;
|
||||||
|
return u.x/v.x;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,130 +1,395 @@
|
|||||||
/* @(#)e_atan2.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: atnat2.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: uatan2 */
|
||||||
|
/* atan2Mp */
|
||||||
|
/* signArctan2 */
|
||||||
|
/* normalized */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */
|
||||||
|
/* mpatan.c mpatan2.c mpsqrt.c */
|
||||||
|
/* uatan.tbl */
|
||||||
|
/* */
|
||||||
|
/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/
|
||||||
|
/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/
|
||||||
|
/* */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
#include "dla.h"
|
||||||
static char rcsid[] = "$NetBSD: e_atan2.c,v 1.8 1995/05/10 20:44:51 jtc Exp $";
|
#include "mpa.h"
|
||||||
#endif
|
#include "MathLib.h"
|
||||||
|
#include "uatan.tbl"
|
||||||
|
#include "atnat2.h"
|
||||||
|
/************************************************************************/
|
||||||
|
/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of atan2(y,x). */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/************************************************************************/
|
||||||
|
static double atan2Mp(double ,double ,const int[]);
|
||||||
|
static double signArctan2(double ,double);
|
||||||
|
static double normalized(double ,double,double ,double);
|
||||||
|
void __mpatan2(mp_no *,mp_no *,mp_no *,int);
|
||||||
|
|
||||||
/* __ieee754_atan2(y,x)
|
double __ieee754_atan2(double y,double x) {
|
||||||
* Method :
|
|
||||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
|
||||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
|
||||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
|
||||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
*
|
|
||||||
* ATAN2((anything), NaN ) is NaN;
|
|
||||||
* ATAN2(NAN , (anything) ) is NaN;
|
|
||||||
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
|
||||||
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
|
||||||
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
|
||||||
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
|
||||||
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
|
||||||
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
|
||||||
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
|
||||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
|
||||||
*
|
|
||||||
* Constants:
|
|
||||||
* The hexadecimal values are the intended ones for the following
|
|
||||||
* constants. The decimal values may be used, provided that the
|
|
||||||
* compiler will convert from decimal to binary accurately enough
|
|
||||||
* to produce the hexadecimal values shown.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
int i,de,ux,dx,uy,dy,p;
|
||||||
#include "math_private.h"
|
static const int pr[MM]={6,8,10,20,32};
|
||||||
|
double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8,
|
||||||
|
z,zz,z1,z2,cor,s1,ss1,s2,ss2;
|
||||||
|
number num;
|
||||||
|
mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2;
|
||||||
|
|
||||||
#ifdef __STDC__
|
static const int ep= 59768832, /* 57*16**5 */
|
||||||
static const double
|
em=-59768832; /* -57*16**5 */
|
||||||
#else
|
|
||||||
static double
|
|
||||||
#endif
|
|
||||||
tiny = 1.0e-300,
|
|
||||||
zero = 0.0,
|
|
||||||
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
|
||||||
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
|
||||||
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
|
|
||||||
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
/* x=NaN or y=NaN */
|
||||||
double __ieee754_atan2(double y, double x)
|
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
|
||||||
#else
|
if ((ux&0x7ff00000) ==0x7ff00000) {
|
||||||
double __ieee754_atan2(y,x)
|
if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; }
|
||||||
double y,x;
|
num.d = y; uy = num.i[HIGH_HALF]; dy = num.i[LOW_HALF];
|
||||||
#endif
|
if ((uy&0x7ff00000) ==0x7ff00000) {
|
||||||
{
|
if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; }
|
||||||
double z;
|
|
||||||
int32_t k,m,hx,hy,ix,iy;
|
|
||||||
u_int32_t lx,ly;
|
|
||||||
|
|
||||||
EXTRACT_WORDS(hx,lx,x);
|
/* y=+-0 */
|
||||||
ix = hx&0x7fffffff;
|
if (uy==0x00000000) {
|
||||||
EXTRACT_WORDS(hy,ly,y);
|
if (dy==0x00000000) {
|
||||||
iy = hy&0x7fffffff;
|
if ((ux&0x80000000)==0x00000000) return ZERO;
|
||||||
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
|
else return opi.d; } }
|
||||||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
|
else if (uy==0x80000000) {
|
||||||
return x+y;
|
if (dy==0x00000000) {
|
||||||
if(((hx-0x3ff00000)|lx)==0) return __atan(y); /* x=1.0 */
|
if ((ux&0x80000000)==0x00000000) return MZERO;
|
||||||
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
else return mopi.d;} }
|
||||||
|
|
||||||
/* when y = 0 */
|
/* x=+-0 */
|
||||||
if((iy|ly)==0) {
|
if (x==ZERO) {
|
||||||
switch(m) {
|
if ((uy&0x80000000)==0x00000000) return hpi.d;
|
||||||
case 0:
|
else return mhpi.d; }
|
||||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
|
||||||
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
|
|
||||||
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/* when x = 0 */
|
|
||||||
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
|
||||||
|
|
||||||
/* when x is INF */
|
|
||||||
if(ix==0x7ff00000) {
|
|
||||||
if(iy==0x7ff00000) {
|
|
||||||
switch(m) {
|
|
||||||
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
|
|
||||||
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
|
|
||||||
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
|
|
||||||
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
switch(m) {
|
|
||||||
case 0: return zero ; /* atan(+...,+INF) */
|
|
||||||
case 1: return -zero ; /* atan(-...,+INF) */
|
|
||||||
case 2: return pi+tiny ; /* atan(+...,-INF) */
|
|
||||||
case 3: return -pi-tiny ; /* atan(-...,-INF) */
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/* when y is INF */
|
|
||||||
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
|
||||||
|
|
||||||
/* compute y/x */
|
/* x=+-INF */
|
||||||
k = (iy-ix)>>20;
|
if (ux==0x7ff00000) {
|
||||||
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
|
if (dx==0x00000000) {
|
||||||
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
|
if (uy==0x7ff00000) {
|
||||||
else z=__atan(fabs(y/x)); /* safe to do y/x */
|
if (dy==0x00000000) return qpi.d; }
|
||||||
switch (m) {
|
else if (uy==0xfff00000) {
|
||||||
case 0: return z ; /* atan(+,+) */
|
if (dy==0x00000000) return mqpi.d; }
|
||||||
case 1: {
|
else {
|
||||||
u_int32_t zh;
|
if ((uy&0x80000000)==0x00000000) return ZERO;
|
||||||
GET_HIGH_WORD(zh,z);
|
else return MZERO; }
|
||||||
SET_HIGH_WORD(z,zh ^ 0x80000000);
|
}
|
||||||
}
|
}
|
||||||
return z ; /* atan(-,+) */
|
else if (ux==0xfff00000) {
|
||||||
case 2: return pi-(z-pi_lo);/* atan(+,-) */
|
if (dx==0x00000000) {
|
||||||
default: /* case 3 */
|
if (uy==0x7ff00000) {
|
||||||
return (z-pi_lo)-pi;/* atan(-,-) */
|
if (dy==0x00000000) return tqpi.d; }
|
||||||
}
|
else if (uy==0xfff00000) {
|
||||||
|
if (dy==0x00000000) return mtqpi.d; }
|
||||||
|
else {
|
||||||
|
if ((uy&0x80000000)==0x00000000) return opi.d;
|
||||||
|
else return mopi.d; }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* y=+-INF */
|
||||||
|
if (uy==0x7ff00000) {
|
||||||
|
if (dy==0x00000000) return hpi.d; }
|
||||||
|
else if (uy==0xfff00000) {
|
||||||
|
if (dy==0x00000000) return mhpi.d; }
|
||||||
|
|
||||||
|
/* either x/y or y/x is very close to zero */
|
||||||
|
ax = (x<ZERO) ? -x : x; ay = (y<ZERO) ? -y : y;
|
||||||
|
de = (uy & 0x7ff00000) - (ux & 0x7ff00000);
|
||||||
|
if (de>=ep) { return ((y>ZERO) ? hpi.d : mhpi.d); }
|
||||||
|
else if (de<=em) {
|
||||||
|
if (x>ZERO) {
|
||||||
|
if ((z=ay/ax)<TWOM1022) return normalized(ax,ay,y,z);
|
||||||
|
else return signArctan2(y,z); }
|
||||||
|
else { return ((y>ZERO) ? opi.d : mopi.d); } }
|
||||||
|
|
||||||
|
/* if either x or y is extremely close to zero, scale abs(x), abs(y). */
|
||||||
|
if (ax<twom500.d || ay<twom500.d) { ax*=two500.d; ay*=two500.d; }
|
||||||
|
|
||||||
|
/* x,y which are neither special nor extreme */
|
||||||
|
if (ay<ax) {
|
||||||
|
u=ay/ax;
|
||||||
|
EMULV(ax,u,v,vv,t1,t2,t3,t4,t5)
|
||||||
|
du=((ay-v)-vv)/ax; }
|
||||||
|
else {
|
||||||
|
u=ax/ay;
|
||||||
|
EMULV(ay,u,v,vv,t1,t2,t3,t4,t5)
|
||||||
|
du=((ax-v)-vv)/ay; }
|
||||||
|
|
||||||
|
if (x>ZERO) {
|
||||||
|
|
||||||
|
/* (i) x>0, abs(y)< abs(x): atan(ay/ax) */
|
||||||
|
if (ay<ax) {
|
||||||
|
if (u<inv16.d) {
|
||||||
|
v=u*u; zz=du+u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
||||||
|
if ((z=u+(zz-u1.d*u)) == u+(zz+u1.d*u)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
||||||
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
if ((z=s1+(ss1-u5.d*s1)) == s1+(ss1+u5.d*s1)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
i=(TWO52+TWO8*u)-TWO52; i-=16;
|
||||||
|
t3=u-cij[i][0].d;
|
||||||
|
EADD(t3,du,v,dv)
|
||||||
|
t1=cij[i][1].d; t2=cij[i][2].d;
|
||||||
|
zz=v*t2+(dv*t2+v*v*(cij[i][3].d+v*(cij[i][4].d+
|
||||||
|
v*(cij[i][5].d+v* cij[i][6].d))));
|
||||||
|
if (i<112) {
|
||||||
|
if (i<48) u9=u91.d; /* u < 1/4 */
|
||||||
|
else u9=u92.d; } /* 1/4 <= u < 1/2 */
|
||||||
|
else {
|
||||||
|
if (i<176) u9=u93.d; /* 1/2 <= u < 3/4 */
|
||||||
|
else u9=u94.d; } /* 3/4 <= u <= 1 */
|
||||||
|
if ((z=t1+(zz-u9*t1)) == t1+(zz+u9*t1)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
t1=u-hij[i][0].d;
|
||||||
|
EADD(t1,du,v,vv)
|
||||||
|
s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
|
||||||
|
v*(hij[i][14].d+v* hij[i][15].d))));
|
||||||
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
if ((z=s2+(ss2-ub.d*s2)) == s2+(ss2+ub.d*s2)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */
|
||||||
|
else {
|
||||||
|
if (u<inv16.d) {
|
||||||
|
v=u*u;
|
||||||
|
zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
||||||
|
ESUB(hpi.d,u,t2,cor)
|
||||||
|
t3=((hpi1.d+cor)-du)-zz;
|
||||||
|
if ((z=t2+(t3-u2.d)) == t2+(t3+u2.d)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
||||||
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
SUB2(hpi.d,hpi1.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
if ((z=s2+(ss2-u6.d)) == s2+(ss2+u6.d)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
i=(TWO52+TWO8*u)-TWO52; i-=16;
|
||||||
|
v=(u-cij[i][0].d)+du;
|
||||||
|
zz=hpi1.d-v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+
|
||||||
|
v*(cij[i][5].d+v* cij[i][6].d))));
|
||||||
|
t1=hpi.d-cij[i][1].d;
|
||||||
|
if (i<112) ua=ua1.d; /* w < 1/2 */
|
||||||
|
else ua=ua2.d; /* w >= 1/2 */
|
||||||
|
if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
t1=u-hij[i][0].d;
|
||||||
|
EADD(t1,du,v,vv)
|
||||||
|
s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
|
||||||
|
v*(hij[i][14].d+v* hij[i][15].d))));
|
||||||
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
SUB2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
|
||||||
|
/* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */
|
||||||
|
if (ax<ay) {
|
||||||
|
if (u<inv16.d) {
|
||||||
|
v=u*u;
|
||||||
|
zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
||||||
|
EADD(hpi.d,u,t2,cor)
|
||||||
|
t3=((hpi1.d+cor)+du)+zz;
|
||||||
|
if ((z=t2+(t3-u3.d)) == t2+(t3+u3.d)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
||||||
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
ADD2(hpi.d,hpi1.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
if ((z=s2+(ss2-u7.d)) == s2+(ss2+u7.d)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
i=(TWO52+TWO8*u)-TWO52; i-=16;
|
||||||
|
v=(u-cij[i][0].d)+du;
|
||||||
|
zz=hpi1.d+v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+
|
||||||
|
v*(cij[i][5].d+v* cij[i][6].d))));
|
||||||
|
t1=hpi.d+cij[i][1].d;
|
||||||
|
if (i<112) ua=ua1.d; /* w < 1/2 */
|
||||||
|
else ua=ua2.d; /* w >= 1/2 */
|
||||||
|
if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
t1=u-hij[i][0].d;
|
||||||
|
EADD(t1,du,v,vv)
|
||||||
|
s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
|
||||||
|
v*(hij[i][14].d+v* hij[i][15].d))));
|
||||||
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
ADD2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */
|
||||||
|
else {
|
||||||
|
if (u<inv16.d) {
|
||||||
|
v=u*u;
|
||||||
|
zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
||||||
|
ESUB(opi.d,u,t2,cor)
|
||||||
|
t3=((opi1.d+cor)-du)-zz;
|
||||||
|
if ((z=t2+(t3-u4.d)) == t2+(t3+u4.d)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
||||||
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
SUB2(opi.d,opi1.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
if ((z=s2+(ss2-u8.d)) == s2+(ss2+u8.d)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
i=(TWO52+TWO8*u)-TWO52; i-=16;
|
||||||
|
v=(u-cij[i][0].d)+du;
|
||||||
|
zz=opi1.d-v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+
|
||||||
|
v*(cij[i][5].d+v* cij[i][6].d))));
|
||||||
|
t1=opi.d-cij[i][1].d;
|
||||||
|
if (i<112) ua=ua1.d; /* w < 1/2 */
|
||||||
|
else ua=ua2.d; /* w >= 1/2 */
|
||||||
|
if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z);
|
||||||
|
|
||||||
|
t1=u-hij[i][0].d;
|
||||||
|
EADD(t1,du,v,vv)
|
||||||
|
s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
|
||||||
|
v*(hij[i][14].d+v* hij[i][15].d))));
|
||||||
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
SUB2(opi.d,opi1.d,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z);
|
||||||
|
return atan2Mp(x,y,pr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Treat the Denormalized case */
|
||||||
|
static double normalized(double ax,double ay,double y, double z)
|
||||||
|
{ int p;
|
||||||
|
mp_no mpx,mpy,mpz,mperr,mpz2,mpt1;
|
||||||
|
p=6;
|
||||||
|
dbl_mp(ax,&mpx,p); dbl_mp(ay,&mpy,p); dvd(&mpy,&mpx,&mpz,p);
|
||||||
|
dbl_mp(ue.d,&mpt1,p); mul(&mpz,&mpt1,&mperr,p);
|
||||||
|
sub(&mpz,&mperr,&mpz2,p); mp_dbl(&mpz2,&z,p);
|
||||||
|
return signArctan2(y,z);
|
||||||
|
}
|
||||||
|
/* Fix the sign and return after stage 1 or stage 2 */
|
||||||
|
static double signArctan2(double y,double z)
|
||||||
|
{
|
||||||
|
return ((y<ZERO) ? -z : z);
|
||||||
|
}
|
||||||
|
/* Stage 3: Perform a multi-Precision computation */
|
||||||
|
static double atan2Mp(double x,double y,const int pr[])
|
||||||
|
{
|
||||||
|
double z1,z2;
|
||||||
|
int i,p;
|
||||||
|
mp_no mpx,mpy,mpz,mpz1,mpz2,mperr,mpt1;
|
||||||
|
for (i=0; i<MM; i++) {
|
||||||
|
p = pr[i];
|
||||||
|
dbl_mp(x,&mpx,p); dbl_mp(y,&mpy,p);
|
||||||
|
__mpatan2(&mpy,&mpx,&mpz,p);
|
||||||
|
dbl_mp(ud[i].d,&mpt1,p); mul(&mpz,&mpt1,&mperr,p);
|
||||||
|
add(&mpz,&mperr,&mpz1,p); sub(&mpz,&mperr,&mpz2,p);
|
||||||
|
mp_dbl(&mpz1,&z1,p); mp_dbl(&mpz2,&z2,p);
|
||||||
|
if (z1==z2) return z1;
|
||||||
|
}
|
||||||
|
return z1; /*if unpossible to do exact computing */
|
||||||
}
|
}
|
||||||
|
@ -1,163 +1,243 @@
|
|||||||
/* Double-precision floating point e^x.
|
/*
|
||||||
Copyright (C) 1997, 1998, 2000 Free Software Foundation, Inc.
|
* IBM Accurate Mathematical Library
|
||||||
This file is part of the GNU C Library.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/***************************************************************************/
|
||||||
|
/* MODULE_NAME:uexp.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION:uexp */
|
||||||
|
/* exp1 */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
|
||||||
|
/* mpa.c mpexp.x slowexp.c */
|
||||||
|
/* */
|
||||||
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/***************************************************************************/
|
||||||
|
|
||||||
The GNU C Library is free software; you can redistribute it and/or
|
#include "endian.h"
|
||||||
modify it under the terms of the GNU Library General Public License as
|
#include "uexp.h"
|
||||||
published by the Free Software Foundation; either version 2 of the
|
#include "mydefs.h"
|
||||||
License, or (at your option) any later version.
|
#include "MathLib.h"
|
||||||
|
#include "uexp.tbl"
|
||||||
|
double __slowexp(double);
|
||||||
|
|
||||||
The GNU C Library is distributed in the hope that it will be useful,
|
/***************************************************************************/
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
||||||
Library General Public License for more details.
|
/***************************************************************************/
|
||||||
|
double __ieee754_exp(double x) {
|
||||||
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
||||||
|
mynumber junk1, junk2, binexp = {0,0};
|
||||||
|
int4 k,i,j,m,n,ex;
|
||||||
|
|
||||||
You should have received a copy of the GNU Library General Public
|
junk1.x = x;
|
||||||
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
m = junk1.i[HIGH_HALF];
|
||||||
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
n = m&hugeint;
|
||||||
Boston, MA 02111-1307, USA. */
|
|
||||||
|
|
||||||
/* How this works:
|
if (n > smallint && n < bigint) {
|
||||||
The basic design here is from
|
|
||||||
Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
|
|
||||||
Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
|
|
||||||
17 (1), March 1991, pp. 26-45.
|
|
||||||
|
|
||||||
The input value, x, is written as
|
y = x*log2e.x + three51.x;
|
||||||
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
||||||
|
|
||||||
x = n * ln(2)_0 + t/512 + delta[t] + x + n * ln(2)_1
|
junk1.x = y;
|
||||||
|
|
||||||
where:
|
eps = bexp*ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
||||||
- n is an integer, 1024 >= n >= -1075;
|
t = x - bexp*ln_two1.x;
|
||||||
- ln(2)_0 is the first 43 bits of ln(2), and ln(2)_1 is the remainder, so
|
|
||||||
that |ln(2)_1| < 2^-32;
|
|
||||||
- t is an integer, 177 >= t >= -177
|
|
||||||
- delta is based on a table entry, delta[t] < 2^-28
|
|
||||||
- x is whatever is left, |x| < 2^-10
|
|
||||||
|
|
||||||
Then e^x is approximated as
|
y = t + three33.x;
|
||||||
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
||||||
|
junk2.x = y;
|
||||||
|
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
|
||||||
|
eps = del + del*del*(p3.x*del + p2.x);
|
||||||
|
|
||||||
e^x = 2^n_1 ( 2^n_0 e^(t/512 + delta[t])
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+1023)<<20;
|
||||||
+ ( 2^n_0 e^(t/512 + delta[t])
|
|
||||||
* ( p(x + n * ln(2)_1)
|
|
||||||
- n*ln(2)_1
|
|
||||||
- n*ln(2)_1 * p(x + n * ln(2)_1) ) ) )
|
|
||||||
|
|
||||||
where
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
||||||
- p(x) is a polynomial approximating e(x)-1;
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
||||||
- e^(t/512 + delta[t]) is obtained from a table;
|
|
||||||
- n_1 + n_0 = n, so that |n_0| < DBL_MIN_EXP-1.
|
|
||||||
|
|
||||||
If it happens that n_1 == 0 (this is the usual case), that multiplication
|
al = coar.x[i]*fine.x[j];
|
||||||
is omitted.
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
||||||
*/
|
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <float.h>
|
|
||||||
#include <ieee754.h>
|
|
||||||
#include <math.h>
|
|
||||||
#include <fenv.h>
|
|
||||||
#include <inttypes.h>
|
|
||||||
#include <math_private.h>
|
|
||||||
|
|
||||||
extern const float __exp_deltatable[178];
|
rem=(bet + bet*eps)+al*eps;
|
||||||
extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
|
res = al + rem;
|
||||||
|
cor = (al - res) + rem;
|
||||||
|
if (res == (res+cor*err_0)) return res*binexp.x;
|
||||||
|
else return __slowexp(x); /*if error is over bound */
|
||||||
|
}
|
||||||
|
|
||||||
static const volatile double TWO1023 = 8.988465674311579539e+307;
|
if (n <= smallint) return 1.0;
|
||||||
static const volatile double TWOM1000 = 9.3326361850321887899e-302;
|
|
||||||
|
|
||||||
double
|
if (n >= badint) {
|
||||||
__ieee754_exp (double x)
|
if (n > infint) return(zero/zero); /* x is NaN, return invalid */
|
||||||
{
|
if (n < infint) return ( (x>0) ? (hhuge*hhuge) : (tiny*tiny) );
|
||||||
static const double himark = 709.7827128933840868;
|
/* x is finite, cause either overflow or underflow */
|
||||||
static const double lomark = -745.1332191019412221;
|
if (junk1.i[LOW_HALF] != 0) return (zero/zero); /* x is NaN */
|
||||||
/* Check for usual case. */
|
return ((x>0)?inf.x:zero ); /* |x| = inf; return either inf or 0 */
|
||||||
if (isless (x, himark) && isgreater (x, lomark))
|
}
|
||||||
{
|
|
||||||
static const double THREEp42 = 13194139533312.0;
|
|
||||||
static const double THREEp51 = 6755399441055744.0;
|
|
||||||
/* 1/ln(2). */
|
|
||||||
static const double M_1_LN2 = 1.442695040888963387;
|
|
||||||
/* ln(2), part 1 */
|
|
||||||
static const double M_LN2_0 = .6931471805598903302;
|
|
||||||
/* ln(2), part 2 */
|
|
||||||
static const double M_LN2_1 = 5.497923018708371155e-14;
|
|
||||||
|
|
||||||
int tval, unsafe, n_i;
|
y = x*log2e.x + three51.x;
|
||||||
double x22, n, t, dely, result;
|
bexp = y - three51.x;
|
||||||
union ieee754_double ex2_u, scale_u;
|
junk1.x = y;
|
||||||
fenv_t oldenv;
|
eps = bexp*ln_two2.x;
|
||||||
|
t = x - bexp*ln_two1.x;
|
||||||
feholdexcept (&oldenv);
|
y = t + three33.x;
|
||||||
#ifdef FE_TONEAREST
|
base = y - three33.x;
|
||||||
fesetround (FE_TONEAREST);
|
junk2.x = y;
|
||||||
#endif
|
del = (t - base) - eps;
|
||||||
|
eps = del + del*del*(p3.x*del + p2.x);
|
||||||
/* Calculate n. */
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
||||||
n = x * M_1_LN2 + THREEp51;
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
||||||
n -= THREEp51;
|
al = coar.x[i]*fine.x[j];
|
||||||
x = x - n*M_LN2_0;
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
||||||
|
rem=(bet + bet*eps)+al*eps;
|
||||||
/* Calculate t/512. */
|
res = al + rem;
|
||||||
t = x + THREEp42;
|
cor = (al - res) + rem;
|
||||||
t -= THREEp42;
|
if (m>>31) {
|
||||||
x -= t;
|
ex=junk1.i[LOW_HALF];
|
||||||
|
if (res < 1.0) {res+=res; cor+=cor; ex-=1;}
|
||||||
/* Compute tval = t. */
|
if (ex >=-1022) {
|
||||||
tval = (int) (t * 512.0);
|
binexp.i[HIGH_HALF] = (1023+ex)<<20;
|
||||||
|
if (res == (res+cor*err_0)) return res*binexp.x;
|
||||||
if (t >= 0)
|
else return __slowexp(x); /*if error is over bound */
|
||||||
x -= __exp_deltatable[tval];
|
|
||||||
else
|
|
||||||
x += __exp_deltatable[-tval];
|
|
||||||
|
|
||||||
/* Now, the variable x contains x + n*ln(2)_1. */
|
|
||||||
dely = n*M_LN2_1;
|
|
||||||
|
|
||||||
/* Compute ex2 = 2^n_0 e^(t/512+delta[t]). */
|
|
||||||
ex2_u.d = __exp_atable[tval+177];
|
|
||||||
n_i = (int)n;
|
|
||||||
/* 'unsafe' is 1 iff n_1 != 0. */
|
|
||||||
unsafe = abs(n_i) >= -DBL_MIN_EXP - 1;
|
|
||||||
ex2_u.ieee.exponent += n_i >> unsafe;
|
|
||||||
|
|
||||||
/* Compute scale = 2^n_1. */
|
|
||||||
scale_u.d = 1.0;
|
|
||||||
scale_u.ieee.exponent += n_i - (n_i >> unsafe);
|
|
||||||
|
|
||||||
/* Approximate e^x2 - 1, using a fourth-degree polynomial,
|
|
||||||
with maximum error in [-2^-10-2^-28,2^-10+2^-28]
|
|
||||||
less than 4.9e-19. */
|
|
||||||
x22 = (((0.04166666898464281565
|
|
||||||
* x + 0.1666666766008501610)
|
|
||||||
* x + 0.499999999999990008)
|
|
||||||
* x + 0.9999999999999976685) * x;
|
|
||||||
/* Allow for impact of dely. */
|
|
||||||
x22 -= dely + dely*x22;
|
|
||||||
|
|
||||||
/* Return result. */
|
|
||||||
fesetenv (&oldenv);
|
|
||||||
|
|
||||||
result = x22 * ex2_u.d + ex2_u.d;
|
|
||||||
if (!unsafe)
|
|
||||||
return result;
|
|
||||||
else
|
|
||||||
return result * scale_u.d;
|
|
||||||
}
|
}
|
||||||
/* Exceptional cases: */
|
ex = -(1022+ex);
|
||||||
else if (isless (x, himark))
|
binexp.i[HIGH_HALF] = (1023-ex)<<20;
|
||||||
{
|
res*=binexp.x;
|
||||||
if (__isinf (x))
|
cor*=binexp.x;
|
||||||
/* e^-inf == 0, with no error. */
|
eps=1.0000000001+err_0*binexp.x;
|
||||||
return 0;
|
t=1.0+res;
|
||||||
else
|
y = ((1.0-t)+res)+cor;
|
||||||
/* Underflow */
|
res=t+y;
|
||||||
return TWOM1000 * TWOM1000;
|
cor = (t-res)+y;
|
||||||
|
if (res == (res + eps*cor))
|
||||||
|
{ binexp.i[HIGH_HALF] = 0x00100000;
|
||||||
|
return (res-1.0)*binexp.x;
|
||||||
}
|
}
|
||||||
else
|
else return __slowexp(x); /* if error is over bound */
|
||||||
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */
|
}
|
||||||
return TWO1023*x;
|
else {
|
||||||
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+767)<<20;
|
||||||
|
if (res == (res+cor*err_0)) return res*binexp.x*t256.x;
|
||||||
|
else return __slowexp(x);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/************************************************************************/
|
||||||
|
/* Compute e^(x+xx)(Double-Length number) .The routine also receive */
|
||||||
|
/* bound of error of previous calculation .If after computing exp */
|
||||||
|
/* error bigger than allows routine return non positive number */
|
||||||
|
/*else return e^(x + xx) (always positive ) */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
double __exp1(double x, double xx, double error) {
|
||||||
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
||||||
|
mynumber junk1, junk2, binexp = {0,0};
|
||||||
|
int4 k,i,j,m,n,ex;
|
||||||
|
|
||||||
|
junk1.x = x;
|
||||||
|
m = junk1.i[HIGH_HALF];
|
||||||
|
n = m&hugeint; /* no sign */
|
||||||
|
|
||||||
|
if (n > smallint && n < bigint) {
|
||||||
|
y = x*log2e.x + three51.x;
|
||||||
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
||||||
|
|
||||||
|
junk1.x = y;
|
||||||
|
|
||||||
|
eps = bexp*ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
||||||
|
t = x - bexp*ln_two1.x;
|
||||||
|
|
||||||
|
y = t + three33.x;
|
||||||
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
||||||
|
junk2.x = y;
|
||||||
|
del = (t - base) + (xx-eps); /* x = bexp*ln(2) + base + del */
|
||||||
|
eps = del + del*del*(p3.x*del + p2.x);
|
||||||
|
|
||||||
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+1023)<<20;
|
||||||
|
|
||||||
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
||||||
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
||||||
|
|
||||||
|
al = coar.x[i]*fine.x[j];
|
||||||
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
||||||
|
|
||||||
|
rem=(bet + bet*eps)+al*eps;
|
||||||
|
res = al + rem;
|
||||||
|
cor = (al - res) + rem;
|
||||||
|
if (res == (res+cor*(1.0+error+err_1))) return res*binexp.x;
|
||||||
|
else return -10.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n <= smallint) return 1.0; /* if x->0 e^x=1 */
|
||||||
|
|
||||||
|
if (n >= badint) {
|
||||||
|
if (n > infint) return(zero/zero); /* x is NaN, return invalid */
|
||||||
|
if (n < infint) return ( (x>0) ? (hhuge*hhuge) : (tiny*tiny) );
|
||||||
|
/* x is finite, cause either overflow or underflow */
|
||||||
|
if (junk1.i[LOW_HALF] != 0) return (zero/zero); /* x is NaN */
|
||||||
|
return ((x>0)?inf.x:zero ); /* |x| = inf; return either inf or 0 */
|
||||||
|
}
|
||||||
|
|
||||||
|
y = x*log2e.x + three51.x;
|
||||||
|
bexp = y - three51.x;
|
||||||
|
junk1.x = y;
|
||||||
|
eps = bexp*ln_two2.x;
|
||||||
|
t = x - bexp*ln_two1.x;
|
||||||
|
y = t + three33.x;
|
||||||
|
base = y - three33.x;
|
||||||
|
junk2.x = y;
|
||||||
|
del = (t - base) + (xx-eps);
|
||||||
|
eps = del + del*del*(p3.x*del + p2.x);
|
||||||
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
||||||
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
||||||
|
al = coar.x[i]*fine.x[j];
|
||||||
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
||||||
|
rem=(bet + bet*eps)+al*eps;
|
||||||
|
res = al + rem;
|
||||||
|
cor = (al - res) + rem;
|
||||||
|
if (m>>31) {
|
||||||
|
ex=junk1.i[LOW_HALF];
|
||||||
|
if (res < 1.0) {res+=res; cor+=cor; ex-=1;}
|
||||||
|
if (ex >=-1022) {
|
||||||
|
binexp.i[HIGH_HALF] = (1023+ex)<<20;
|
||||||
|
if (res == (res+cor*(1.0+error+err_1))) return res*binexp.x;
|
||||||
|
else return -10.0;
|
||||||
|
}
|
||||||
|
ex = -(1022+ex);
|
||||||
|
binexp.i[HIGH_HALF] = (1023-ex)<<20;
|
||||||
|
res*=binexp.x;
|
||||||
|
cor*=binexp.x;
|
||||||
|
eps=1.00000000001+(error+err_1)*binexp.x;
|
||||||
|
t=1.0+res;
|
||||||
|
y = ((1.0-t)+res)+cor;
|
||||||
|
res=t+y;
|
||||||
|
cor = (t-res)+y;
|
||||||
|
if (res == (res + eps*cor))
|
||||||
|
{binexp.i[HIGH_HALF] = 0x00100000; return (res-1.0)*binexp.x;}
|
||||||
|
else return -10.0;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+767)<<20;
|
||||||
|
if (res == (res+cor*(1.0+error+err_1)))
|
||||||
|
return res*binexp.x*t256.x;
|
||||||
|
else return -10.0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -199,14 +199,14 @@ static double zero= 0.00000000000000000000e+00;
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
switch (n) {
|
switch (n) {
|
||||||
case 0: y = __kernel_sin(pi*y,zero,0); break;
|
case 0: y = sin(pi*y); break;
|
||||||
case 1:
|
case 1:
|
||||||
case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
|
case 2: y = cos(pi*(0.5-y)); break;
|
||||||
case 3:
|
case 3:
|
||||||
case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
|
case 4: y = sin(pi*(one-y)); break;
|
||||||
case 5:
|
case 5:
|
||||||
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
|
case 6: y = -cos(pi*(y-1.5)); break;
|
||||||
default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
|
default: y = sin(pi*(y-2.0)); break;
|
||||||
}
|
}
|
||||||
return -y;
|
return -y;
|
||||||
}
|
}
|
||||||
|
@ -1,165 +1,197 @@
|
|||||||
/* @(#)e_log.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
/*********************************************************************/
|
||||||
for performance improvement on pipelined processors.
|
/* */
|
||||||
*/
|
/* MODULE_NAME:ulog.h */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION:ulog */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
|
||||||
|
/* mpexp.c mplog.c mpa.c */
|
||||||
|
/* ulog.tbl */
|
||||||
|
/* */
|
||||||
|
/* An ultimate log routine. Given an IEEE double machine number x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of log(x). */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/*********************************************************************/
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
|
||||||
static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* __ieee754_log(x)
|
#include "endian.h"
|
||||||
* Return the logarithm of x
|
#include "dla.h"
|
||||||
*
|
#include "mpa.h"
|
||||||
* Method :
|
#include "MathLib.h"
|
||||||
* 1. Argument Reduction: find k and f such that
|
void __mplog(mp_no *, mp_no *, int);
|
||||||
* x = 2^k * (1+f),
|
|
||||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
||||||
*
|
|
||||||
* 2. Approximation of log(1+f).
|
|
||||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
||||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
||||||
* = 2s + s*R
|
|
||||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
||||||
* a polynomial of degree 14 to approximate R The maximum error
|
|
||||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
||||||
* other words,
|
|
||||||
* 2 4 6 8 10 12 14
|
|
||||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
|
||||||
* (the values of Lg1 to Lg7 are listed in the program)
|
|
||||||
* and
|
|
||||||
* | 2 14 | -58.45
|
|
||||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
|
||||||
* | |
|
|
||||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
||||||
* In order to guarantee error in log below 1ulp, we compute log
|
|
||||||
* by
|
|
||||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
|
||||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
|
||||||
*
|
|
||||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
|
||||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|
||||||
* Here ln2 is split into two floating point number:
|
|
||||||
* ln2_hi + ln2_lo,
|
|
||||||
* where n*ln2_hi is always exact for |n| < 2000.
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
|
||||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
|
||||||
* log(NaN) is that NaN with no signal.
|
|
||||||
*
|
|
||||||
* Accuracy:
|
|
||||||
* according to an error analysis, the error is always less than
|
|
||||||
* 1 ulp (unit in the last place).
|
|
||||||
*
|
|
||||||
* Constants:
|
|
||||||
* The hexadecimal values are the intended ones for the following
|
|
||||||
* constants. The decimal values may be used, provided that the
|
|
||||||
* compiler will convert from decimal to binary accurately enough
|
|
||||||
* to produce the hexadecimal values shown.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
/*********************************************************************/
|
||||||
#include "math_private.h"
|
/* An ultimate log routine. Given an IEEE double machine number x */
|
||||||
#define half Lg[8]
|
/* it computes the correctly rounded (to nearest) value of log(x). */
|
||||||
#define two Lg[9]
|
/*********************************************************************/
|
||||||
#ifdef __STDC__
|
double __ieee754_log(double x) {
|
||||||
static const double
|
#define M 4
|
||||||
#else
|
static const int pr[M]={8,10,18,32};
|
||||||
static double
|
int i,j,k,n,ux,dx,p;
|
||||||
#endif
|
double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj,
|
||||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb,
|
||||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
t1,t2,t3,t4,t5,t6,t7,t8,t,ra,rb,ww,
|
||||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c;
|
||||||
Lg[] = {0.0,
|
number num;
|
||||||
6.666666666666735130e-01, /* 3FE55555 55555593 */
|
mp_no mpx,mpy,mpy1,mpy2,mperr;
|
||||||
3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
|
||||||
2.857142874366239149e-01, /* 3FD24924 94229359 */
|
|
||||||
2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
|
||||||
1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
|
||||||
1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
|
||||||
1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
|
|
||||||
0.5,
|
|
||||||
2.0};
|
|
||||||
#ifdef __STDC__
|
|
||||||
static const double zero = 0.0;
|
|
||||||
#else
|
|
||||||
static double zero = 0.0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
#include "ulog.tbl"
|
||||||
double __ieee754_log(double x)
|
#include "ulog.h"
|
||||||
#else
|
|
||||||
double __ieee754_log(x)
|
|
||||||
double x;
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
double t1,t2;
|
|
||||||
#endif
|
|
||||||
int32_t k,hx,i,j;
|
|
||||||
u_int32_t lx;
|
|
||||||
|
|
||||||
EXTRACT_WORDS(hx,lx,x);
|
/* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
|
||||||
|
|
||||||
k=0;
|
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
|
||||||
if (hx < 0x00100000) { /* x < 2**-1022 */
|
n=0;
|
||||||
if (((hx&0x7fffffff)|lx)==0)
|
if (ux < 0x00100000) {
|
||||||
return -two54/(x-x); /* log(+-0)=-inf */
|
if (((ux & 0x7fffffff) | dx) == 0) return MHALF/ZERO; /* return -INF */
|
||||||
if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
|
if (ux < 0) return (x-x)/ZERO; /* return NaN */
|
||||||
k -= 54; x *= two54; /* subnormal number, scale up x */
|
n -= 54; x *= two54.d; /* scale x */
|
||||||
GET_HIGH_WORD(hx,x);
|
num.d = x;
|
||||||
}
|
}
|
||||||
if (hx >= 0x7ff00000) return x+x;
|
if (ux >= 0x7ff00000) return x+x; /* INF or NaN */
|
||||||
k += (hx>>20)-1023;
|
|
||||||
hx &= 0x000fffff;
|
/* Regular values of x */
|
||||||
i = (hx+0x95f64)&0x100000;
|
|
||||||
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
w = x-ONE;
|
||||||
k += (i>>20);
|
if (ABS(w) > U03) { goto case_03; }
|
||||||
f = x-1.0;
|
|
||||||
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
|
|
||||||
if(f==zero) {
|
/*--- Stage I, the case abs(x-1) < 0.03 */
|
||||||
if(k==0) return zero; else {dk=(double)k;
|
|
||||||
return dk*ln2_hi+dk*ln2_lo;}
|
t8 = MHALF*w;
|
||||||
}
|
EMULV(t8,w,a,aa,t1,t2,t3,t4,t5)
|
||||||
R = f*f*(half-0.33333333333333333*f);
|
EADD(w,a,b,bb)
|
||||||
if(k==0) return f-R; else {dk=(double)k;
|
|
||||||
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
/* Evaluate polynomial II */
|
||||||
}
|
polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+
|
||||||
s = f/(two+f);
|
w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w;
|
||||||
dk = (double)k;
|
c = (aa+bb)+polII;
|
||||||
z = s*s;
|
|
||||||
i = hx-0x6147a;
|
/* End stage I, case abs(x-1) < 0.03 */
|
||||||
w = z*z;
|
if ((y=b+(c+b*E2)) == b+(c-b*E2)) return y;
|
||||||
j = 0x6b851-hx;
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
/*--- Stage II, the case abs(x-1) < 0.03 */
|
||||||
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
|
||||||
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+
|
||||||
R = t2+t1;
|
w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d))))))));
|
||||||
#else
|
EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5)
|
||||||
t21 = Lg[5]+w*Lg[7]; w2=w*w;
|
ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
t11 = Lg[4]+w*Lg[6];
|
ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
t12 = w*Lg[2];
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
R = t12 + w2*t11 + z*t22 + zw2*t21;
|
ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
#endif
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
i |= j;
|
ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
if(i>0) {
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
hfsq=0.5*f*f;
|
ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
} else {
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
if(k==0) return f-s*(f-R); else
|
ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
}
|
ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2)
|
||||||
|
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(w,ZERO, s3,ss3, b, bb,t1,t2)
|
||||||
|
|
||||||
|
/* End stage II, case abs(x-1) < 0.03 */
|
||||||
|
if ((y=b+(bb+b*E4)) == b+(bb-b*E4)) return y;
|
||||||
|
goto stage_n;
|
||||||
|
|
||||||
|
/*--- Stage I, the case abs(x-1) > 0.03 */
|
||||||
|
case_03:
|
||||||
|
|
||||||
|
/* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
|
||||||
|
n += (num.i[HIGH_HALF] >> 20) - 1023;
|
||||||
|
num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
|
||||||
|
if (num.d > SQRT_2) { num.d *= HALF; n++; }
|
||||||
|
u = num.d; dbl_n = (double) n;
|
||||||
|
|
||||||
|
/* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
|
||||||
|
num.d += h1.d;
|
||||||
|
i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
|
||||||
|
|
||||||
|
/* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
|
||||||
|
num.d = u*Iu[i].d + h2.d;
|
||||||
|
j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
|
||||||
|
|
||||||
|
/* Compute w=(u-ui*vj)/(ui*vj) */
|
||||||
|
p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V);
|
||||||
|
q=u-p0; r0=Iu[i].d*Iv[j].d; w=q*r0;
|
||||||
|
|
||||||
|
/* Evaluate polynomial I */
|
||||||
|
polI = w+(a2.d+a3.d*w)*w*w;
|
||||||
|
|
||||||
|
/* Add up everything */
|
||||||
|
nln2a = dbl_n*LN2A;
|
||||||
|
luai = Lu[i][0].d; lubi = Lu[i][1].d;
|
||||||
|
lvaj = Lv[j][0].d; lvbj = Lv[j][1].d;
|
||||||
|
EADD(luai,lvaj,sij,ssij)
|
||||||
|
EADD(nln2a,sij,A ,ttij)
|
||||||
|
B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B;
|
||||||
|
B = polI+B0;
|
||||||
|
|
||||||
|
/* End stage I, case abs(x-1) >= 0.03 */
|
||||||
|
if ((y=A+(B+E1)) == A+(B-E1)) return y;
|
||||||
|
|
||||||
|
|
||||||
|
/*--- Stage II, the case abs(x-1) > 0.03 */
|
||||||
|
|
||||||
|
/* Improve the accuracy of r0 */
|
||||||
|
EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5)
|
||||||
|
t=r0*((ONE-sa)-sb);
|
||||||
|
EADD(r0,t,ra,rb)
|
||||||
|
|
||||||
|
/* Compute w */
|
||||||
|
MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
|
||||||
|
EADD(A,B0,a0,aa0)
|
||||||
|
|
||||||
|
/* Evaluate polynomial III */
|
||||||
|
s1 = (c3.d+(c4.d+c5.d*w)*w)*w;
|
||||||
|
EADD(c2.d,s1,s2,ss2)
|
||||||
|
MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(s2,ss2,w,ww,s3,ss3,t1,t2)
|
||||||
|
ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2)
|
||||||
|
|
||||||
|
/* End stage II, case abs(x-1) >= 0.03 */
|
||||||
|
if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y;
|
||||||
|
|
||||||
|
|
||||||
|
/* Final stages. Use multi-precision arithmetic. */
|
||||||
|
stage_n:
|
||||||
|
|
||||||
|
for (i=0; i<M; i++) {
|
||||||
|
p = pr[i];
|
||||||
|
dbl_mp(x,&mpx,p); dbl_mp(y,&mpy,p);
|
||||||
|
__mplog(&mpx,&mpy,p);
|
||||||
|
dbl_mp(e[i].d,&mperr,p);
|
||||||
|
add(&mpy,&mperr,&mpy1,p); sub(&mpy,&mperr,&mpy2,p);
|
||||||
|
mp_dbl(&mpy1,&y1,p); mp_dbl(&mpy2,&y2,p);
|
||||||
|
if (y1==y2) return y1;
|
||||||
|
}
|
||||||
|
return y1;
|
||||||
}
|
}
|
||||||
|
@ -1,356 +1,328 @@
|
|||||||
/* @(#)e_pow.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
/***************************************************************************/
|
||||||
for performance improvement on pipelined processors.
|
/* MODULE_NAME: upow.c */
|
||||||
*/
|
/* */
|
||||||
|
/* FUNCTIONS: upow */
|
||||||
|
/* power1 */
|
||||||
|
/* log2 */
|
||||||
|
/* log1 */
|
||||||
|
/* checkint */
|
||||||
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */
|
||||||
|
/* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */
|
||||||
|
/* uexp.c upow.c */
|
||||||
|
/* root.tbl uexp.tbl upow.tbl */
|
||||||
|
/* An ultimate power routine. Given two IEEE double machine numbers y,x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of x^y. */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/***************************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "upow.h"
|
||||||
|
#include "dla.h"
|
||||||
|
#include "mydefs.h"
|
||||||
|
#include "MathLib.h"
|
||||||
|
#include "upow.tbl"
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
|
||||||
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* __ieee754_pow(x,y) return x**y
|
double __exp1(double x, double xx, double error);
|
||||||
*
|
static double log1(double x, double *delta, double *error);
|
||||||
* n
|
static double log2(double x, double *delta, double *error);
|
||||||
* Method: Let x = 2 * (1+f)
|
double slowpow(double x, double y,double z);
|
||||||
* 1. Compute and return log2(x) in two pieces:
|
static double power1(double x, double y);
|
||||||
* log2(x) = w1 + w2,
|
static int checkint(double x);
|
||||||
* where w1 has 53-24 = 29 bit trailing zeros.
|
|
||||||
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
||||||
* arithmetic, where |y'|<=0.5.
|
|
||||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* 1. (anything) ** 0 is 1
|
|
||||||
* 2. (anything) ** 1 is itself
|
|
||||||
* 3. (anything) ** NAN is NAN
|
|
||||||
* 4. NAN ** (anything except 0) is NAN
|
|
||||||
* 5. +-(|x| > 1) ** +INF is +INF
|
|
||||||
* 6. +-(|x| > 1) ** -INF is +0
|
|
||||||
* 7. +-(|x| < 1) ** +INF is +0
|
|
||||||
* 8. +-(|x| < 1) ** -INF is +INF
|
|
||||||
* 9. +-1 ** +-INF is NAN
|
|
||||||
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
||||||
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
||||||
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
||||||
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
||||||
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
||||||
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
||||||
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
||||||
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
||||||
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
||||||
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
||||||
*
|
|
||||||
* Accuracy:
|
|
||||||
* pow(x,y) returns x**y nearly rounded. In particular
|
|
||||||
* pow(integer,integer)
|
|
||||||
* always returns the correct integer provided it is
|
|
||||||
* representable.
|
|
||||||
*
|
|
||||||
* Constants :
|
|
||||||
* The hexadecimal values are the intended ones for the following
|
|
||||||
* constants. The decimal values may be used, provided that the
|
|
||||||
* compiler will convert from decimal to binary accurately enough
|
|
||||||
* to produce the hexadecimal values shown.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
/***************************************************************************/
|
||||||
#include "math_private.h"
|
/* An ultimate power routine. Given two IEEE double machine numbers y,x */
|
||||||
#define zero C[0]
|
/* it computes the correctly rounded (to nearest) value of X^y. */
|
||||||
#define one C[1]
|
/***************************************************************************/
|
||||||
#define two C[2]
|
double __ieee754_upow(double x, double y) {
|
||||||
#define two53 C[3]
|
double z,a,aa,error, t,a1,a2,y1,y2,gor=1.0;
|
||||||
#define huge C[4]
|
mynumber u,v;
|
||||||
#define tiny C[5]
|
int k;
|
||||||
#define L1 C[6]
|
int4 qx,qy;
|
||||||
#define L2 C[7]
|
v.x=y;
|
||||||
#define L3 C[8]
|
u.x=x;
|
||||||
#define L4 C[9]
|
if (v.i[LOW_HALF] == 0) { /* of y */
|
||||||
#define L5 C[10]
|
qx = u.i[HIGH_HALF]&0x7fffffff;
|
||||||
#define L6 C[11]
|
/* Checking if x is not too small to compute */
|
||||||
#define P1 C[12]
|
if (((qx==0x7ff00000)&&(u.i[LOW_HALF]!=0))||(qx>0x7ff00000)) return NaNQ.x;
|
||||||
#define P2 C[13]
|
if (y == 1.0) return x;
|
||||||
#define P3 C[14]
|
if (y == 2.0) return x*x;
|
||||||
#define P4 C[15]
|
if (y == -1.0) return (x!=0)?1.0/x:NaNQ.x;
|
||||||
#define P5 C[16]
|
if (y == 0) return ((x>0)&&(qx<0x7ff00000))?1.0:NaNQ.x;
|
||||||
#define lg2 C[17]
|
}
|
||||||
#define lg2_h C[18]
|
/* else */
|
||||||
#define lg2_l C[19]
|
if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)|| /* x>0 and not x->0 */
|
||||||
#define ovt C[20]
|
(u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) &&
|
||||||
#define cp C[21]
|
/* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
|
||||||
#define cp_h C[22]
|
(v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */
|
||||||
#define cp_l C[23]
|
z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */
|
||||||
#define ivln2 C[24]
|
t = y*134217729.0;
|
||||||
#define ivln2_h C[25]
|
y1 = t - (t-y);
|
||||||
#define ivln2_l C[26]
|
y2 = y - y1;
|
||||||
|
t = z*134217729.0;
|
||||||
|
a1 = t - (t-z);
|
||||||
|
a2 = (z - a1)+aa;
|
||||||
|
a = y1*a1;
|
||||||
|
aa = y2*a1 + y*a2;
|
||||||
|
a1 = a+aa;
|
||||||
|
a2 = (a-a1)+aa;
|
||||||
|
error = error*ABS(y);
|
||||||
|
t = __exp1(a1,a2,1.9e16*error); /* return -10 or 0 if wasn't computed exactly */
|
||||||
|
return (t>0)?t:power1(x,y);
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef __STDC__
|
if (x == 0) {
|
||||||
static const double
|
if (ABS(y) > 1.0e20) return (y>0)?0:NaNQ.x;
|
||||||
#else
|
k = checkint(y);
|
||||||
static double
|
if (k == 0 || y < 0) return NaNQ.x;
|
||||||
#endif
|
else return (k==1)?0:x; /* return 0 */
|
||||||
bp[] = {1.0, 1.5,},
|
}
|
||||||
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
/* if x<0 */
|
||||||
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
if (u.i[HIGH_HALF] < 0) {
|
||||||
C[] = {
|
k = checkint(y);
|
||||||
0.0,
|
if (k==0) return NaNQ.x; /* y not integer and x<0 */
|
||||||
1.0,
|
return (k==1)?upow(-x,y):-upow(-x,y); /* if y even or odd */
|
||||||
2.0,
|
}
|
||||||
9007199254740992.0 ,
|
/* x>0 */
|
||||||
1.0e300,
|
qx = u.i[HIGH_HALF]&0x7fffffff; /* no sign */
|
||||||
1.0e-300,
|
qy = v.i[HIGH_HALF]&0x7fffffff; /* no sign */
|
||||||
5.99999999999994648725e-01 ,
|
|
||||||
4.28571428578550184252e-01 ,
|
|
||||||
3.33333329818377432918e-01 ,
|
|
||||||
2.72728123808534006489e-01 ,
|
|
||||||
2.30660745775561754067e-01 ,
|
|
||||||
2.06975017800338417784e-01 ,
|
|
||||||
1.66666666666666019037e-01 ,
|
|
||||||
-2.77777777770155933842e-03 ,
|
|
||||||
6.61375632143793436117e-05 ,
|
|
||||||
-1.65339022054652515390e-06 ,
|
|
||||||
4.13813679705723846039e-08 ,
|
|
||||||
6.93147180559945286227e-01 ,
|
|
||||||
6.93147182464599609375e-01 ,
|
|
||||||
-1.90465429995776804525e-09 ,
|
|
||||||
8.0085662595372944372e-0017 ,
|
|
||||||
9.61796693925975554329e-01 ,
|
|
||||||
9.61796700954437255859e-01 ,
|
|
||||||
-7.02846165095275826516e-09 ,
|
|
||||||
1.44269504088896338700e+00 ,
|
|
||||||
1.44269502162933349609e+00 ,
|
|
||||||
1.92596299112661746887e-08 };
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
if (qx > 0x7ff00000 || (qx == 0x7ff00000 && u.i[LOW_HALF] != 0)) return NaNQ.x;
|
||||||
double __ieee754_pow(double x, double y)
|
/* if 0<x<2^-0x7fe */
|
||||||
#else
|
if (qy > 0x7ff00000 || (qy == 0x7ff00000 && v.i[LOW_HALF] != 0)) return NaNQ.x;
|
||||||
double __ieee754_pow(x,y)
|
/* if y<2^-0x7fe */
|
||||||
double x, y;
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double z,ax,z_h,z_l,p_h,p_l;
|
|
||||||
double y1,t1,t2,r,s,t,u,v,w, t12,t14,r_1,r_2,r_3;
|
|
||||||
int32_t i,j,k,yisint,n;
|
|
||||||
int32_t hx,hy,ix,iy;
|
|
||||||
u_int32_t lx,ly;
|
|
||||||
|
|
||||||
EXTRACT_WORDS(hx,lx,x);
|
if (qx == 0x7ff00000) /* x= 2^-0x3ff */
|
||||||
EXTRACT_WORDS(hy,ly,y);
|
{if (y == 0) return NaNQ.x;
|
||||||
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
return (y>0)?x:0; }
|
||||||
|
|
||||||
/* y==zero: x**0 = 1 */
|
if (qy > 0x45f00000 && qy < 0x7ff00000) {
|
||||||
if((iy|ly)==0) return C[1];
|
if (x == 1.0) return 1.0;
|
||||||
|
if (y>0) return (x>1.0)?INF.x:0;
|
||||||
|
if (y<0) return (x<1.0)?INF.x:0;
|
||||||
|
}
|
||||||
|
|
||||||
/* x==+-1 */
|
if (x == 1.0) return NaNQ.x;
|
||||||
if(x == 1.0) return C[1];
|
if (y>0) return (x>1.0)?INF.x:0;
|
||||||
if(x == -1.0 && isinf(y)) return C[1];
|
if (y<0) return (x<1.0)?INF.x:0;
|
||||||
|
return 0; /* unreachable, to make the compiler happy */
|
||||||
/* +-NaN return x+y */
|
}
|
||||||
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
|
||||||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
/**************************************************************************/
|
||||||
return x+y;
|
/* Computing x^y using more accurate but more slow log routine */
|
||||||
|
/**************************************************************************/
|
||||||
/* determine if y is an odd int when x < 0
|
static double power1(double x, double y) {
|
||||||
* yisint = 0 ... y is not an integer
|
double z,a,aa,error, t,a1,a2,y1,y2;
|
||||||
* yisint = 1 ... y is an odd int
|
z = log2(x,&aa,&error);
|
||||||
* yisint = 2 ... y is an even int
|
t = y*134217729.0;
|
||||||
*/
|
y1 = t - (t-y);
|
||||||
yisint = 0;
|
y2 = y - y1;
|
||||||
if(hx<0) {
|
t = z*134217729.0;
|
||||||
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
a1 = t - (t-z);
|
||||||
else if(iy>=0x3ff00000) {
|
a2 = z - a1;
|
||||||
k = (iy>>20)-0x3ff; /* exponent */
|
a = y*z;
|
||||||
if(k>20) {
|
aa = ((y1*a1-a)+y1*a2+y2*a1)+y2*a2+aa*y;
|
||||||
j = ly>>(52-k);
|
a1 = a+aa;
|
||||||
if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
|
a2 = (a-a1)+aa;
|
||||||
} else if(ly==0) {
|
error = error*ABS(y);
|
||||||
j = iy>>(20-k);
|
t = __exp1(a1,a2,1.9e16*error);
|
||||||
if((int32_t)(j<<(20-k))==iy) yisint = 2-(j&1);
|
return (t >= 0)?t:slowpow(x,y,z);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
/****************************************************************************/
|
||||||
|
/* Computing log(x) (x is left argument). The result is the returned double */
|
||||||
/* special value of y */
|
/* + the parameter delta. */
|
||||||
if(ly==0) {
|
/* The result is bounded by error (rightmost argument) */
|
||||||
if (iy==0x7ff00000) { /* y is +-inf */
|
/****************************************************************************/
|
||||||
if(((ix-0x3ff00000)|lx)==0)
|
static double log1(double x, double *delta, double *error) {
|
||||||
return y - y; /* inf**+-1 is NaN */
|
int i,j,m,n;
|
||||||
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,cor,add=0;
|
||||||
return (hy>=0)? y: C[0];
|
mynumber u,v;
|
||||||
else /* (|x|<1)**-,+inf = inf,0 */
|
|
||||||
return (hy<0)?-y: C[0];
|
u.x = x;
|
||||||
}
|
m = u.i[HIGH_HALF];
|
||||||
if(iy==0x3ff00000) { /* y is +-1 */
|
*error = 0;
|
||||||
if(hy<0) return C[1]/x; else return x;
|
*delta = 0;
|
||||||
}
|
if (m < 0x00100000) /* 1<x<2^-1007 */
|
||||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
{ x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF];}
|
||||||
if(hy==0x3fe00000) { /* y is 0.5 */
|
|
||||||
if(hx>=0) /* x >= +0 */
|
if ((m&0x000fffff) < 0x0006a09e)
|
||||||
return __ieee754_sqrt(x);
|
{u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }
|
||||||
}
|
else
|
||||||
}
|
{u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }
|
||||||
|
|
||||||
ax = fabs(x);
|
v.x = u.x + bigu.x;
|
||||||
/* special value of x */
|
uu = v.x - bigu.x;
|
||||||
if(lx==0) {
|
i = (v.i[LOW_HALF]&0x000003ff)<<2;
|
||||||
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
if (two52.i[LOW_HALF] == 1023) /* nx = 0 */
|
||||||
z = ax; /*x is +-0,+-inf,+-1*/
|
{
|
||||||
if(hy<0) z = C[1]/z; /* z = (1/|x|) */
|
if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */
|
||||||
if(hx<0) {
|
{
|
||||||
if(((ix-0x3ff00000)|yisint)==0) {
|
t = x - 1.0;
|
||||||
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
t1 = (t+5.0e6)-5.0e6;
|
||||||
} else if(yisint==1)
|
t2 = t-t1;
|
||||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
e1 = t - 0.5*t1*t1;
|
||||||
}
|
e2 = t*t*t*(r3+t*(r4+t*(r5+t*(r6+t*(r7+t*r8)))))-0.5*t2*(t+t1);
|
||||||
return z;
|
res = e1+e2;
|
||||||
}
|
*error = 1.0e-21*ABS(t);
|
||||||
}
|
*delta = (e1-res)+e2;
|
||||||
|
return res;
|
||||||
/* (x<0)**(non-int) is NaN */
|
} /* |x-1| < 1.5*2**-10 */
|
||||||
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
else
|
||||||
|
{
|
||||||
/* |y| is huge */
|
v.x = u.x*(ui.x[i]+ui.x[i+1])+bigv.x;
|
||||||
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
vv = v.x-bigv.x;
|
||||||
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
j = v.i[LOW_HALF]&0x0007ffff;
|
||||||
if(ix<=0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
|
j = j+j+j;
|
||||||
if(ix>=0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
|
eps = u.x - uu*vv;
|
||||||
}
|
e1 = eps*ui.x[i];
|
||||||
/* over/underflow if x is not close to one */
|
e2 = eps*(ui.x[i+1]+vj.x[j]*(ui.x[i]+ui.x[i+1]));
|
||||||
if(ix<0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
|
e = e1+e2;
|
||||||
if(ix>0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
|
e2 = ((e1-e)+e2);
|
||||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
t=ui.x[i+2]+vj.x[j+1];
|
||||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
t1 = t+e;
|
||||||
t = x-1; /* t has 20 trailing zeros */
|
t2 = (((t-t1)+e)+(ui.x[i+3]+vj.x[j+2]))+e2+e*e*(p2+e*(p3+e*p4));
|
||||||
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
res=t1+t2;
|
||||||
u = C[25]*t; /* ivln2_h has 21 sig. bits */
|
*error = 1.0e-24;
|
||||||
v = t*C[26]-w*C[24];
|
*delta = (t1-res)+t2;
|
||||||
t1 = u+v;
|
return res;
|
||||||
SET_LOW_WORD(t1,0);
|
}
|
||||||
t2 = v-(t1-u);
|
} /* nx = 0 */
|
||||||
} else {
|
else /* nx != 0 */
|
||||||
double s2,s_h,s_l,t_h,t_l,s22,s24,s26,r1,r2,r3;
|
{
|
||||||
n = 0;
|
eps = u.x - uu;
|
||||||
/* take care subnormal number */
|
nx = (two52.x - two52e.x)+add;
|
||||||
if(ix<0x00100000)
|
e1 = eps*ui.x[i];
|
||||||
{ax *= C[3]; n -= 53; GET_HIGH_WORD(ix,ax); }
|
e2 = eps*ui.x[i+1];
|
||||||
n += ((ix)>>20)-0x3ff;
|
e=e1+e2;
|
||||||
j = ix&0x000fffff;
|
e2 = (e1-e)+e2;
|
||||||
/* determine interval */
|
t=nx*ln2a.x+ui.x[i+2];
|
||||||
ix = j|0x3ff00000; /* normalize ix */
|
t1=t+e;
|
||||||
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
t2=(((t-t1)+e)+nx*ln2b.x+ui.x[i+3]+e2)+e*e*(q2+e*(q3+e*(q4+e*(q5+e*q6))));
|
||||||
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
res = t1+t2;
|
||||||
else {k=0;n+=1;ix -= 0x00100000;}
|
*error = 1.0e-21;
|
||||||
SET_HIGH_WORD(ax,ix);
|
*delta = (t1-res)+t2;
|
||||||
|
return res;
|
||||||
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
} /* nx != 0 */
|
||||||
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
}
|
||||||
v = C[1]/(ax+bp[k]);
|
|
||||||
s = u*v;
|
/****************************************************************************/
|
||||||
s_h = s;
|
/* More slow but more accurate routine of log */
|
||||||
SET_LOW_WORD(s_h,0);
|
/* Computing log(x)(x is left argument).The result is return double + delta.*/
|
||||||
/* t_h=ax+bp[k] High */
|
/* The result is bounded by error (right argument) */
|
||||||
t_h = C[0];
|
/****************************************************************************/
|
||||||
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
|
static double log2(double x, double *delta, double *error) {
|
||||||
t_l = ax - (t_h-bp[k]);
|
int i,j,m,n;
|
||||||
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,cor,add=0;
|
||||||
/* compute log(ax) */
|
double ou1,ou2,lu1,lu2,ov,lv1,lv2,a,a1,a2;
|
||||||
s2 = s*s;
|
double y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8;
|
||||||
#ifdef DO_NOT_USE_THIS
|
mynumber u,v;
|
||||||
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
|
||||||
#else
|
u.x = x;
|
||||||
r1 = C[10]+s2*C[11]; s22=s2*s2;
|
m = u.i[HIGH_HALF];
|
||||||
r2 = C[8]+s2*C[9]; s24=s22*s22;
|
*error = 0;
|
||||||
r3 = C[6]+s2*C[7]; s26=s24*s22;
|
*delta = 0;
|
||||||
r = r3*s22 + r2*s24 + r1*s26;
|
add=0;
|
||||||
#endif
|
if (m<0x00100000) { /* x < 2^-1022 */
|
||||||
r += s_l*(s_h+s);
|
x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF]; }
|
||||||
s2 = s_h*s_h;
|
|
||||||
t_h = 3.0+s2+r;
|
if ((m&0x000fffff) < 0x0006a09e)
|
||||||
SET_LOW_WORD(t_h,0);
|
{u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }
|
||||||
t_l = r-((t_h-3.0)-s2);
|
else
|
||||||
/* u+v = s*(1+...) */
|
{u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }
|
||||||
u = s_h*t_h;
|
|
||||||
v = s_l*t_h+t_l*s;
|
v.x = u.x + bigu.x;
|
||||||
/* 2/(3log2)*(s+...) */
|
uu = v.x - bigu.x;
|
||||||
p_h = u+v;
|
i = (v.i[LOW_HALF]&0x000003ff)<<2;
|
||||||
SET_LOW_WORD(p_h,0);
|
/*------------------------------------- |x-1| < 2**-11------------------------------- */
|
||||||
p_l = v-(p_h-u);
|
if ((two52.i[LOW_HALF] == 1023) && (i == 1200))
|
||||||
z_h = C[22]*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
{
|
||||||
z_l = C[23]*p_h+p_l*C[21]+dp_l[k];
|
t = x - 1.0;
|
||||||
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
EMULV(t,s3,y,yy,j1,j2,j3,j4,j5);
|
||||||
t = (double)n;
|
ADD2(-0.5,0,y,yy,z,zz,j1,j2);
|
||||||
t1 = (((z_h+z_l)+dp_h[k])+t);
|
MUL2(t,0,z,zz,y,yy,j1,j2,j3,j4,j5,j6,j7,j8);
|
||||||
SET_LOW_WORD(t1,0);
|
MUL2(t,0,y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8);
|
||||||
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
|
||||||
}
|
e1 = t+z;
|
||||||
|
e2 = (((t-e1)+z)+zz)+t*t*t*(ss3+t*(s4+t*(s5+t*(s6+t*(s7+t*s8)))));
|
||||||
s = C[1]; /* s (sign of result -ve**odd) = -1 else = 1 */
|
res = e1+e2;
|
||||||
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
|
*error = 1.0e-25*ABS(t);
|
||||||
s = -C[1];/* (-ve)**(odd int) */
|
*delta = (e1-res)+e2;
|
||||||
|
return res;
|
||||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
}
|
||||||
y1 = y;
|
/*----------------------------- |x-1| > 2**-11 -------------------------- */
|
||||||
SET_LOW_WORD(y1,0);
|
else
|
||||||
p_l = (y-y1)*t1+y*t2;
|
{ /*Computing log(x) according to log table */
|
||||||
p_h = y1*t1;
|
nx = (two52.x - two52e.x)+add;
|
||||||
z = p_l+p_h;
|
ou1 = ui.x[i];
|
||||||
EXTRACT_WORDS(j,i,z);
|
ou2 = ui.x[i+1];
|
||||||
if (j>=0x40900000) { /* z >= 1024 */
|
lu1 = ui.x[i+2];
|
||||||
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
lu2 = ui.x[i+3];
|
||||||
return s*C[4]*C[4]; /* overflow */
|
v.x = u.x*(ou1+ou2)+bigv.x;
|
||||||
else {
|
vv = v.x-bigv.x;
|
||||||
if(p_l+C[20]>z-p_h) return s*C[4]*C[4]; /* overflow */
|
j = v.i[LOW_HALF]&0x0007ffff;
|
||||||
}
|
j = j+j+j;
|
||||||
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
eps = u.x - uu*vv;
|
||||||
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
ov = vj.x[j];
|
||||||
return s*C[5]*C[5]; /* underflow */
|
lv1 = vj.x[j+1];
|
||||||
else {
|
lv2 = vj.x[j+2];
|
||||||
if(p_l<=z-p_h) return s*C[5]*C[5]; /* underflow */
|
a = (ou1+ou2)*(1.0+ov);
|
||||||
}
|
a1 = (a+1.0e10)-1.0e10;
|
||||||
}
|
a2 = a*(1.0-a1*uu*vv);
|
||||||
/*
|
e1 = eps*a1;
|
||||||
* compute 2**(p_h+p_l)
|
e2 = eps*a2;
|
||||||
*/
|
e = e1+e2;
|
||||||
i = j&0x7fffffff;
|
e2 = (e1-e)+e2;
|
||||||
k = (i>>20)-0x3ff;
|
t=nx*ln2a.x+lu1+lv1;
|
||||||
n = 0;
|
t1 = t+e;
|
||||||
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
t2 = (((t-t1)+e)+(lu2+lv2+nx*ln2b.x+e2))+e*e*(p2+e*(p3+e*p4));
|
||||||
n = j+(0x00100000>>(k+1));
|
res=t1+t2;
|
||||||
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
*error = 1.0e-27;
|
||||||
t = C[0];
|
*delta = (t1-res)+t2;
|
||||||
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
|
return res;
|
||||||
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
}
|
||||||
if(j<0) n = -n;
|
}
|
||||||
p_h -= t;
|
|
||||||
}
|
/**********************************************************************/
|
||||||
t = p_l+p_h;
|
/* Routine receives a double x and checks if it is an integer. If not */
|
||||||
SET_LOW_WORD(t,0);
|
/* it returns 0, else it returns 1 if even or -1 if odd. */
|
||||||
u = t*C[18];
|
/**********************************************************************/
|
||||||
v = (p_l-(t-p_h))*C[17]+t*C[19];
|
static int checkint(double x) {
|
||||||
z = u+v;
|
union {int4 i[2]; double x;} u;
|
||||||
w = v-(z-u);
|
int k,l,m,n;
|
||||||
t = z*z;
|
u.x = x;
|
||||||
#ifdef DO_NOT_USE_THIS
|
m = u.i[HIGH_HALF]&0x7fffffff; /* no sign */
|
||||||
t1 = z - t*(C[12]+t*(C[13]+t*(C[14]+t*(C[15]+t*C[16]))));
|
if (m >= 0x7ff00000) return 0; /* x is +/-inf or NaN */
|
||||||
#else
|
if (m >= 0x43400000) return 1; /* |x| >= 2**53 */
|
||||||
r_1 = C[15]+t*C[16]; t12 = t*t;
|
if (m < 0x40000000) return 0; /* |x| < 2, can not be 0 or 1 */
|
||||||
r_2 = C[13]+t*C[14]; t14 = t12*t12;
|
n = u.i[LOW_HALF];
|
||||||
r_3 = t*C[12];
|
k = (m>>20)-1023; /* 1 <= k <= 52 */
|
||||||
t1 = z - r_3 - t12*r_2 - t14*r_1;
|
if (k == 52) return (n&1)? -1:1; /* odd or even*/
|
||||||
#endif
|
if (k>20) {
|
||||||
r = (z*t1)/(t1-C[2])-(w+z*w);
|
if (n<<(k-20)) return 0; /* if not integer */
|
||||||
z = C[1]-(r-z);
|
return (n<<(k-21))?-1:1;
|
||||||
GET_HIGH_WORD(j,z);
|
}
|
||||||
j += (n<<20);
|
if (n) return 0; /*if not integer*/
|
||||||
if((j>>20)<=0) z = __scalbn(z,n); /* subnormal output */
|
if (k == 20) return (m&1)? -1:1;
|
||||||
else SET_HIGH_WORD(z,j);
|
if (m<<(k+12)) return 0;
|
||||||
return s*z;
|
return (m<<(k+11))?-1:1;
|
||||||
}
|
}
|
||||||
|
@ -1,80 +1,111 @@
|
|||||||
/* @(#)e_remainder.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
|
/**************************************************************************/
|
||||||
|
/* MODULE_NAME urem.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION: uremainder */
|
||||||
|
/* */
|
||||||
|
/* An ultimate remainder routine. Given two IEEE double machine numbers x */
|
||||||
|
/* ,y it computes the correctly rounded (to nearest) value of remainder */
|
||||||
|
/* of dividing x by y. */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/* ************************************************************************/
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
#include "endian.h"
|
||||||
static char rcsid[] = "$NetBSD: e_remainder.c,v 1.8 1995/05/10 20:46:05 jtc Exp $";
|
#include "mydefs.h"
|
||||||
#endif
|
#include "urem.h"
|
||||||
|
#include "MathLib.h"
|
||||||
|
|
||||||
/* __ieee754_remainder(x,p)
|
/**************************************************************************/
|
||||||
* Return :
|
/* An ultimate remainder routine. Given two IEEE double machine numbers x */
|
||||||
* returns x REM p = x - [x/p]*p as if in infinite
|
/* ,y it computes the correctly rounded (to nearest) value of remainder */
|
||||||
* precise arithmetic, where [x/p] is the (infinite bit)
|
/**************************************************************************/
|
||||||
* integer nearest x/p (in half way case choose the even one).
|
double __ieee754_remainder(double x, double y)
|
||||||
* Method :
|
|
||||||
* Based on fmod() return x-[x/p]chopped*p exactlp.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
|
||||||
#include "math_private.h"
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
static const double zero = 0.0;
|
|
||||||
#else
|
|
||||||
static double zero = 0.0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
double __ieee754_remainder(double x, double p)
|
|
||||||
#else
|
|
||||||
double __ieee754_remainder(x,p)
|
|
||||||
double x,p;
|
|
||||||
#endif
|
|
||||||
{
|
{
|
||||||
int32_t hx,hp;
|
double z,d,xx,yy;
|
||||||
u_int32_t sx,lx,lp;
|
int4 kx,ky,m,n,nn,n1,m1,l;
|
||||||
double p_half;
|
mynumber u,t,w={0,0},v={0,0},ww={0,0},r;
|
||||||
|
u.x=x;
|
||||||
|
t.x=y;
|
||||||
|
kx=u.i[HIGH_HALF]&0x7fffffff; /* no sign for x*/
|
||||||
|
t.i[HIGH_HALF]&=0x7fffffff; /*no sign for y */
|
||||||
|
ky=t.i[HIGH_HALF];
|
||||||
|
/*------ |x| < 2^1024 and 2^-970 < |y| < 2^1024 ------------------*/
|
||||||
|
if (kx<0x7ff00000 && ky<0x7ff00000 && ky>=0x03500000) {
|
||||||
|
if (kx+0x00100000<ky) return x;
|
||||||
|
if ((kx-0x01500000)<ky) {
|
||||||
|
z=x/t.x;
|
||||||
|
v.i[HIGH_HALF]=t.i[HIGH_HALF];
|
||||||
|
d=(z+big.x)-big.x;
|
||||||
|
xx=(x-d*v.x)-d*(t.x-v.x);
|
||||||
|
if (d-z!=0.5&&d-z!=-0.5) return (xx!=0)?xx:((x>0)?ZERO.x:nZERO.x);
|
||||||
|
else {
|
||||||
|
if (ABS(xx)>0.5*t.x) return (z>d)?xx-t.x:xx+t.x;
|
||||||
|
else return xx;
|
||||||
|
}
|
||||||
|
} /* (kx<(ky+0x01500000)) */
|
||||||
|
else {
|
||||||
|
r.x=1.0/t.x;
|
||||||
|
n=t.i[HIGH_HALF];
|
||||||
|
nn=(n&0x7ff00000)+0x01400000;
|
||||||
|
w.i[HIGH_HALF]=n;
|
||||||
|
ww.x=t.x-w.x;
|
||||||
|
l=(kx-nn)&0xfff00000;
|
||||||
|
n1=ww.i[HIGH_HALF];
|
||||||
|
m1=r.i[HIGH_HALF];
|
||||||
|
while (l>0) {
|
||||||
|
r.i[HIGH_HALF]=m1-l;
|
||||||
|
z=u.x*r.x;
|
||||||
|
w.i[HIGH_HALF]=n+l;
|
||||||
|
ww.i[HIGH_HALF]=(n1)?n1+l:n1;
|
||||||
|
d=(z+big.x)-big.x;
|
||||||
|
u.x=(u.x-d*w.x)-d*ww.x;
|
||||||
|
l=(u.i[HIGH_HALF]&0x7ff00000)-nn;
|
||||||
|
}
|
||||||
|
r.i[HIGH_HALF]=m1;
|
||||||
|
w.i[HIGH_HALF]=n;
|
||||||
|
ww.i[HIGH_HALF]=n1;
|
||||||
|
z=u.x*r.x;
|
||||||
|
d=(z+big.x)-big.x;
|
||||||
|
u.x=(u.x-d*w.x)-d*ww.x;
|
||||||
|
if (ABS(u.x)<0.5*t.x) return (u.x!=0)?u.x:((x>0)?ZERO.x:nZERO.x);
|
||||||
|
else
|
||||||
|
if (ABS(u.x)>0.5*t.x) return (d>z)?u.x+t.x:u.x-t.x;
|
||||||
|
else
|
||||||
|
{z=u.x/t.x; d=(z+big.x)-big.x; return ((u.x-d*w.x)-d*ww.x);}
|
||||||
|
}
|
||||||
|
|
||||||
EXTRACT_WORDS(hx,lx,x);
|
} /* (kx<0x7ff00000&&ky<0x7ff00000&&ky>=0x03500000) */
|
||||||
EXTRACT_WORDS(hp,lp,p);
|
else {
|
||||||
sx = hx&0x80000000;
|
if (kx<0x7ff00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) {
|
||||||
hp &= 0x7fffffff;
|
y=ABS(y)*t128.x;
|
||||||
hx &= 0x7fffffff;
|
z=uremainder(x,y)*t128.x;
|
||||||
|
z=uremainder(z,y)*tm128.x;
|
||||||
/* purge off exception values */
|
return z;
|
||||||
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
|
}
|
||||||
if((hx>=0x7ff00000)|| /* x not finite */
|
else { /* if x is too big */
|
||||||
((hp>=0x7ff00000)&& /* p is NaN */
|
if (kx>=0x7ff00000||(ky==0&&t.i[LOW_HALF]==0)||ky>0x7ff00000||
|
||||||
(((hp-0x7ff00000)|lp)!=0)))
|
(ky==0x7ff00000&&t.i[LOW_HALF]!=0))
|
||||||
return (x*p)/(x*p);
|
return (u.i[HIGH_HALF]&0x80000000)?nNAN.x:NAN.x;
|
||||||
|
else return x;
|
||||||
|
}
|
||||||
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
|
}
|
||||||
if (((hx-hp)|(lx-lp))==0) return zero*x;
|
|
||||||
x = fabs(x);
|
|
||||||
p = fabs(p);
|
|
||||||
if (hp<0x00200000) {
|
|
||||||
if(x+x>p) {
|
|
||||||
x-=p;
|
|
||||||
if(x+x>=p) x -= p;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
p_half = 0.5*p;
|
|
||||||
if(x>p_half) {
|
|
||||||
x-=p;
|
|
||||||
if(x>=p_half) x -= p;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
GET_HIGH_WORD(hx,x);
|
|
||||||
SET_HIGH_WORD(x,hx^sx);
|
|
||||||
return x;
|
|
||||||
}
|
}
|
||||||
|
@ -1,452 +1,89 @@
|
|||||||
/* @(#)e_sqrt.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
|
/*********************************************************************/
|
||||||
|
/* MODULE_NAME: uroot.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION: usqrt */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: dla.h endian.h mydefs.h uroot.h */
|
||||||
|
/* uroot.tbl */
|
||||||
|
/* */
|
||||||
|
/* An ultimate sqrt routine. Given an IEEE double machine number x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of square */
|
||||||
|
/* root of x. */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/*********************************************************************/
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
#include "endian.h"
|
||||||
static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
|
#include "mydefs.h"
|
||||||
#endif
|
#include "dla.h"
|
||||||
|
#include "MathLib.h"
|
||||||
|
#include "root.tbl"
|
||||||
|
|
||||||
/* __ieee754_sqrt(x)
|
/*********************************************************************/
|
||||||
* Return correctly rounded sqrt.
|
/* An ultimate aqrt routine. Given an IEEE double machine number x */
|
||||||
* ------------------------------------------
|
/* it computes the correctly rounded (to nearest) value of square */
|
||||||
* | Use the hardware sqrt if you have one |
|
/* root of x. */
|
||||||
* ------------------------------------------
|
/*********************************************************************/
|
||||||
* Method:
|
double __ieee754_sqrt(double x) {
|
||||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
#include "uroot.h"
|
||||||
* 1. Normalization
|
static const double
|
||||||
* Scale x to y in [1,4) with even powers of 2:
|
rt0 = 9.99999999859990725855365213134618E-01,
|
||||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
rt1 = 4.99999999495955425917856814202739E-01,
|
||||||
* sqrt(x) = 2^k * sqrt(y)
|
rt2 = 3.75017500867345182581453026130850E-01,
|
||||||
* 2. Bit by bit computation
|
rt3 = 3.12523626554518656309172508769531E-01;
|
||||||
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
static const double big = 134217728.0, big1 = 134217729.0;
|
||||||
* i 0
|
double y,t,del,res,res1,hy,z,zz,p,hx,tx,ty,s;
|
||||||
* i+1 2
|
mynumber a,b,c={0,0};
|
||||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
int4 n,k;
|
||||||
* i i i i
|
|
||||||
*
|
|
||||||
* To compute q from q , one checks whether
|
|
||||||
* i+1 i
|
|
||||||
*
|
|
||||||
* -(i+1) 2
|
|
||||||
* (q + 2 ) <= y. (2)
|
|
||||||
* i
|
|
||||||
* -(i+1)
|
|
||||||
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
|
||||||
* i+1 i i+1 i
|
|
||||||
*
|
|
||||||
* With some algebraic manipulation, it is not difficult to see
|
|
||||||
* that (2) is equivalent to
|
|
||||||
* -(i+1)
|
|
||||||
* s + 2 <= y (3)
|
|
||||||
* i i
|
|
||||||
*
|
|
||||||
* The advantage of (3) is that s and y can be computed by
|
|
||||||
* i i
|
|
||||||
* the following recurrence formula:
|
|
||||||
* if (3) is false
|
|
||||||
*
|
|
||||||
* s = s , y = y ; (4)
|
|
||||||
* i+1 i i+1 i
|
|
||||||
*
|
|
||||||
* otherwise,
|
|
||||||
* -i -(i+1)
|
|
||||||
* s = s + 2 , y = y - s - 2 (5)
|
|
||||||
* i+1 i i+1 i i
|
|
||||||
*
|
|
||||||
* One may easily use induction to prove (4) and (5).
|
|
||||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
|
||||||
* it does not necessary to do a full (53-bit) comparison
|
|
||||||
* in (3).
|
|
||||||
* 3. Final rounding
|
|
||||||
* After generating the 53 bits result, we compute one more bit.
|
|
||||||
* Together with the remainder, we can decide whether the
|
|
||||||
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
||||||
* (it will never equal to 1/2ulp).
|
|
||||||
* The rounding mode can be detected by checking whether
|
|
||||||
* huge + tiny is equal to huge, and whether huge - tiny is
|
|
||||||
* equal to huge for some floating point number "huge" and "tiny".
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* sqrt(+-0) = +-0 ... exact
|
|
||||||
* sqrt(inf) = inf
|
|
||||||
* sqrt(-ve) = NaN ... with invalid signal
|
|
||||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
|
||||||
*
|
|
||||||
* Other methods : see the appended file at the end of the program below.
|
|
||||||
*---------------
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
a.x=x;
|
||||||
#include "math_private.h"
|
k=a.i[HIGH_HALF];
|
||||||
|
a.i[HIGH_HALF]=(k&0x001fffff)|0x3fe00000;
|
||||||
#ifdef __STDC__
|
t=inroot[(k&0x001fffff)>>14];
|
||||||
static const double one = 1.0, tiny=1.0e-300;
|
s=a.x;
|
||||||
#else
|
/*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/
|
||||||
static double one = 1.0, tiny=1.0e-300;
|
if (k>0x000fffff && k<0x7ff00000) {
|
||||||
#endif
|
y=1.0-t*(t*s);
|
||||||
|
t=t*(rt0+y*(rt1+y*(rt2+y*rt3)));
|
||||||
#ifdef __STDC__
|
c.i[HIGH_HALF]=0x20000000+((k&0x7fe00000)>>1);
|
||||||
double __ieee754_sqrt(double x)
|
y=t*s;
|
||||||
#else
|
hy=(y+big)-big;
|
||||||
double __ieee754_sqrt(x)
|
del=0.5*t*((s-hy*hy)-(y-hy)*(y+hy));
|
||||||
double x;
|
res=y+del;
|
||||||
#endif
|
if (res == (res+1.002*((y-res)+del))) return res*c.x;
|
||||||
{
|
else {
|
||||||
double z;
|
res1=res+1.5*((y-res)+del);
|
||||||
int32_t sign = (int)0x80000000;
|
EMULV(res,res1,z,zz,p,hx,tx,hy,ty); /* (z+zz)=res*res1 */
|
||||||
int32_t ix0,s0,q,m,t,i;
|
return ((((z-s)+zz)<0)?max(res,res1):min(res,res1))*c.x;
|
||||||
u_int32_t r,t1,s1,ix1,q1;
|
}
|
||||||
|
}
|
||||||
EXTRACT_WORDS(ix0,ix1,x);
|
else {
|
||||||
|
if (k>0x7ff00000) /* x -> infinity */
|
||||||
/* take care of Inf and NaN */
|
return (big1-big1)/(big-big);
|
||||||
if((ix0&0x7ff00000)==0x7ff00000) {
|
if (k<0x00100000) { /* x -> -infinity */
|
||||||
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
if (x==0) return x;
|
||||||
sqrt(-inf)=sNaN */
|
if (k<0) return (big1-big1)/(big-big);
|
||||||
}
|
else return tm256.x*usqrt(x*t512.x);
|
||||||
/* take care of zero */
|
}
|
||||||
if(ix0<=0) {
|
else return (a.i[LOW_HALF]==0)?x:(big1-big1)/(big-big);
|
||||||
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
}
|
||||||
else if(ix0<0)
|
|
||||||
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
|
||||||
}
|
|
||||||
/* normalize x */
|
|
||||||
m = (ix0>>20);
|
|
||||||
if(m==0) { /* subnormal x */
|
|
||||||
while(ix0==0) {
|
|
||||||
m -= 21;
|
|
||||||
ix0 |= (ix1>>11); ix1 <<= 21;
|
|
||||||
}
|
|
||||||
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
|
|
||||||
m -= i-1;
|
|
||||||
ix0 |= (ix1>>(32-i));
|
|
||||||
ix1 <<= i;
|
|
||||||
}
|
|
||||||
m -= 1023; /* unbias exponent */
|
|
||||||
ix0 = (ix0&0x000fffff)|0x00100000;
|
|
||||||
if(m&1){ /* odd m, double x to make it even */
|
|
||||||
ix0 += ix0 + ((ix1&sign)>>31);
|
|
||||||
ix1 += ix1;
|
|
||||||
}
|
|
||||||
m >>= 1; /* m = [m/2] */
|
|
||||||
|
|
||||||
/* generate sqrt(x) bit by bit */
|
|
||||||
ix0 += ix0 + ((ix1&sign)>>31);
|
|
||||||
ix1 += ix1;
|
|
||||||
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
|
||||||
r = 0x00200000; /* r = moving bit from right to left */
|
|
||||||
|
|
||||||
while(r!=0) {
|
|
||||||
t = s0+r;
|
|
||||||
if(t<=ix0) {
|
|
||||||
s0 = t+r;
|
|
||||||
ix0 -= t;
|
|
||||||
q += r;
|
|
||||||
}
|
|
||||||
ix0 += ix0 + ((ix1&sign)>>31);
|
|
||||||
ix1 += ix1;
|
|
||||||
r>>=1;
|
|
||||||
}
|
|
||||||
|
|
||||||
r = sign;
|
|
||||||
while(r!=0) {
|
|
||||||
t1 = s1+r;
|
|
||||||
t = s0;
|
|
||||||
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
|
||||||
s1 = t1+r;
|
|
||||||
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
|
||||||
ix0 -= t;
|
|
||||||
if (ix1 < t1) ix0 -= 1;
|
|
||||||
ix1 -= t1;
|
|
||||||
q1 += r;
|
|
||||||
}
|
|
||||||
ix0 += ix0 + ((ix1&sign)>>31);
|
|
||||||
ix1 += ix1;
|
|
||||||
r>>=1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* use floating add to find out rounding direction */
|
|
||||||
if((ix0|ix1)!=0) {
|
|
||||||
z = one-tiny; /* trigger inexact flag */
|
|
||||||
if (z>=one) {
|
|
||||||
z = one+tiny;
|
|
||||||
if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
|
|
||||||
else if (z>one) {
|
|
||||||
if (q1==(u_int32_t)0xfffffffe) q+=1;
|
|
||||||
q1+=2;
|
|
||||||
} else
|
|
||||||
q1 += (q1&1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ix0 = (q>>1)+0x3fe00000;
|
|
||||||
ix1 = q1>>1;
|
|
||||||
if ((q&1)==1) ix1 |= sign;
|
|
||||||
ix0 += (m <<20);
|
|
||||||
INSERT_WORDS(z,ix0,ix1);
|
|
||||||
return z;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
Other methods (use floating-point arithmetic)
|
|
||||||
-------------
|
|
||||||
(This is a copy of a drafted paper by Prof W. Kahan
|
|
||||||
and K.C. Ng, written in May, 1986)
|
|
||||||
|
|
||||||
Two algorithms are given here to implement sqrt(x)
|
|
||||||
(IEEE double precision arithmetic) in software.
|
|
||||||
Both supply sqrt(x) correctly rounded. The first algorithm (in
|
|
||||||
Section A) uses newton iterations and involves four divisions.
|
|
||||||
The second one uses reciproot iterations to avoid division, but
|
|
||||||
requires more multiplications. Both algorithms need the ability
|
|
||||||
to chop results of arithmetic operations instead of round them,
|
|
||||||
and the INEXACT flag to indicate when an arithmetic operation
|
|
||||||
is executed exactly with no roundoff error, all part of the
|
|
||||||
standard (IEEE 754-1985). The ability to perform shift, add,
|
|
||||||
subtract and logical AND operations upon 32-bit words is needed
|
|
||||||
too, though not part of the standard.
|
|
||||||
|
|
||||||
A. sqrt(x) by Newton Iteration
|
|
||||||
|
|
||||||
(1) Initial approximation
|
|
||||||
|
|
||||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
|
||||||
a floating point number x (in IEEE double format) respectively
|
|
||||||
|
|
||||||
1 11 52 ...widths
|
|
||||||
------------------------------------------------------
|
|
||||||
x: |s| e | f |
|
|
||||||
------------------------------------------------------
|
|
||||||
msb lsb msb lsb ...order
|
|
||||||
|
|
||||||
|
|
||||||
------------------------ ------------------------
|
|
||||||
x0: |s| e | f1 | x1: | f2 |
|
|
||||||
------------------------ ------------------------
|
|
||||||
|
|
||||||
By performing shifts and subtracts on x0 and x1 (both regarded
|
|
||||||
as integers), we obtain an 8-bit approximation of sqrt(x) as
|
|
||||||
follows.
|
|
||||||
|
|
||||||
k := (x0>>1) + 0x1ff80000;
|
|
||||||
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
|
|
||||||
Here k is a 32-bit integer and T1[] is an integer array containing
|
|
||||||
correction terms. Now magically the floating value of y (y's
|
|
||||||
leading 32-bit word is y0, the value of its trailing word is 0)
|
|
||||||
approximates sqrt(x) to almost 8-bit.
|
|
||||||
|
|
||||||
Value of T1:
|
|
||||||
static int T1[32]= {
|
|
||||||
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
|
|
||||||
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
|
|
||||||
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
|
|
||||||
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
|
|
||||||
|
|
||||||
(2) Iterative refinement
|
|
||||||
|
|
||||||
Apply Heron's rule three times to y, we have y approximates
|
|
||||||
sqrt(x) to within 1 ulp (Unit in the Last Place):
|
|
||||||
|
|
||||||
y := (y+x/y)/2 ... almost 17 sig. bits
|
|
||||||
y := (y+x/y)/2 ... almost 35 sig. bits
|
|
||||||
y := y-(y-x/y)/2 ... within 1 ulp
|
|
||||||
|
|
||||||
|
|
||||||
Remark 1.
|
|
||||||
Another way to improve y to within 1 ulp is:
|
|
||||||
|
|
||||||
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
|
|
||||||
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
|
|
||||||
|
|
||||||
2
|
|
||||||
(x-y )*y
|
|
||||||
y := y + 2* ---------- ...within 1 ulp
|
|
||||||
2
|
|
||||||
3y + x
|
|
||||||
|
|
||||||
|
|
||||||
This formula has one division fewer than the one above; however,
|
|
||||||
it requires more multiplications and additions. Also x must be
|
|
||||||
scaled in advance to avoid spurious overflow in evaluating the
|
|
||||||
expression 3y*y+x. Hence it is not recommended uless division
|
|
||||||
is slow. If division is very slow, then one should use the
|
|
||||||
reciproot algorithm given in section B.
|
|
||||||
|
|
||||||
(3) Final adjustment
|
|
||||||
|
|
||||||
By twiddling y's last bit it is possible to force y to be
|
|
||||||
correctly rounded according to the prevailing rounding mode
|
|
||||||
as follows. Let r and i be copies of the rounding mode and
|
|
||||||
inexact flag before entering the square root program. Also we
|
|
||||||
use the expression y+-ulp for the next representable floating
|
|
||||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
|
||||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
|
||||||
mode.
|
|
||||||
|
|
||||||
I := FALSE; ... reset INEXACT flag I
|
|
||||||
R := RZ; ... set rounding mode to round-toward-zero
|
|
||||||
z := x/y; ... chopped quotient, possibly inexact
|
|
||||||
If(not I) then { ... if the quotient is exact
|
|
||||||
if(z=y) {
|
|
||||||
I := i; ... restore inexact flag
|
|
||||||
R := r; ... restore rounded mode
|
|
||||||
return sqrt(x):=y.
|
|
||||||
} else {
|
|
||||||
z := z - ulp; ... special rounding
|
|
||||||
}
|
|
||||||
}
|
|
||||||
i := TRUE; ... sqrt(x) is inexact
|
|
||||||
If (r=RN) then z=z+ulp ... rounded-to-nearest
|
|
||||||
If (r=RP) then { ... round-toward-+inf
|
|
||||||
y = y+ulp; z=z+ulp;
|
|
||||||
}
|
|
||||||
y := y+z; ... chopped sum
|
|
||||||
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
|
|
||||||
I := i; ... restore inexact flag
|
|
||||||
R := r; ... restore rounded mode
|
|
||||||
return sqrt(x):=y.
|
|
||||||
|
|
||||||
(4) Special cases
|
|
||||||
|
|
||||||
Square root of +inf, +-0, or NaN is itself;
|
|
||||||
Square root of a negative number is NaN with invalid signal.
|
|
||||||
|
|
||||||
|
|
||||||
B. sqrt(x) by Reciproot Iteration
|
|
||||||
|
|
||||||
(1) Initial approximation
|
|
||||||
|
|
||||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
|
||||||
a floating point number x (in IEEE double format) respectively
|
|
||||||
(see section A). By performing shifs and subtracts on x0 and y0,
|
|
||||||
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
|
|
||||||
|
|
||||||
k := 0x5fe80000 - (x0>>1);
|
|
||||||
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
|
||||||
|
|
||||||
Here k is a 32-bit integer and T2[] is an integer array
|
|
||||||
containing correction terms. Now magically the floating
|
|
||||||
value of y (y's leading 32-bit word is y0, the value of
|
|
||||||
its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
|
||||||
to almost 7.8-bit.
|
|
||||||
|
|
||||||
Value of T2:
|
|
||||||
static int T2[64]= {
|
|
||||||
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
|
|
||||||
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
|
|
||||||
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
|
|
||||||
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
|
|
||||||
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
|
|
||||||
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
|
|
||||||
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
|
|
||||||
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
|
|
||||||
|
|
||||||
(2) Iterative refinement
|
|
||||||
|
|
||||||
Apply Reciproot iteration three times to y and multiply the
|
|
||||||
result by x to get an approximation z that matches sqrt(x)
|
|
||||||
to about 1 ulp. To be exact, we will have
|
|
||||||
-1ulp < sqrt(x)-z<1.0625ulp.
|
|
||||||
|
|
||||||
... set rounding mode to Round-to-nearest
|
|
||||||
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
|
||||||
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
|
||||||
... special arrangement for better accuracy
|
|
||||||
z := x*y ... 29 bits to sqrt(x), with z*y<1
|
|
||||||
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
|
||||||
|
|
||||||
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
|
||||||
(a) the term z*y in the final iteration is always less than 1;
|
|
||||||
(b) the error in the final result is biased upward so that
|
|
||||||
-1 ulp < sqrt(x) - z < 1.0625 ulp
|
|
||||||
instead of |sqrt(x)-z|<1.03125ulp.
|
|
||||||
|
|
||||||
(3) Final adjustment
|
|
||||||
|
|
||||||
By twiddling y's last bit it is possible to force y to be
|
|
||||||
correctly rounded according to the prevailing rounding mode
|
|
||||||
as follows. Let r and i be copies of the rounding mode and
|
|
||||||
inexact flag before entering the square root program. Also we
|
|
||||||
use the expression y+-ulp for the next representable floating
|
|
||||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
|
||||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
|
||||||
mode.
|
|
||||||
|
|
||||||
R := RZ; ... set rounding mode to round-toward-zero
|
|
||||||
switch(r) {
|
|
||||||
case RN: ... round-to-nearest
|
|
||||||
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
|
|
||||||
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
|
|
||||||
break;
|
|
||||||
case RZ:case RM: ... round-to-zero or round-to--inf
|
|
||||||
R:=RP; ... reset rounding mod to round-to-+inf
|
|
||||||
if(x<z*z ... rounded up) z = z - ulp; else
|
|
||||||
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
|
|
||||||
break;
|
|
||||||
case RP: ... round-to-+inf
|
|
||||||
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
|
|
||||||
if(x>z*z ...chopped) z = z+ulp;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
Remark 3. The above comparisons can be done in fixed point. For
|
|
||||||
example, to compare x and w=z*z chopped, it suffices to compare
|
|
||||||
x1 and w1 (the trailing parts of x and w), regarding them as
|
|
||||||
two's complement integers.
|
|
||||||
|
|
||||||
...Is z an exact square root?
|
|
||||||
To determine whether z is an exact square root of x, let z1 be the
|
|
||||||
trailing part of z, and also let x0 and x1 be the leading and
|
|
||||||
trailing parts of x.
|
|
||||||
|
|
||||||
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
|
|
||||||
I := 1; ... Raise Inexact flag: z is not exact
|
|
||||||
else {
|
|
||||||
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
|
||||||
k := z1 >> 26; ... get z's 25-th and 26-th
|
|
||||||
fraction bits
|
|
||||||
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
|
||||||
}
|
|
||||||
R:= r ... restore rounded mode
|
|
||||||
return sqrt(x):=z.
|
|
||||||
|
|
||||||
If multiplication is cheaper then the foregoing red tape, the
|
|
||||||
Inexact flag can be evaluated by
|
|
||||||
|
|
||||||
I := i;
|
|
||||||
I := (z*z!=x) or I.
|
|
||||||
|
|
||||||
Note that z*z can overwrite I; this value must be sensed if it is
|
|
||||||
True.
|
|
||||||
|
|
||||||
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
|
||||||
zero.
|
|
||||||
|
|
||||||
--------------------
|
|
||||||
z1: | f2 |
|
|
||||||
--------------------
|
|
||||||
bit 31 bit 0
|
|
||||||
|
|
||||||
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
|
|
||||||
or even of logb(x) have the following relations:
|
|
||||||
|
|
||||||
-------------------------------------------------
|
|
||||||
bit 27,26 of z1 bit 1,0 of x1 logb(x)
|
|
||||||
-------------------------------------------------
|
|
||||||
00 00 odd and even
|
|
||||||
01 01 even
|
|
||||||
10 10 odd
|
|
||||||
10 00 even
|
|
||||||
11 01 even
|
|
||||||
-------------------------------------------------
|
|
||||||
|
|
||||||
(4) Special cases (see (4) of Section A).
|
|
||||||
|
|
||||||
*/
|
|
||||||
|
11
sysdeps/ieee754/dbl-64/endian.h
Normal file
11
sysdeps/ieee754/dbl-64/endian.h
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
#include <endian.h>
|
||||||
|
|
||||||
|
#if __FLOAT_WORD_ORDER == __BIG_ENDIAN
|
||||||
|
#define HIGH_HALF 0
|
||||||
|
#define LOW_HALF 1
|
||||||
|
#else
|
||||||
|
#if __FLOAT_WORD_ORDER == __LITTLE_ENDIAN
|
||||||
|
#define HIGH_HALF 1
|
||||||
|
#define LOW_HALF 0
|
||||||
|
#endif
|
||||||
|
#endif
|
124
sysdeps/ieee754/dbl-64/halfulp.c
Normal file
124
sysdeps/ieee754/dbl-64/halfulp.c
Normal file
@ -0,0 +1,124 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:halfulp.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS:halfulp */
|
||||||
|
/* FILES NEEDED: mydefs.h dla.h endian.h */
|
||||||
|
/* uroot.c */
|
||||||
|
/* */
|
||||||
|
/*Routine halfulp(double x, double y) computes x^y where result does */
|
||||||
|
/*not need rounding. If the result is closer to 0 than can be */
|
||||||
|
/*represented it returns 0. */
|
||||||
|
/* In the following cases the function does not compute anything */
|
||||||
|
/*and returns a negative number: */
|
||||||
|
/*1. if the result needs rounding, */
|
||||||
|
/*2. if y is outside the interval [0, 2^20-1], */
|
||||||
|
/*3. if x can be represented by x=2**n for some integer n. */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mydefs.h"
|
||||||
|
#include "dla.h"
|
||||||
|
|
||||||
|
double usqrt(double x);
|
||||||
|
|
||||||
|
int4 tab54[32] = {
|
||||||
|
262143, 11585, 1782, 511, 210, 107, 63, 42,
|
||||||
|
30, 22, 17, 14, 12, 10, 9, 7,
|
||||||
|
7, 6, 5, 5, 5, 4, 4, 4,
|
||||||
|
3, 3, 3, 3, 3, 3, 3, 3 };
|
||||||
|
|
||||||
|
|
||||||
|
double halfulp(double x, double y)
|
||||||
|
{
|
||||||
|
mynumber v;
|
||||||
|
double z,u,uu,j1,j2,j3,j4,j5;
|
||||||
|
int4 k,l,m,n;
|
||||||
|
if (y <= 0) { /*if power is negative or zero */
|
||||||
|
v.x = y;
|
||||||
|
if (v.i[LOW_HALF] != 0) return -10.0;
|
||||||
|
v.x = x;
|
||||||
|
if (v.i[LOW_HALF] != 0) return -10.0;
|
||||||
|
if ((v.i[HIGH_HALF]&0x000fffff) != 0) return -10; /* if x =2 ^ n */
|
||||||
|
k = ((v.i[HIGH_HALF]&0x7fffffff)>>20)-1023; /* find this n */
|
||||||
|
z = (double) k;
|
||||||
|
return (z*y == -1075.0)?0: -10.0;
|
||||||
|
}
|
||||||
|
/* if y > 0 */
|
||||||
|
v.x = y;
|
||||||
|
if (v.i[LOW_HALF] != 0) return -10.0;
|
||||||
|
|
||||||
|
v.x=x;
|
||||||
|
/* case where x = 2**n for some integer n */
|
||||||
|
if (((v.i[HIGH_HALF]&0x000fffff)|v.i[LOW_HALF]) == 0) {
|
||||||
|
k=(v.i[HIGH_HALF]>>20)-1023;
|
||||||
|
return (((double) k)*y == -1075.0)?0:-10.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
v.x = y;
|
||||||
|
k = v.i[HIGH_HALF];
|
||||||
|
m = k<<12;
|
||||||
|
l = 0;
|
||||||
|
while (m)
|
||||||
|
{m = m<<1; l++; }
|
||||||
|
n = (k&0x000fffff)|0x00100000;
|
||||||
|
n = n>>(20-l); /* n is the odd integer of y */
|
||||||
|
k = ((k>>20) -1023)-l; /* y = n*2**k */
|
||||||
|
if (k>5) return -10.0;
|
||||||
|
if (k>0) for (;k>0;k--) n *= 2;
|
||||||
|
if (n > 34) return -10.0;
|
||||||
|
k = -k;
|
||||||
|
if (k>5) return -10.0;
|
||||||
|
|
||||||
|
/* now treat x */
|
||||||
|
while (k>0) {
|
||||||
|
z = usqrt(x);
|
||||||
|
EMULV(z,z,u,uu,j1,j2,j3,j4,j5);
|
||||||
|
if (((u-x)+uu) != 0) break;
|
||||||
|
x = z;
|
||||||
|
k--;
|
||||||
|
}
|
||||||
|
if (k) return -10.0;
|
||||||
|
|
||||||
|
/* it is impossible that n == 2, so the mantissa of x must be short */
|
||||||
|
|
||||||
|
v.x = x;
|
||||||
|
if (v.i[LOW_HALF]) return -10.0;
|
||||||
|
k = v.i[HIGH_HALF];
|
||||||
|
m = k<<12;
|
||||||
|
l = 0;
|
||||||
|
while (m) {m = m<<1; l++; }
|
||||||
|
m = (k&0x000fffff)|0x00100000;
|
||||||
|
m = m>>(20-l); /* m is the odd integer of x */
|
||||||
|
|
||||||
|
/* now check whether the length of m**n is at most 54 bits */
|
||||||
|
|
||||||
|
if (m > tab54[n-3]) return -10.0;
|
||||||
|
|
||||||
|
/* yes, it is - now compute x**n by simple multiplications */
|
||||||
|
|
||||||
|
u = x;
|
||||||
|
for (k=1;k<n;k++) u = u*x;
|
||||||
|
return u;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
@ -1,107 +1 @@
|
|||||||
/* @(#)k_cos.c 5.1 93/09/24 */
|
/* Not needed anymore. */
|
||||||
/*
|
|
||||||
* ====================================================
|
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
||||||
*
|
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
||||||
* Permission to use, copy, modify, and distribute this
|
|
||||||
* software is freely granted, provided that this notice
|
|
||||||
* is preserved.
|
|
||||||
* ====================================================
|
|
||||||
*/
|
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
|
||||||
for performance improvement on pipelined processors.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
|
||||||
static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
* __kernel_cos( x, y )
|
|
||||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
|
||||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
||||||
* Input y is the tail of x.
|
|
||||||
*
|
|
||||||
* Algorithm
|
|
||||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
|
||||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
|
||||||
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
|
||||||
* [0,pi/4]
|
|
||||||
* 4 14
|
|
||||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
|
||||||
* where the remez error is
|
|
||||||
*
|
|
||||||
* | 2 4 6 8 10 12 14 | -58
|
|
||||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
|
||||||
* | |
|
|
||||||
*
|
|
||||||
* 4 6 8 10 12 14
|
|
||||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
|
||||||
* cos(x) = 1 - x*x/2 + r
|
|
||||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
|
||||||
* ~ cos(x) - x*y,
|
|
||||||
* a correction term is necessary in cos(x) and hence
|
|
||||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
|
||||||
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
|
||||||
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
|
||||||
* Then
|
|
||||||
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
|
||||||
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
|
||||||
* magnitude of the latter is at least a quarter of x*x/2,
|
|
||||||
* thus, reducing the rounding error in the subtraction.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
|
||||||
#include "math_private.h"
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
static const double
|
|
||||||
#else
|
|
||||||
static double
|
|
||||||
#endif
|
|
||||||
C[] = {
|
|
||||||
1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
||||||
4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
|
||||||
-1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
|
||||||
2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
|
||||||
-2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
|
||||||
2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
|
||||||
-1.13596475577881948265e-11}; /* 0xBDA8FAE9, 0xBE8838D4 */
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
double __kernel_cos(double x, double y)
|
|
||||||
#else
|
|
||||||
double __kernel_cos(x, y)
|
|
||||||
double x,y;
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double a,hz,z,r,qx,r1,r2,r3,z1,z2,z3;
|
|
||||||
int32_t ix;
|
|
||||||
z = x*x;
|
|
||||||
GET_HIGH_WORD(ix,x);
|
|
||||||
ix &= 0x7fffffff; /* ix = |x|'s high word*/
|
|
||||||
if(ix<0x3e400000) { /* if x < 2**27 */
|
|
||||||
if(((int)x)==0) return C[0]; /* generate inexact */
|
|
||||||
}
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
|
||||||
#else
|
|
||||||
r1=z*C[6];r1=r1+C[5];z1=z*z;
|
|
||||||
r2=z*C[4];r2=r2+C[3];z2=z1*z;
|
|
||||||
r3=z*C[2];r3=r3+C[1];z3=z2*z1;
|
|
||||||
r=z3*r1+z2*r2+z*r3;
|
|
||||||
#endif
|
|
||||||
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
|
||||||
return C[0] - (0.5*z - (z*r - x*y));
|
|
||||||
else {
|
|
||||||
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
|
||||||
qx = 0.28125;
|
|
||||||
} else {
|
|
||||||
INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
|
|
||||||
}
|
|
||||||
hz = 0.5*z-qx;
|
|
||||||
a = C[0]-qx;
|
|
||||||
return a - (hz - (z*r-x*y));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -1,91 +1 @@
|
|||||||
/* @(#)k_sin.c 5.1 93/09/24 */
|
/* Not needed anymore. */
|
||||||
/*
|
|
||||||
* ====================================================
|
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
||||||
*
|
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
||||||
* Permission to use, copy, modify, and distribute this
|
|
||||||
* software is freely granted, provided that this notice
|
|
||||||
* is preserved.
|
|
||||||
* ====================================================
|
|
||||||
*/
|
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
|
||||||
for performance improvement on pipelined processors.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
|
||||||
static char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* __kernel_sin( x, y, iy)
|
|
||||||
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
||||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
||||||
* Input y is the tail of x.
|
|
||||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
|
||||||
*
|
|
||||||
* Algorithm
|
|
||||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
|
||||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
|
||||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
|
||||||
* [0,pi/4]
|
|
||||||
* 3 13
|
|
||||||
* sin(x) ~ x + S1*x + ... + S6*x
|
|
||||||
* where
|
|
||||||
*
|
|
||||||
* |sin(x) 2 4 6 8 10 12 | -58
|
|
||||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
|
||||||
* | x |
|
|
||||||
*
|
|
||||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
|
||||||
* ~ sin(x) + (1-x*x/2)*y
|
|
||||||
* For better accuracy, let
|
|
||||||
* 3 2 2 2 2
|
|
||||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
|
||||||
* then 3 2
|
|
||||||
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
|
||||||
#include "math_private.h"
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
static const double
|
|
||||||
#else
|
|
||||||
static double
|
|
||||||
#endif
|
|
||||||
S[] = {
|
|
||||||
5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
||||||
-1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
|
||||||
8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
|
||||||
-1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
|
||||||
2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
|
||||||
-2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
|
||||||
1.58969099521155010221e-10}; /* 0x3DE5D93A, 0x5ACFD57C */
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
double __kernel_sin(double x, double y, int iy)
|
|
||||||
#else
|
|
||||||
double __kernel_sin(x, y, iy)
|
|
||||||
double x,y; int iy; /* iy=0 if y is zero */
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double z,r,v,z1,r1,r2;
|
|
||||||
int32_t ix;
|
|
||||||
GET_HIGH_WORD(ix,x);
|
|
||||||
ix &= 0x7fffffff; /* high word of x */
|
|
||||||
if(ix<0x3e400000) /* |x| < 2**-27 */
|
|
||||||
{if((int)x==0) return x;} /* generate inexact */
|
|
||||||
z = x*x;
|
|
||||||
v = z*x;
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
|
||||||
if(iy==0) return x+v*(S1+z*r);
|
|
||||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
|
||||||
#else
|
|
||||||
r1 = S[5]+z*S[6]; z1 = z*z*z;
|
|
||||||
r2 = S[3]+z*S[4];
|
|
||||||
r = S[2] + z*r2 + z1*r1;
|
|
||||||
if(iy==0) return x+v*(S[1]+z*r);
|
|
||||||
else return x-((z*(S[0]*y-v*r)-y)-v*S[1]);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
497
sysdeps/ieee754/dbl-64/mpa.c
Normal file
497
sysdeps/ieee754/dbl-64/mpa.c
Normal file
@ -0,0 +1,497 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: mpa.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: */
|
||||||
|
/* mcr */
|
||||||
|
/* acr */
|
||||||
|
/* cr */
|
||||||
|
/* cpy */
|
||||||
|
/* cpymn */
|
||||||
|
/* norm */
|
||||||
|
/* denorm */
|
||||||
|
/* mp_dbl */
|
||||||
|
/* dbl_mp */
|
||||||
|
/* add_magnitudes */
|
||||||
|
/* sub_magnitudes */
|
||||||
|
/* add */
|
||||||
|
/* sub */
|
||||||
|
/* mul */
|
||||||
|
/* inv */
|
||||||
|
/* dvd */
|
||||||
|
/* */
|
||||||
|
/* Arithmetic functions for multiple precision numbers. */
|
||||||
|
/* Relative errors are bounded */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
#include "mpa2.h"
|
||||||
|
/* mcr() compares the sizes of the mantissas of two multiple precision */
|
||||||
|
/* numbers. Mantissas are compared regardless of the signs of the */
|
||||||
|
/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
|
||||||
|
/* disregarded. */
|
||||||
|
static int mcr(const mp_no *x, const mp_no *y, int p) {
|
||||||
|
int i;
|
||||||
|
for (i=1; i<=p; i++) {
|
||||||
|
if (X[i] == Y[i]) continue;
|
||||||
|
else if (X[i] > Y[i]) return 1;
|
||||||
|
else return -1; }
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* acr() compares the absolute values of two multiple precision numbers */
|
||||||
|
int acr(const mp_no *x, const mp_no *y, int p) {
|
||||||
|
int i;
|
||||||
|
|
||||||
|
if (X[0] == ZERO) {
|
||||||
|
if (Y[0] == ZERO) i= 0;
|
||||||
|
else i=-1;
|
||||||
|
}
|
||||||
|
else if (Y[0] == ZERO) i= 1;
|
||||||
|
else {
|
||||||
|
if (EX > EY) i= 1;
|
||||||
|
else if (EX < EY) i=-1;
|
||||||
|
else i= mcr(x,y,p);
|
||||||
|
}
|
||||||
|
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* cr90 compares the values of two multiple precision numbers */
|
||||||
|
int cr(const mp_no *x, const mp_no *y, int p) {
|
||||||
|
int i;
|
||||||
|
|
||||||
|
if (X[0] > Y[0]) i= 1;
|
||||||
|
else if (X[0] < Y[0]) i=-1;
|
||||||
|
else if (X[0] < ZERO ) i= acr(y,x,p);
|
||||||
|
else i= acr(x,y,p);
|
||||||
|
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
|
||||||
|
void cpy(const mp_no *x, mp_no *y, int p) {
|
||||||
|
int i;
|
||||||
|
|
||||||
|
EY = EX;
|
||||||
|
for (i=0; i <= p; i++) Y[i] = X[i];
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Copy a multiple precision number x of precision m into a */
|
||||||
|
/* multiple precision number y of precision n. In case n>m, */
|
||||||
|
/* the digits of y beyond the m'th are set to zero. In case */
|
||||||
|
/* n<m, the digits of x beyond the n'th are ignored. */
|
||||||
|
/* x=y is permissible. */
|
||||||
|
|
||||||
|
void cpymn(const mp_no *x, int m, mp_no *y, int n) {
|
||||||
|
|
||||||
|
int i,k;
|
||||||
|
|
||||||
|
EY = EX; k=MIN(m,n);
|
||||||
|
for (i=0; i <= k; i++) Y[i] = X[i];
|
||||||
|
for ( ; i <= n; i++) Y[i] = ZERO;
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert a multiple precision number *x into a double precision */
|
||||||
|
/* number *y, normalized case (|x| >= 2**(-1022))) */
|
||||||
|
static void norm(const mp_no *x, double *y, int p)
|
||||||
|
{
|
||||||
|
#define R radixi.d
|
||||||
|
int i,k;
|
||||||
|
double a,c,u,v,z[5];
|
||||||
|
if (p<5) {
|
||||||
|
if (p==1) c = X[1];
|
||||||
|
else if (p==2) c = X[1] + R* X[2];
|
||||||
|
else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
|
||||||
|
else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
|
||||||
|
{a *= TWO; z[1] *= TWO; }
|
||||||
|
|
||||||
|
for (i=2; i<5; i++) {
|
||||||
|
z[i] = X[i]*a;
|
||||||
|
u = (z[i] + CUTTER)-CUTTER;
|
||||||
|
if (u > z[i]) u -= RADIX;
|
||||||
|
z[i] -= u;
|
||||||
|
z[i-1] += u*RADIXI;
|
||||||
|
}
|
||||||
|
|
||||||
|
u = (z[3] + TWO71) - TWO71;
|
||||||
|
if (u > z[3]) u -= TWO19;
|
||||||
|
v = z[3]-u;
|
||||||
|
|
||||||
|
if (v == TWO18) {
|
||||||
|
if (z[4] == ZERO) {
|
||||||
|
for (i=5; i <= p; i++) {
|
||||||
|
if (X[i] == ZERO) continue;
|
||||||
|
else {z[3] += ONE; break; }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else z[3] += ONE;
|
||||||
|
}
|
||||||
|
|
||||||
|
c = (z[1] + R *(z[2] + R * z[3]))/a;
|
||||||
|
}
|
||||||
|
|
||||||
|
c *= X[0];
|
||||||
|
|
||||||
|
for (i=1; i<EX; i++) c *= RADIX;
|
||||||
|
for (i=1; i>EX; i--) c *= RADIXI;
|
||||||
|
|
||||||
|
*y = c;
|
||||||
|
return;
|
||||||
|
#undef R
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert a multiple precision number *x into a double precision */
|
||||||
|
/* number *y, denormalized case (|x| < 2**(-1022))) */
|
||||||
|
static void denorm(const mp_no *x, double *y, int p)
|
||||||
|
{
|
||||||
|
int i,k;
|
||||||
|
double a,c,u,v,z[5];
|
||||||
|
|
||||||
|
#define R radixi.d
|
||||||
|
if (EX<-44 || (EX==-44 && X[1]<TWO5))
|
||||||
|
{ *y=ZERO; return; }
|
||||||
|
|
||||||
|
if (p==1) {
|
||||||
|
if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
|
||||||
|
else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
|
||||||
|
else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||||||
|
}
|
||||||
|
else if (p==2) {
|
||||||
|
if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
|
||||||
|
else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
|
||||||
|
else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
|
||||||
|
else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
|
||||||
|
else {z[1]= TWO10; z[2]=ZERO; k=1;}
|
||||||
|
z[3] = X[k];
|
||||||
|
}
|
||||||
|
|
||||||
|
u = (z[3] + TWO57) - TWO57;
|
||||||
|
if (u > z[3]) u -= TWO5;
|
||||||
|
|
||||||
|
if (u==z[3]) {
|
||||||
|
for (i=k+1; i <= p; i++) {
|
||||||
|
if (X[i] == ZERO) continue;
|
||||||
|
else {z[3] += ONE; break; }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
|
||||||
|
|
||||||
|
*y = c*TWOM1032;
|
||||||
|
return;
|
||||||
|
|
||||||
|
#undef R
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert a multiple precision number *x into a double precision number *y. */
|
||||||
|
/* The result is correctly rounded to the nearest/even. *x is left unchanged */
|
||||||
|
|
||||||
|
void mp_dbl(const mp_no *x, double *y, int p) {
|
||||||
|
|
||||||
|
int i,k;
|
||||||
|
double a,c,u,v,z[5];
|
||||||
|
|
||||||
|
if (X[0] == ZERO) {*y = ZERO; return; }
|
||||||
|
|
||||||
|
if (EX> -42) norm(x,y,p);
|
||||||
|
else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
|
||||||
|
else denorm(x,y,p);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* dbl_mp() converts a double precision number x into a multiple precision */
|
||||||
|
/* number *y. If the precision p is too small the result is truncated. x is */
|
||||||
|
/* left unchanged. */
|
||||||
|
|
||||||
|
void dbl_mp(double x, mp_no *y, int p) {
|
||||||
|
|
||||||
|
int i,n;
|
||||||
|
double u;
|
||||||
|
|
||||||
|
/* Sign */
|
||||||
|
if (x == ZERO) {Y[0] = ZERO; return; }
|
||||||
|
else if (x > ZERO) Y[0] = ONE;
|
||||||
|
else {Y[0] = MONE; x=-x; }
|
||||||
|
|
||||||
|
/* Exponent */
|
||||||
|
for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
|
||||||
|
for ( ; x < ONE; EY -= ONE) x *= RADIX;
|
||||||
|
|
||||||
|
/* Digits */
|
||||||
|
n=MIN(p,4);
|
||||||
|
for (i=1; i<=n; i++) {
|
||||||
|
u = (x + TWO52) - TWO52;
|
||||||
|
if (u>x) u -= ONE;
|
||||||
|
Y[i] = u; x -= u; x *= RADIX; }
|
||||||
|
for ( ; i<=p; i++) Y[i] = ZERO;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* add_magnitudes() adds the magnitudes of *x & *y assuming that */
|
||||||
|
/* abs(*x) >= abs(*y) > 0. */
|
||||||
|
/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
|
||||||
|
/* No guard digit is used. The result equals the exact sum, truncated. */
|
||||||
|
/* *x & *y are left unchanged. */
|
||||||
|
|
||||||
|
static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||||||
|
|
||||||
|
int i,j,k;
|
||||||
|
|
||||||
|
EZ = EX;
|
||||||
|
|
||||||
|
i=p; j=p+ EY - EX; k=p+1;
|
||||||
|
|
||||||
|
if (j<1)
|
||||||
|
{cpy(x,z,p); return; }
|
||||||
|
else Z[k] = ZERO;
|
||||||
|
|
||||||
|
for (; j>0; i--,j--) {
|
||||||
|
Z[k] += X[i] + Y[j];
|
||||||
|
if (Z[k] >= RADIX) {
|
||||||
|
Z[k] -= RADIX;
|
||||||
|
Z[--k] = ONE; }
|
||||||
|
else
|
||||||
|
Z[--k] = ZERO;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; i>0; i--) {
|
||||||
|
Z[k] += X[i];
|
||||||
|
if (Z[k] >= RADIX) {
|
||||||
|
Z[k] -= RADIX;
|
||||||
|
Z[--k] = ONE; }
|
||||||
|
else
|
||||||
|
Z[--k] = ZERO;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Z[1] == ZERO) {
|
||||||
|
for (i=1; i<=p; i++) Z[i] = Z[i+1]; }
|
||||||
|
else EZ += ONE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
|
||||||
|
/* abs(*x) > abs(*y) > 0. */
|
||||||
|
/* The sign of the difference *z is undefined. x&y may overlap but not x&z */
|
||||||
|
/* or y&z. One guard digit is used. The error is less than one ulp. */
|
||||||
|
/* *x & *y are left unchanged. */
|
||||||
|
|
||||||
|
static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||||||
|
|
||||||
|
int i,j,k;
|
||||||
|
|
||||||
|
EZ = EX;
|
||||||
|
|
||||||
|
if (EX == EY) {
|
||||||
|
i=j=k=p;
|
||||||
|
Z[k] = Z[k+1] = ZERO; }
|
||||||
|
else {
|
||||||
|
j= EX - EY;
|
||||||
|
if (j > p) {cpy(x,z,p); return; }
|
||||||
|
else {
|
||||||
|
i=p; j=p+1-j; k=p;
|
||||||
|
if (Y[j] > ZERO) {
|
||||||
|
Z[k+1] = RADIX - Y[j--];
|
||||||
|
Z[k] = MONE; }
|
||||||
|
else {
|
||||||
|
Z[k+1] = ZERO;
|
||||||
|
Z[k] = ZERO; j--;}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; j>0; i--,j--) {
|
||||||
|
Z[k] += (X[i] - Y[j]);
|
||||||
|
if (Z[k] < ZERO) {
|
||||||
|
Z[k] += RADIX;
|
||||||
|
Z[--k] = MONE; }
|
||||||
|
else
|
||||||
|
Z[--k] = ZERO;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; i>0; i--) {
|
||||||
|
Z[k] += X[i];
|
||||||
|
if (Z[k] < ZERO) {
|
||||||
|
Z[k] += RADIX;
|
||||||
|
Z[--k] = MONE; }
|
||||||
|
else
|
||||||
|
Z[--k] = ZERO;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i=1; Z[i] == ZERO; i++) ;
|
||||||
|
EZ = EZ - i + 1;
|
||||||
|
for (k=1; i <= p+1; )
|
||||||
|
Z[k++] = Z[i++];
|
||||||
|
for (; k <= p; )
|
||||||
|
Z[k++] = ZERO;
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
|
||||||
|
/* but not x&z or y&z. One guard digit is used. The error is less than */
|
||||||
|
/* one ulp. *x & *y are left unchanged. */
|
||||||
|
|
||||||
|
void add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||||||
|
|
||||||
|
int n;
|
||||||
|
|
||||||
|
if (X[0] == ZERO) {cpy(y,z,p); return; }
|
||||||
|
else if (Y[0] == ZERO) {cpy(x,z,p); return; }
|
||||||
|
|
||||||
|
if (X[0] == Y[0]) {
|
||||||
|
if (acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||||||
|
else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if ((n=acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||||||
|
else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||||||
|
else Z[0] = ZERO;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
|
||||||
|
/* overlap but not x&z or y&z. One guard digit is used. The error is */
|
||||||
|
/* less than one ulp. *x & *y are left unchanged. */
|
||||||
|
|
||||||
|
void sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||||||
|
|
||||||
|
int n;
|
||||||
|
|
||||||
|
if (X[0] == ZERO) {cpy(y,z,p); Z[0] = -Z[0]; return; }
|
||||||
|
else if (Y[0] == ZERO) {cpy(x,z,p); return; }
|
||||||
|
|
||||||
|
if (X[0] != Y[0]) {
|
||||||
|
if (acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||||||
|
else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if ((n=acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||||||
|
else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||||||
|
else Z[0] = ZERO;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
|
||||||
|
/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
|
||||||
|
/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
|
||||||
|
/* *x & *y are left unchanged. */
|
||||||
|
|
||||||
|
void mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||||||
|
|
||||||
|
int i, i1, i2, j, k, k2;
|
||||||
|
double u;
|
||||||
|
|
||||||
|
/* Is z=0? */
|
||||||
|
if (X[0]*Y[0]==ZERO)
|
||||||
|
{ Z[0]=ZERO; return; }
|
||||||
|
|
||||||
|
/* Multiply, add and carry */
|
||||||
|
k2 = (p<3) ? p+p : p+3;
|
||||||
|
Z[k2]=ZERO;
|
||||||
|
for (k=k2; k>1; ) {
|
||||||
|
if (k > p) {i1=k-p; i2=p+1; }
|
||||||
|
else {i1=1; i2=k; }
|
||||||
|
for (i=i1,j=i2-1; i<i2; i++,j--) Z[k] += X[i]*Y[j];
|
||||||
|
|
||||||
|
u = (Z[k] + CUTTER)-CUTTER;
|
||||||
|
if (u > Z[k]) u -= RADIX;
|
||||||
|
Z[k] -= u;
|
||||||
|
Z[--k] = u*RADIXI;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Is there a carry beyond the most significant digit? */
|
||||||
|
if (Z[1] == ZERO) {
|
||||||
|
for (i=1; i<=p; i++) Z[i]=Z[i+1];
|
||||||
|
EZ = EX + EY - 1; }
|
||||||
|
else
|
||||||
|
EZ = EX + EY;
|
||||||
|
|
||||||
|
Z[0] = X[0] * Y[0];
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Invert a multiple precision number. Set *y = 1 / *x. */
|
||||||
|
/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
|
||||||
|
/* 2.001*r**(1-p) for p>3. */
|
||||||
|
/* *x=0 is not permissible. *x is left unchanged. */
|
||||||
|
|
||||||
|
void inv(const mp_no *x, mp_no *y, int p) {
|
||||||
|
int i,l;
|
||||||
|
double t;
|
||||||
|
mp_no z,w;
|
||||||
|
static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
|
||||||
|
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
|
||||||
|
const mp_no mptwo = {1,1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
|
||||||
|
cpy(x,&z,p); z.e=0; mp_dbl(&z,&t,p);
|
||||||
|
t=ONE/t; dbl_mp(t,y,p); EY -= EX;
|
||||||
|
|
||||||
|
for (i=0; i<np1[p]; i++) {
|
||||||
|
cpy(y,&w,p);
|
||||||
|
mul(x,&w,y,p);
|
||||||
|
sub(&mptwo,y,&z,p);
|
||||||
|
mul(&w,&z,y,p);
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
|
||||||
|
/* are left unchanged. x&y may overlap but not x&z or y&z. */
|
||||||
|
/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
|
||||||
|
/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
|
||||||
|
|
||||||
|
void dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||||||
|
|
||||||
|
mp_no w;
|
||||||
|
|
||||||
|
if (X[0] == ZERO) Z[0] = ZERO;
|
||||||
|
else {inv(y,&w,p); mul(x,&w,z,p);}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
79
sysdeps/ieee754/dbl-64/mpa.h
Normal file
79
sysdeps/ieee754/dbl-64/mpa.h
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: mpa.h */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: */
|
||||||
|
/* mcr */
|
||||||
|
/* acr */
|
||||||
|
/* cr */
|
||||||
|
/* cpy */
|
||||||
|
/* cpymn */
|
||||||
|
/* mp_dbl */
|
||||||
|
/* dbl_mp */
|
||||||
|
/* add */
|
||||||
|
/* sub */
|
||||||
|
/* mul */
|
||||||
|
/* inv */
|
||||||
|
/* dvd */
|
||||||
|
/* */
|
||||||
|
/* Arithmetic functions for multiple precision numbers. */
|
||||||
|
/* Common types and definition */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
typedef struct {/* This structure holds the details of a multi-precision */
|
||||||
|
int e; /* floating point number, x: d[0] holds its sign (-1,0 or 1) */
|
||||||
|
double d[40]; /* e holds its exponent (...,-2,-1,0,1,2,...) and */
|
||||||
|
} mp_no; /* d[1]...d[p] hold its mantissa digits. The value of x is, */
|
||||||
|
/* x = d[1]*r**(e-1) + d[2]*r**(e-2) + ... + d[p]*r**(e-p). */
|
||||||
|
/* Here r = 2**24, 0 <= d[i] < r and 1 <= p <= 32. */
|
||||||
|
/* p is a global variable. A multi-precision number is */
|
||||||
|
/* always normalized. Namely, d[1] > 0. An exception is */
|
||||||
|
/* a zero which is characterized by d[0] = 0. The terms */
|
||||||
|
/* d[p+1], d[p+2], ... of a none zero number have no */
|
||||||
|
/* significance and so are the terms e, d[1],d[2],... */
|
||||||
|
/* of a zero. */
|
||||||
|
|
||||||
|
typedef union { int i[2]; double d; } number;
|
||||||
|
|
||||||
|
#define X x->d
|
||||||
|
#define Y y->d
|
||||||
|
#define Z z->d
|
||||||
|
#define EX x->e
|
||||||
|
#define EY y->e
|
||||||
|
#define EZ z->e
|
||||||
|
|
||||||
|
#define MAX(x,y) ((x) < (y) ? (y) : (x))
|
||||||
|
#define MIN(x,y) ((x) < (y) ? (x) : (y))
|
||||||
|
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
||||||
|
|
||||||
|
int acr(const mp_no *, const mp_no *, int);
|
||||||
|
int cr(const mp_no *, const mp_no *, int);
|
||||||
|
void cpy(const mp_no *, mp_no *, int);
|
||||||
|
void cpymn(const mp_no *, int, mp_no *, int);
|
||||||
|
void mp_dbl(const mp_no *, double *, int);
|
||||||
|
void dbl_mp(double, mp_no *, int);
|
||||||
|
void add(const mp_no *, const mp_no *, mp_no *, int);
|
||||||
|
void sub(const mp_no *, const mp_no *, mp_no *, int);
|
||||||
|
void mul(const mp_no *, const mp_no *, mp_no *, int);
|
||||||
|
void inv(const mp_no *, mp_no *, int);
|
||||||
|
void dvd(const mp_no *, const mp_no *, mp_no *, int);
|
||||||
|
|
93
sysdeps/ieee754/dbl-64/mpa2.h
Normal file
93
sysdeps/ieee754/dbl-64/mpa2.h
Normal file
@ -0,0 +1,93 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/**************************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mpa2.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* variables prototype and definition according to type of processor */
|
||||||
|
/* types definition */
|
||||||
|
/**************************************************************************/
|
||||||
|
|
||||||
|
#ifndef MPA2_H
|
||||||
|
#define MPA2_H
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ radix = {0x41700000, 0x00000000, }, /* 2**24 */
|
||||||
|
/**/ radixi = {0x3e700000, 0x00000000, }, /* 2**-24 */
|
||||||
|
/**/ cutter = {0x44b00000, 0x00000000, }, /* 2**76 */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ mone = {0xbff00000, 0x00000000, }, /* -1 */
|
||||||
|
/**/ two = {0x40000000, 0x00000000, }, /* 2 */
|
||||||
|
/**/ two5 = {0x40400000, 0x00000000, }, /* 2**5 */
|
||||||
|
/**/ two10 = {0x40900000, 0x00000000, }, /* 2**10 */
|
||||||
|
/**/ two18 = {0x41100000, 0x00000000, }, /* 2**18 */
|
||||||
|
/**/ two19 = {0x41200000, 0x00000000, }, /* 2**19 */
|
||||||
|
/**/ two23 = {0x41600000, 0x00000000, }, /* 2**23 */
|
||||||
|
/**/ two52 = {0x43300000, 0x00000000, }, /* 2**52 */
|
||||||
|
/**/ two57 = {0x43800000, 0x00000000, }, /* 2**57 */
|
||||||
|
/**/ two71 = {0x44600000, 0x00000000, }, /* 2**71 */
|
||||||
|
/**/ twom1032 = {0x00000400, 0x00000000, }; /* 2**-1032 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ radix = {0x00000000, 0x41700000, }, /* 2**24 */
|
||||||
|
/**/ radixi = {0x00000000, 0x3e700000, }, /* 2**-24 */
|
||||||
|
/**/ cutter = {0x00000000, 0x44b00000, }, /* 2**76 */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ mone = {0x00000000, 0xbff00000, }, /* -1 */
|
||||||
|
/**/ two = {0x00000000, 0x40000000, }, /* 2 */
|
||||||
|
/**/ two5 = {0x00000000, 0x40400000, }, /* 2**5 */
|
||||||
|
/**/ two10 = {0x00000000, 0x40900000, }, /* 2**10 */
|
||||||
|
/**/ two18 = {0x00000000, 0x41100000, }, /* 2**18 */
|
||||||
|
/**/ two19 = {0x00000000, 0x41200000, }, /* 2**19 */
|
||||||
|
/**/ two23 = {0x00000000, 0x41600000, }, /* 2**23 */
|
||||||
|
/**/ two52 = {0x00000000, 0x43300000, }, /* 2**52 */
|
||||||
|
/**/ two57 = {0x00000000, 0x43800000, }, /* 2**57 */
|
||||||
|
/**/ two71 = {0x00000000, 0x44600000, }, /* 2**71 */
|
||||||
|
/**/ twom1032 = {0x00000000, 0x00000400, }; /* 2**-1032 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define RADIX radix.d
|
||||||
|
#define RADIXI radixi.d
|
||||||
|
#define CUTTER cutter.d
|
||||||
|
#define ZERO zero.d
|
||||||
|
#define ONE one.d
|
||||||
|
#define MONE mone.d
|
||||||
|
#define TWO two.d
|
||||||
|
#define TWO5 two5.d
|
||||||
|
#define TWO10 two10.d
|
||||||
|
#define TWO18 two18.d
|
||||||
|
#define TWO19 two19.d
|
||||||
|
#define TWO23 two23.d
|
||||||
|
#define TWO52 two52.d
|
||||||
|
#define TWO57 two57.d
|
||||||
|
#define TWO71 two71.d
|
||||||
|
#define TWOM1032 twom1032.d
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
101
sysdeps/ieee754/dbl-64/mpatan.c
Normal file
101
sysdeps/ieee754/dbl-64/mpatan.c
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mpatan.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS:mpatan */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: mpa.h endian.h mpatan.h */
|
||||||
|
/* mpa.c */
|
||||||
|
/* */
|
||||||
|
/* Multi-Precision Atan function subroutine, for precision p >= 4.*/
|
||||||
|
/* The relative error of the result is bounded by 34.32*r**(1-p), */
|
||||||
|
/* where r=2**24. */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
void mpsqrt(mp_no *, mp_no *, int);
|
||||||
|
|
||||||
|
void mpatan(mp_no *x, mp_no *y, int p) {
|
||||||
|
#include "mpatan.h"
|
||||||
|
|
||||||
|
int i,m,n;
|
||||||
|
double dx;
|
||||||
|
mp_no
|
||||||
|
mpone = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,},
|
||||||
|
mptwo = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,},
|
||||||
|
mptwoim1 = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
|
||||||
|
mp_no mps,mpsm,mpt,mpt1,mpt2,mpt3;
|
||||||
|
|
||||||
|
/* Choose m and initiate mpone, mptwo & mptwoim1 */
|
||||||
|
if (EX>0) m=7;
|
||||||
|
else if (EX<0) m=0;
|
||||||
|
else {
|
||||||
|
mp_dbl(x,&dx,p); dx=ABS(dx);
|
||||||
|
for (m=6; m>0; m--)
|
||||||
|
{if (dx>xm[m].d) break;}
|
||||||
|
}
|
||||||
|
mpone.e = mptwo.e = mptwoim1.e = 1;
|
||||||
|
mpone.d[0] = mpone.d[1] = mptwo.d[0] = mptwoim1.d[0] = ONE;
|
||||||
|
mptwo.d[1] = TWO;
|
||||||
|
|
||||||
|
/* Reduce x m times */
|
||||||
|
mul(x,x,&mpsm,p);
|
||||||
|
if (m==0) cpy(x,&mps,p);
|
||||||
|
else {
|
||||||
|
for (i=0; i<m; i++) {
|
||||||
|
add(&mpone,&mpsm,&mpt1,p);
|
||||||
|
mpsqrt(&mpt1,&mpt2,p);
|
||||||
|
add(&mpt2,&mpt2,&mpt1,p);
|
||||||
|
add(&mptwo,&mpsm,&mpt2,p);
|
||||||
|
add(&mpt1,&mpt2,&mpt3,p);
|
||||||
|
dvd(&mpsm,&mpt3,&mpt1,p);
|
||||||
|
cpy(&mpt1,&mpsm,p);
|
||||||
|
}
|
||||||
|
mpsqrt(&mpsm,&mps,p); mps.d[0] = X[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Evaluate a truncated power series for Atan(s) */
|
||||||
|
n=np[p]; mptwoim1.d[1] = twonm1[p].d;
|
||||||
|
dvd(&mpsm,&mptwoim1,&mpt,p);
|
||||||
|
for (i=n-1; i>1; i--) {
|
||||||
|
mptwoim1.d[1] -= TWO;
|
||||||
|
dvd(&mpsm,&mptwoim1,&mpt1,p);
|
||||||
|
mul(&mpsm,&mpt,&mpt2,p);
|
||||||
|
sub(&mpt1,&mpt2,&mpt,p);
|
||||||
|
}
|
||||||
|
mul(&mps,&mpt,&mpt1,p);
|
||||||
|
sub(&mps,&mpt1,&mpt,p);
|
||||||
|
|
||||||
|
/* Compute Atan(x) */
|
||||||
|
mptwoim1.d[1] = twom[m].d;
|
||||||
|
mul(&mptwoim1,&mpt,y,p);
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
172
sysdeps/ieee754/dbl-64/mpatan.h
Normal file
172
sysdeps/ieee754/dbl-64/mpatan.h
Normal file
@ -0,0 +1,172 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mpatan.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef MPATAN_H
|
||||||
|
#define MPATAN_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
xm[8] = { /* x[m] */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0.0 */
|
||||||
|
/**/ {0x3f8930be, 0x00000000, }, /* 0.0123 */
|
||||||
|
/**/ {0x3f991687, 0x00000000, }, /* 0.0245 */
|
||||||
|
/**/ {0x3fa923a2, 0x00000000, }, /* 0.0491 */
|
||||||
|
/**/ {0x3fb930be, 0x00000000, }, /* 0.0984 */
|
||||||
|
/**/ {0x3fc95810, 0x00000000, }, /* 0.198 */
|
||||||
|
/**/ {0x3fda7ef9, 0x00000000, }, /* 0.414 */
|
||||||
|
/**/ {0x3ff00000, 0x00000000, }, /* 1.0 */
|
||||||
|
};
|
||||||
|
static const number
|
||||||
|
twonm1[33] = { /* 2n-1 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x40260000, 0x00000000, }, /* 11 */
|
||||||
|
/**/ {0x402e0000, 0x00000000, }, /* 15 */
|
||||||
|
/**/ {0x40330000, 0x00000000, }, /* 19 */
|
||||||
|
/**/ {0x40350000, 0x00000000, }, /* 21 */
|
||||||
|
/**/ {0x40390000, 0x00000000, }, /* 25 */
|
||||||
|
/**/ {0x403d0000, 0x00000000, }, /* 29 */
|
||||||
|
/**/ {0x40408000, 0x00000000, }, /* 33 */
|
||||||
|
/**/ {0x40428000, 0x00000000, }, /* 37 */
|
||||||
|
/**/ {0x40448000, 0x00000000, }, /* 41 */
|
||||||
|
/**/ {0x40468000, 0x00000000, }, /* 45 */
|
||||||
|
/**/ {0x40488000, 0x00000000, }, /* 49 */
|
||||||
|
/**/ {0x404a8000, 0x00000000, }, /* 53 */
|
||||||
|
/**/ {0x404b8000, 0x00000000, }, /* 55 */
|
||||||
|
/**/ {0x404d8000, 0x00000000, }, /* 59 */
|
||||||
|
/**/ {0x404f8000, 0x00000000, }, /* 63 */
|
||||||
|
/**/ {0x4050c000, 0x00000000, }, /* 67 */
|
||||||
|
/**/ {0x4051c000, 0x00000000, }, /* 71 */
|
||||||
|
/**/ {0x4052c000, 0x00000000, }, /* 75 */
|
||||||
|
/**/ {0x4053c000, 0x00000000, }, /* 79 */
|
||||||
|
/**/ {0x4054c000, 0x00000000, }, /* 83 */
|
||||||
|
/**/ {0x40554000, 0x00000000, }, /* 85 */
|
||||||
|
/**/ {0x40564000, 0x00000000, }, /* 89 */
|
||||||
|
/**/ {0x40574000, 0x00000000, }, /* 93 */
|
||||||
|
/**/ {0x40584000, 0x00000000, }, /* 97 */
|
||||||
|
/**/ {0x40594000, 0x00000000, }, /* 101 */
|
||||||
|
/**/ {0x405a4000, 0x00000000, }, /* 105 */
|
||||||
|
/**/ {0x405b4000, 0x00000000, }, /* 109 */
|
||||||
|
/**/ {0x405c4000, 0x00000000, }, /* 113 */
|
||||||
|
/**/ {0x405d4000, 0x00000000, }, /* 117 */
|
||||||
|
};
|
||||||
|
|
||||||
|
static const number
|
||||||
|
twom[8] = { /* 2**m */
|
||||||
|
/**/ {0x3ff00000, 0x00000000, }, /* 1.0 */
|
||||||
|
/**/ {0x40000000, 0x00000000, }, /* 2.0 */
|
||||||
|
/**/ {0x40100000, 0x00000000, }, /* 4.0 */
|
||||||
|
/**/ {0x40200000, 0x00000000, }, /* 8.0 */
|
||||||
|
/**/ {0x40300000, 0x00000000, }, /* 16.0 */
|
||||||
|
/**/ {0x40400000, 0x00000000, }, /* 32.0 */
|
||||||
|
/**/ {0x40500000, 0x00000000, }, /* 64.0 */
|
||||||
|
/**/ {0x40600000, 0x00000000, }, /* 128.0 */
|
||||||
|
};
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ two = {0x40000000, 0x00000000, }; /* 2 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
|
||||||
|
static const number
|
||||||
|
xm[8] = { /* x[m] */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0.0 */
|
||||||
|
/**/ {0x00000000, 0x3f8930be, }, /* 0.0123 */
|
||||||
|
/**/ {0x00000000, 0x3f991687, }, /* 0.0245 */
|
||||||
|
/**/ {0x00000000, 0x3fa923a2, }, /* 0.0491 */
|
||||||
|
/**/ {0x00000000, 0x3fb930be, }, /* 0.0984 */
|
||||||
|
/**/ {0x00000000, 0x3fc95810, }, /* 0.198 */
|
||||||
|
/**/ {0x00000000, 0x3fda7ef9, }, /* 0.414 */
|
||||||
|
/**/ {0x00000000, 0x3ff00000, }, /* 1.0 */
|
||||||
|
};
|
||||||
|
static const number
|
||||||
|
twonm1[33] = { /* 2n-1 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x40260000, }, /* 11 */
|
||||||
|
/**/ {0x00000000, 0x402e0000, }, /* 15 */
|
||||||
|
/**/ {0x00000000, 0x40330000, }, /* 19 */
|
||||||
|
/**/ {0x00000000, 0x40350000, }, /* 21 */
|
||||||
|
/**/ {0x00000000, 0x40390000, }, /* 25 */
|
||||||
|
/**/ {0x00000000, 0x403d0000, }, /* 29 */
|
||||||
|
/**/ {0x00000000, 0x40408000, }, /* 33 */
|
||||||
|
/**/ {0x00000000, 0x40428000, }, /* 37 */
|
||||||
|
/**/ {0x00000000, 0x40448000, }, /* 41 */
|
||||||
|
/**/ {0x00000000, 0x40468000, }, /* 45 */
|
||||||
|
/**/ {0x00000000, 0x40488000, }, /* 49 */
|
||||||
|
/**/ {0x00000000, 0x404a8000, }, /* 53 */
|
||||||
|
/**/ {0x00000000, 0x404b8000, }, /* 55 */
|
||||||
|
/**/ {0x00000000, 0x404d8000, }, /* 59 */
|
||||||
|
/**/ {0x00000000, 0x404f8000, }, /* 63 */
|
||||||
|
/**/ {0x00000000, 0x4050c000, }, /* 67 */
|
||||||
|
/**/ {0x00000000, 0x4051c000, }, /* 71 */
|
||||||
|
/**/ {0x00000000, 0x4052c000, }, /* 75 */
|
||||||
|
/**/ {0x00000000, 0x4053c000, }, /* 79 */
|
||||||
|
/**/ {0x00000000, 0x4054c000, }, /* 83 */
|
||||||
|
/**/ {0x00000000, 0x40554000, }, /* 85 */
|
||||||
|
/**/ {0x00000000, 0x40564000, }, /* 89 */
|
||||||
|
/**/ {0x00000000, 0x40574000, }, /* 93 */
|
||||||
|
/**/ {0x00000000, 0x40584000, }, /* 97 */
|
||||||
|
/**/ {0x00000000, 0x40594000, }, /* 101 */
|
||||||
|
/**/ {0x00000000, 0x405a4000, }, /* 105 */
|
||||||
|
/**/ {0x00000000, 0x405b4000, }, /* 109 */
|
||||||
|
/**/ {0x00000000, 0x405c4000, }, /* 113 */
|
||||||
|
/**/ {0x00000000, 0x405d4000, }, /* 117 */
|
||||||
|
};
|
||||||
|
|
||||||
|
static const number
|
||||||
|
twom[8] = { /* 2**m */
|
||||||
|
/**/ {0x00000000, 0x3ff00000, }, /* 1.0 */
|
||||||
|
/**/ {0x00000000, 0x40000000, }, /* 2.0 */
|
||||||
|
/**/ {0x00000000, 0x40100000, }, /* 4.0 */
|
||||||
|
/**/ {0x00000000, 0x40200000, }, /* 8.0 */
|
||||||
|
/**/ {0x00000000, 0x40300000, }, /* 16.0 */
|
||||||
|
/**/ {0x00000000, 0x40400000, }, /* 32.0 */
|
||||||
|
/**/ {0x00000000, 0x40500000, }, /* 64.0 */
|
||||||
|
/**/ {0x00000000, 0x40600000, }, /* 128.0 */
|
||||||
|
};
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ two = {0x00000000, 0x40000000, }; /* 2 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ONE one.d
|
||||||
|
#define TWO two.d
|
||||||
|
|
||||||
|
static const int
|
||||||
|
np[33] = { 0, 0, 0, 0, 6, 8,10,11,13,15,17,19,21,23,25,27,28,
|
||||||
|
30,32,34,36,38,40,42,43,45,47,49,51,53,55,57,59};
|
||||||
|
|
||||||
|
#endif
|
69
sysdeps/ieee754/dbl-64/mpatan2.c
Normal file
69
sysdeps/ieee754/dbl-64/mpatan2.c
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* MODULE_NAME: mpatan2.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS:mpatan2 */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: mpa.h */
|
||||||
|
/* mpa.c mpatan.c mpsqrt.c */
|
||||||
|
/* */
|
||||||
|
/* Multi-Precision Atan2(y,x) function subroutine, */
|
||||||
|
/* for precision p >= 4. */
|
||||||
|
/* y=0 is not permitted if x<=0. No error messages are given. */
|
||||||
|
/* The relative error of the result is bounded by 44.84*r**(1-p) */
|
||||||
|
/* if x <= 0, y != 0 and by 37.33*r**(1-p) if x>0. here r=2**24. */
|
||||||
|
/* */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#include "mpa.h"
|
||||||
|
|
||||||
|
void mpsqrt(mp_no *, mp_no *, int);
|
||||||
|
void mpatan(mp_no *, mp_no *, int);
|
||||||
|
|
||||||
|
/* Multi-Precision Atan2(y,x) function subroutine, for p >= 4. */
|
||||||
|
/* y=0 is not permitted if x<=0. No error messages are given. */
|
||||||
|
void mpatan2(mp_no *y, mp_no *x, mp_no *z, int p) {
|
||||||
|
|
||||||
|
static const double ZERO = 0.0, ONE = 1.0;
|
||||||
|
|
||||||
|
mp_no mpone = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
mp_no mpt1,mpt2,mpt3;
|
||||||
|
|
||||||
|
|
||||||
|
if (X[0] <= ZERO) {
|
||||||
|
mpone.e = 1; mpone.d[0] = mpone.d[1] = ONE;
|
||||||
|
dvd(x,y,&mpt1,p); mul(&mpt1,&mpt1,&mpt2,p);
|
||||||
|
if (mpt1.d[0] != ZERO) mpt1.d[0] = ONE;
|
||||||
|
add(&mpt2,&mpone,&mpt3,p); mpsqrt(&mpt3,&mpt2,p);
|
||||||
|
add(&mpt1,&mpt2,&mpt3,p); mpt3.d[0]=Y[0];
|
||||||
|
mpatan(&mpt3,&mpt1,p); add(&mpt1,&mpt1,z,p);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{ dvd(y,x,&mpt1,p);
|
||||||
|
mpatan(&mpt1,z,p);
|
||||||
|
}
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
105
sysdeps/ieee754/dbl-64/mpexp.c
Normal file
105
sysdeps/ieee754/dbl-64/mpexp.c
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/*************************************************************************/
|
||||||
|
/* MODULE_NAME:mpexp.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: mpexp */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: mpa.h endian.h mpexp.h */
|
||||||
|
/* mpa.c */
|
||||||
|
/* */
|
||||||
|
/* Multi-Precision exponential function subroutine */
|
||||||
|
/* ( for p >= 4, 2**(-55) <= abs(x) <= 1024 ). */
|
||||||
|
/*************************************************************************/
|
||||||
|
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
#include "mpexp.h"
|
||||||
|
|
||||||
|
/* Multi-Precision exponential function subroutine (for p >= 4, */
|
||||||
|
/* 2**(-55) <= abs(x) <= 1024). */
|
||||||
|
void mpexp(mp_no *x, mp_no *y, int p) {
|
||||||
|
|
||||||
|
int i,j,k,m,m1,m2,n;
|
||||||
|
double a,b;
|
||||||
|
static const int np[33] = {0,0,0,0,3,3,4,4,5,4,4,5,5,5,6,6,6,6,6,6,
|
||||||
|
6,6,6,6,7,7,7,7,8,8,8,8,8};
|
||||||
|
static const int m1p[33]= {0,0,0,0,17,23,23,28,27,38,42,39,43,47,43,47,50,54,
|
||||||
|
57,60,64,67,71,74,68,71,74,77,70,73,76,78,81};
|
||||||
|
static const int m1np[7][18] = {
|
||||||
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||||
|
{ 0, 0, 0, 0,36,48,60,72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||||
|
{ 0, 0, 0, 0,24,32,40,48,56,64,72, 0, 0, 0, 0, 0, 0, 0},
|
||||||
|
{ 0, 0, 0, 0,17,23,29,35,41,47,53,59,65, 0, 0, 0, 0, 0},
|
||||||
|
{ 0, 0, 0, 0, 0, 0,23,28,33,38,42,47,52,57,62,66, 0, 0},
|
||||||
|
{ 0, 0, 0, 0, 0, 0, 0, 0,27, 0, 0,39,43,47,51,55,59,63},
|
||||||
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,43,47,50,54}};
|
||||||
|
mp_no mpone = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
mp_no mpk = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
mp_no mps,mpak,mpt1,mpt2;
|
||||||
|
|
||||||
|
/* Choose m,n and compute a=2**(-m) */
|
||||||
|
n = np[p]; m1 = m1p[p]; a = twomm1[p].d;
|
||||||
|
for (i=0; i<EX; i++) a *= RADIXI;
|
||||||
|
for ( ; i>EX; i--) a *= RADIX;
|
||||||
|
b = X[1]*RADIXI; m2 = 24*EX;
|
||||||
|
for (; b<HALF; m2--) { a *= TWO; b *= TWO; }
|
||||||
|
if (b == HALF) {
|
||||||
|
for (i=2; i<=p; i++) { if (X[i]!=ZERO) break; }
|
||||||
|
if (i==p+1) { m2--; a *= TWO; }
|
||||||
|
}
|
||||||
|
if ((m=m1+m2) <= 0) {
|
||||||
|
m=0; a=ONE;
|
||||||
|
for (i=n-1; i>0; i--,n--) { if (m1np[i][p]+m2>0) break; }
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Compute s=x*2**(-m). Put result in mps */
|
||||||
|
dbl_mp(a,&mpt1,p);
|
||||||
|
mul(x,&mpt1,&mps,p);
|
||||||
|
|
||||||
|
/* Evaluate the polynomial. Put result in mpt2 */
|
||||||
|
mpone.e=1; mpone.d[0]=ONE; mpone.d[1]=ONE;
|
||||||
|
mpk.e = 1; mpk.d[0] = ONE; mpk.d[1]=nn[n].d;
|
||||||
|
dvd(&mps,&mpk,&mpt1,p);
|
||||||
|
add(&mpone,&mpt1,&mpak,p);
|
||||||
|
for (k=n-1; k>1; k--) {
|
||||||
|
mul(&mps,&mpak,&mpt1,p);
|
||||||
|
mpk.d[1]=nn[k].d;
|
||||||
|
dvd(&mpt1,&mpk,&mpt2,p);
|
||||||
|
add(&mpone,&mpt2,&mpak,p);
|
||||||
|
}
|
||||||
|
mul(&mps,&mpak,&mpt1,p);
|
||||||
|
add(&mpone,&mpt1,&mpt2,p);
|
||||||
|
|
||||||
|
/* Raise polynomial value to the power of 2**m. Put result in y */
|
||||||
|
for (k=0,j=0; k<m; ) {
|
||||||
|
mul(&mpt2,&mpt2,&mpt1,p); k++;
|
||||||
|
if (k==m) { j=1; break; }
|
||||||
|
mul(&mpt1,&mpt1,&mpt2,p); k++;
|
||||||
|
}
|
||||||
|
if (j) cpy(&mpt1,y,p);
|
||||||
|
else cpy(&mpt2,y,p);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
157
sysdeps/ieee754/dbl-64/mpexp.h
Normal file
157
sysdeps/ieee754/dbl-64/mpexp.h
Normal file
@ -0,0 +1,157 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mpexp.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef MPEXP_H
|
||||||
|
#define MPEXP_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
twomm1[33] = { /* 2**-m1 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x3ee00000, 0x00000000, }, /* 2**-17 */
|
||||||
|
/**/ {0x3e800000, 0x00000000, }, /* 2**-23 */
|
||||||
|
/**/ {0x3e800000, 0x00000000, }, /* 2**-23 */
|
||||||
|
/**/ {0x3e300000, 0x00000000, }, /* 2**-28 */
|
||||||
|
/**/ {0x3e400000, 0x00000000, }, /* 2**-27 */
|
||||||
|
/**/ {0x3d900000, 0x00000000, }, /* 2**-38 */
|
||||||
|
/**/ {0x3d500000, 0x00000000, }, /* 2**-42 */
|
||||||
|
/**/ {0x3d800000, 0x00000000, }, /* 2**-39 */
|
||||||
|
/**/ {0x3d400000, 0x00000000, }, /* 2**-43 */
|
||||||
|
/**/ {0x3d000000, 0x00000000, }, /* 2**-47 */
|
||||||
|
/**/ {0x3d400000, 0x00000000, }, /* 2**-43 */
|
||||||
|
/**/ {0x3d000000, 0x00000000, }, /* 2**-47 */
|
||||||
|
/**/ {0x3cd00000, 0x00000000, }, /* 2**-50 */
|
||||||
|
/**/ {0x3c900000, 0x00000000, }, /* 2**-54 */
|
||||||
|
/**/ {0x3c600000, 0x00000000, }, /* 2**-57 */
|
||||||
|
/**/ {0x3c300000, 0x00000000, }, /* 2**-60 */
|
||||||
|
/**/ {0x3bf00000, 0x00000000, }, /* 2**-64 */
|
||||||
|
/**/ {0x3bc00000, 0x00000000, }, /* 2**-67 */
|
||||||
|
/**/ {0x3b800000, 0x00000000, }, /* 2**-71 */
|
||||||
|
/**/ {0x3b500000, 0x00000000, }, /* 2**-74 */
|
||||||
|
/**/ {0x3bb00000, 0x00000000, }, /* 2**-68 */
|
||||||
|
/**/ {0x3b800000, 0x00000000, }, /* 2**-71 */
|
||||||
|
/**/ {0x3b500000, 0x00000000, }, /* 2**-74 */
|
||||||
|
/**/ {0x3b200000, 0x00000000, }, /* 2**-77 */
|
||||||
|
/**/ {0x3b900000, 0x00000000, }, /* 2**-70 */
|
||||||
|
/**/ {0x3b600000, 0x00000000, }, /* 2**-73 */
|
||||||
|
/**/ {0x3b300000, 0x00000000, }, /* 2**-76 */
|
||||||
|
/**/ {0x3b100000, 0x00000000, }, /* 2**-78 */
|
||||||
|
/**/ {0x3ae00000, 0x00000000, }, /* 2**-81 */
|
||||||
|
};
|
||||||
|
static const number
|
||||||
|
nn[9]={ /* n */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ {0x40000000, 0x00000000, }, /* 2 */
|
||||||
|
/**/ {0x40080000, 0x00000000, }, /* 3 */
|
||||||
|
/**/ {0x40100000, 0x00000000, }, /* 4 */
|
||||||
|
/**/ {0x40140000, 0x00000000, }, /* 5 */
|
||||||
|
/**/ {0x40180000, 0x00000000, }, /* 6 */
|
||||||
|
/**/ {0x401c0000, 0x00000000, }, /* 7 */
|
||||||
|
/**/ {0x40200000, 0x00000000, }, /* 8 */
|
||||||
|
};
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/**/ radix = {0x41700000, 0x00000000, }, /* 2**24 */
|
||||||
|
/**/ radixi = {0x3e700000, 0x00000000, }, /* 2**-24 */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ two = {0x40000000, 0x00000000, }, /* 2 */
|
||||||
|
/**/ half = {0x3fe00000, 0x00000000, }; /* 1/2 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
twomm1[33] = { /* 2**-m1 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x3ee00000, }, /* 2**-17 */
|
||||||
|
/**/ {0x00000000, 0x3e800000, }, /* 2**-23 */
|
||||||
|
/**/ {0x00000000, 0x3e800000, }, /* 2**-23 */
|
||||||
|
/**/ {0x00000000, 0x3e300000, }, /* 2**-28 */
|
||||||
|
/**/ {0x00000000, 0x3e400000, }, /* 2**-27 */
|
||||||
|
/**/ {0x00000000, 0x3d900000, }, /* 2**-38 */
|
||||||
|
/**/ {0x00000000, 0x3d500000, }, /* 2**-42 */
|
||||||
|
/**/ {0x00000000, 0x3d800000, }, /* 2**-39 */
|
||||||
|
/**/ {0x00000000, 0x3d400000, }, /* 2**-43 */
|
||||||
|
/**/ {0x00000000, 0x3d000000, }, /* 2**-47 */
|
||||||
|
/**/ {0x00000000, 0x3d400000, }, /* 2**-43 */
|
||||||
|
/**/ {0x00000000, 0x3d000000, }, /* 2**-47 */
|
||||||
|
/**/ {0x00000000, 0x3cd00000, }, /* 2**-50 */
|
||||||
|
/**/ {0x00000000, 0x3c900000, }, /* 2**-54 */
|
||||||
|
/**/ {0x00000000, 0x3c600000, }, /* 2**-57 */
|
||||||
|
/**/ {0x00000000, 0x3c300000, }, /* 2**-60 */
|
||||||
|
/**/ {0x00000000, 0x3bf00000, }, /* 2**-64 */
|
||||||
|
/**/ {0x00000000, 0x3bc00000, }, /* 2**-67 */
|
||||||
|
/**/ {0x00000000, 0x3b800000, }, /* 2**-71 */
|
||||||
|
/**/ {0x00000000, 0x3b500000, }, /* 2**-74 */
|
||||||
|
/**/ {0x00000000, 0x3bb00000, }, /* 2**-68 */
|
||||||
|
/**/ {0x00000000, 0x3b800000, }, /* 2**-71 */
|
||||||
|
/**/ {0x00000000, 0x3b500000, }, /* 2**-74 */
|
||||||
|
/**/ {0x00000000, 0x3b200000, }, /* 2**-77 */
|
||||||
|
/**/ {0x00000000, 0x3b900000, }, /* 2**-70 */
|
||||||
|
/**/ {0x00000000, 0x3b600000, }, /* 2**-73 */
|
||||||
|
/**/ {0x00000000, 0x3b300000, }, /* 2**-76 */
|
||||||
|
/**/ {0x00000000, 0x3b100000, }, /* 2**-78 */
|
||||||
|
/**/ {0x00000000, 0x3ae00000, }, /* 2**-81 */
|
||||||
|
};
|
||||||
|
static const number
|
||||||
|
nn[9]={ /* n */
|
||||||
|
/**/ {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ {0x00000000, 0x40000000, }, /* 2 */
|
||||||
|
/**/ {0x00000000, 0x40080000, }, /* 3 */
|
||||||
|
/**/ {0x00000000, 0x40100000, }, /* 4 */
|
||||||
|
/**/ {0x00000000, 0x40140000, }, /* 5 */
|
||||||
|
/**/ {0x00000000, 0x40180000, }, /* 6 */
|
||||||
|
/**/ {0x00000000, 0x401c0000, }, /* 7 */
|
||||||
|
/**/ {0x00000000, 0x40200000, }, /* 8 */
|
||||||
|
};
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/**/ radix = {0x00000000, 0x41700000, }, /* 2**24 */
|
||||||
|
/**/ radixi = {0x00000000, 0x3e700000, }, /* 2**-24 */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ two = {0x00000000, 0x40000000, }, /* 2 */
|
||||||
|
/**/ half = {0x00000000, 0x3fe00000, }; /* 1/2 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define RADIX radix.d
|
||||||
|
#define RADIXI radixi.d
|
||||||
|
#define ZERO zero.d
|
||||||
|
#define ONE one.d
|
||||||
|
#define TWO two.d
|
||||||
|
#define HALF half.d
|
||||||
|
|
||||||
|
#endif
|
68
sysdeps/ieee754/dbl-64/mplog.c
Normal file
68
sysdeps/ieee754/dbl-64/mplog.c
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mplog.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: mplog */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: endian.h mpa.h mplog.h */
|
||||||
|
/* mpexp.c */
|
||||||
|
/* */
|
||||||
|
/* Multi-Precision logarithm function subroutine (for precision p >= 4, */
|
||||||
|
/* 2**(-1024) < x < 2**1024) and x is outside of the interval */
|
||||||
|
/* [1-2**(-54),1+2**(-54)]. Upon entry, x should be set to the */
|
||||||
|
/* multi-precision value of the input and y should be set into a multi- */
|
||||||
|
/* precision value of an approximation of log(x) with relative error */
|
||||||
|
/* bound of at most 2**(-52). The routine improves the accuracy of y. */
|
||||||
|
/* */
|
||||||
|
/************************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
|
||||||
|
void mpexp(mp_no *, mp_no *, int);
|
||||||
|
|
||||||
|
void mplog(mp_no *x, mp_no *y, int p) {
|
||||||
|
#include "mplog.h"
|
||||||
|
int i,j,k,m,m1,m2,n;
|
||||||
|
double a,b;
|
||||||
|
static const int mp[33] = {0,0,0,0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
|
||||||
|
4,4,4,4,4,4,4,4,4,4,4,4,4,4};
|
||||||
|
mp_no mpone = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
mp_no mpt1,mpt2;
|
||||||
|
|
||||||
|
/* Choose m and initiate mpone */
|
||||||
|
m = mp[p]; mpone.e = 1; mpone.d[0]=mpone.d[1]=ONE;
|
||||||
|
|
||||||
|
/* Perform m newton iterations to solve for y: exp(y)-x=0. */
|
||||||
|
/* The iterations formula is: y(n+1)=y(n)+(x*exp(-y(n))-1). */
|
||||||
|
cpy(y,&mpt1,p);
|
||||||
|
for (i=0; i<m; i++) {
|
||||||
|
mpt1.d[0]=-mpt1.d[0];
|
||||||
|
mpexp(&mpt1,&mpt2,p);
|
||||||
|
mul(x,&mpt2,&mpt1,p);
|
||||||
|
sub(&mpt1,&mpone,&mpt2,p);
|
||||||
|
add(y,&mpt2,&mpt1,p);
|
||||||
|
cpy(&mpt1,y,p);
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
44
sysdeps/ieee754/dbl-64/mplog.h
Normal file
44
sysdeps/ieee754/dbl-64/mplog.h
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mplog.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef MPLOG_H
|
||||||
|
#define MPLOG_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }; /* 1 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }; /* 1 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ONE one.d
|
||||||
|
|
||||||
|
#endif
|
102
sysdeps/ieee754/dbl-64/mpsqrt.c
Normal file
102
sysdeps/ieee754/dbl-64/mpsqrt.c
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/****************************************************************************/
|
||||||
|
/* MODULE_NAME:mpsqrt.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION:mpsqrt */
|
||||||
|
/* fastiroot */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED:endian.h mpa.h mpsqrt.h */
|
||||||
|
/* mpa.c */
|
||||||
|
/* Multi-Precision square root function subroutine for precision p >= 4. */
|
||||||
|
/* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */
|
||||||
|
/* */
|
||||||
|
/****************************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
|
||||||
|
/****************************************************************************/
|
||||||
|
/* Multi-Precision square root function subroutine for precision p >= 4. */
|
||||||
|
/* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */
|
||||||
|
/* Routine receives two pointers to Multi Precision numbers: */
|
||||||
|
/* x (left argument) and y (next argument). Routine also receives precision */
|
||||||
|
/* p as integer. Routine computes sqrt(*x) and stores result in *y */
|
||||||
|
/****************************************************************************/
|
||||||
|
|
||||||
|
double fastiroot(double);
|
||||||
|
|
||||||
|
void mpsqrt(mp_no *x, mp_no *y, int p) {
|
||||||
|
#include "mpsqrt.h"
|
||||||
|
|
||||||
|
int i,m,ex,ey;
|
||||||
|
double dx,dy;
|
||||||
|
mp_no
|
||||||
|
mphalf = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,},
|
||||||
|
mp3halfs = {0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||||||
|
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
|
||||||
|
mp_no mpxn,mpz,mpu,mpt1,mpt2;
|
||||||
|
|
||||||
|
/* Prepare multi-precision 1/2 and 3/2 */
|
||||||
|
mphalf.e =0; mphalf.d[0] =ONE; mphalf.d[1] =HALFRAD;
|
||||||
|
mp3halfs.e=1; mp3halfs.d[0]=ONE; mp3halfs.d[1]=ONE; mp3halfs.d[2]=HALFRAD;
|
||||||
|
|
||||||
|
ex=EX; ey=EX/2; cpy(x,&mpxn,p); mpxn.e -= (ey+ey);
|
||||||
|
mp_dbl(&mpxn,&dx,p); dy=fastiroot(dx); dbl_mp(dy,&mpu,p);
|
||||||
|
mul(&mpxn,&mphalf,&mpz,p);
|
||||||
|
|
||||||
|
m=mp[p];
|
||||||
|
for (i=0; i<m; i++) {
|
||||||
|
mul(&mpu,&mpu,&mpt1,p);
|
||||||
|
mul(&mpt1,&mpz,&mpt2,p);
|
||||||
|
sub(&mp3halfs,&mpt2,&mpt1,p);
|
||||||
|
mul(&mpu,&mpt1,&mpt2,p);
|
||||||
|
cpy(&mpt2,&mpu,p);
|
||||||
|
}
|
||||||
|
mul(&mpxn,&mpu,y,p); EY += ey;
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/***********************************************************/
|
||||||
|
/* Compute a double precision approximation for 1/sqrt(x) */
|
||||||
|
/* with the relative error bounded by 2**-51. */
|
||||||
|
/***********************************************************/
|
||||||
|
double fastiroot(double x) {
|
||||||
|
union {long i[2]; double d;} p,q;
|
||||||
|
double y,z, t;
|
||||||
|
long n;
|
||||||
|
static const double c0 = 0.99674, c1 = -0.53380, c2 = 0.45472, c3 = -0.21553;
|
||||||
|
|
||||||
|
p.d = x;
|
||||||
|
p.i[HIGH_HALF] = (p.i[HIGH_HALF] & 0x3FFFFFFF ) | 0x3FE00000 ;
|
||||||
|
q.d = x;
|
||||||
|
y = p.d;
|
||||||
|
z = y -1.0;
|
||||||
|
n = (q.i[HIGH_HALF] - p.i[HIGH_HALF])>>1;
|
||||||
|
z = ((c3*z + c2)*z + c1)*z + c0; /* 2**-7 */
|
||||||
|
z = z*(1.5 - 0.5*y*z*z); /* 2**-14 */
|
||||||
|
p.d = z*(1.5 - 0.5*y*z*z); /* 2**-28 */
|
||||||
|
p.i[HIGH_HALF] -= n;
|
||||||
|
t = x*p.d;
|
||||||
|
return p.d*(1.5 - 0.5*p.d*t);
|
||||||
|
}
|
50
sysdeps/ieee754/dbl-64/mpsqrt.h
Normal file
50
sysdeps/ieee754/dbl-64/mpsqrt.h
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mpatan.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef MPSQRT_H
|
||||||
|
#define MPSQRT_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ halfrad = {0x41600000, 0x00000000, }; /* 2**23 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ halfrad = {0x00000000, 0x41600000, }; /* 2**23 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ONE one.d
|
||||||
|
#define HALFRAD halfrad.d
|
||||||
|
|
||||||
|
static const int mp[33] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,
|
||||||
|
4,4,4,4,4,4,4,4,4};
|
||||||
|
|
||||||
|
#endif
|
59
sysdeps/ieee754/dbl-64/mptan.c
Normal file
59
sysdeps/ieee754/dbl-64/mptan.c
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/**********************************************************************/
|
||||||
|
/* MODULE_NAME:mptan.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION: mptan */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: endian.h mpa.h */
|
||||||
|
/* mpa.c sincos32.c branred.c */
|
||||||
|
/* */
|
||||||
|
/* Multi-Precision tan() function subroutine, for p=32. It is based */
|
||||||
|
/* on the routines mpranred() and c32(). mpranred() performs range */
|
||||||
|
/* reduction of a double number x into a multiple precision number */
|
||||||
|
/* y, such that y=x-n*pi/2, abs(y)<pi/4, n=0,+-1,+-2,.... c32() */
|
||||||
|
/* computes both sin(y), cos(y). tan(x) is either sin(y)/cos(y) */
|
||||||
|
/* or -cos(y)/sin(y). The precision of the result is of about 559 */
|
||||||
|
/* significant bits. */
|
||||||
|
/* */
|
||||||
|
/**********************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
|
||||||
|
int mpranred(double, mp_no *, int);
|
||||||
|
void c32(mp_no *, mp_no *, mp_no *, int);
|
||||||
|
|
||||||
|
void mptan(double x, mp_no *mpy, int p) {
|
||||||
|
|
||||||
|
static const double MONE = -1.0;
|
||||||
|
|
||||||
|
int n;
|
||||||
|
mp_no mpw, mpc, mps;
|
||||||
|
|
||||||
|
n = mpranred(x, &mpw, p) & 0x00000001; /* negative or positive result */
|
||||||
|
c32(&mpw, &mpc, &mps, p); /* computing sin(x) and cos(x) */
|
||||||
|
if (n) /* second or fourth quarter of unit circle */
|
||||||
|
{ dvd(&mpc,&mps,mpy,p);
|
||||||
|
mpy->d[0] *= MONE;
|
||||||
|
} /* tan is negative in this area */
|
||||||
|
else dvd(&mps,&mpc,mpy,p);
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
37
sysdeps/ieee754/dbl-64/mydefs.h
Normal file
37
sysdeps/ieee754/dbl-64/mydefs.h
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:mydefs.h */
|
||||||
|
/* */
|
||||||
|
/* common data and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef MY_H
|
||||||
|
#define MY_H
|
||||||
|
|
||||||
|
typedef int int4;
|
||||||
|
typedef union {int4 i[2]; double x;} mynumber;
|
||||||
|
|
||||||
|
#define ABS(x) (((x)>0)?(x):-(x))
|
||||||
|
#define max(x,y) (((y)>(x))?(y):(x))
|
||||||
|
#define min(x,y) (((y)<(x))?(y):(x))
|
||||||
|
|
||||||
|
#endif
|
12
sysdeps/ieee754/dbl-64/powtwo.tbl
Normal file
12
sysdeps/ieee754/dbl-64/powtwo.tbl
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
/****************************************************************/
|
||||||
|
/* TABLES FOR THE upow() FUNCTION */
|
||||||
|
/****************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
static const double powtwo[] = { 1.0, 2.0, 4.0,
|
||||||
|
8.0, 16.0, 32.0, 64.0, 128.0,
|
||||||
|
256.0, 512.0, 1024.0, 2048.0, 4096.0,
|
||||||
|
8192.0, 16384.0, 32768.0, 65536.0, 131072.0,
|
||||||
|
262144.0, 524288.0, 1048576.0, 2097152.0, 4194304.0,
|
||||||
|
8388608.0, 16777216.0, 33554432.0, 67108864.0, 134217728.0 };
|
38
sysdeps/ieee754/dbl-64/root.tbl
Normal file
38
sysdeps/ieee754/dbl-64/root.tbl
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
/****************************************************************/
|
||||||
|
/* TABLES FOR THE usqrt() FUNCTION */
|
||||||
|
/****************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
static const double inroot[128] = {
|
||||||
|
1.40872145012100, 1.39792649065766, 1.38737595123859, 1.37706074531819,
|
||||||
|
1.36697225234682, 1.35710228748795, 1.34744307370643, 1.33798721601135,
|
||||||
|
1.32872767765984, 1.31965775814772, 1.31077107283046, 1.30206153403386,
|
||||||
|
1.29352333352711, 1.28515092624400, 1.27693901514820, 1.26888253714903,
|
||||||
|
1.26097664998256, 1.25321671998073, 1.24559831065844, 1.23811717205462,
|
||||||
|
1.23076923076923, 1.22355058064300, 1.21645747403153, 1.20948631362953,
|
||||||
|
1.20263364480453, 1.19589614840310, 1.18927063399547, 1.18275403352732,
|
||||||
|
1.17634339535009, 1.17003587860341, 1.16382874792529, 1.15771936846787,
|
||||||
|
1.15170520119791, 1.14578379846309, 1.13995279980655, 1.13420992801334,
|
||||||
|
1.12855298537376, 1.12297985014975, 1.11748847323133, 1.11207687497107,
|
||||||
|
1.10674314218572, 1.10148542531442, 1.09630193572405, 1.09119094315276,
|
||||||
|
1.08615077328341, 1.08117980543918, 1.07627647039410, 1.07143924829188,
|
||||||
|
1.06666666666667, 1.06195729855996, 1.05730976072814, 1.05272271193563,
|
||||||
|
1.04819485132867, 1.04372491688551, 1.03931168393861, 1.03495396376504,
|
||||||
|
1.03065060224133, 1.02640047855933, 1.02220250399990, 1.01805562076124,
|
||||||
|
1.01395880083916, 1.00991104495649, 1.00591138153909, 1.00195886573624,
|
||||||
|
0.99611649018350, 0.98848330114434, 0.98102294317595, 0.97372899112030,
|
||||||
|
0.96659534932828, 0.95961623024651, 0.95278613468066, 0.94609983358253,
|
||||||
|
0.93955235122353, 0.93313894963169, 0.92685511418159, 0.92069654023750,
|
||||||
|
0.91465912076005, 0.90873893479530, 0.90293223677296, 0.89723544654727,
|
||||||
|
0.89164514012056, 0.88615804099474, 0.88077101210109, 0.87548104826333,
|
||||||
|
0.87028526915267, 0.86518091269740, 0.86016532891275, 0.85523597411976,
|
||||||
|
0.85039040552437, 0.84562627613070, 0.84094132996422, 0.83633339758291,
|
||||||
|
0.83180039185606, 0.82734030399203, 0.82295119979782, 0.81863121615464,
|
||||||
|
0.81437855769486, 0.81019149366693, 0.80606835497581, 0.80200753138734,
|
||||||
|
0.79800746888611, 0.79406666717674, 0.79018367731967, 0.78635709949278,
|
||||||
|
0.78258558087123, 0.77886781361798, 0.77520253297841, 0.77158851547266,
|
||||||
|
0.76802457717971, 0.76450957210799, 0.76104239064719, 0.75762195809661,
|
||||||
|
0.75424723326565, 0.75091720714229, 0.74763090162560, 0.74438736831878,
|
||||||
|
0.74118568737933, 0.73802496642311, 0.73490433947940, 0.73182296599416,
|
||||||
|
0.72878002987884, 0.72577473860242, 0.72280632232420, 0.71987403306536,
|
||||||
|
0.71697714391715, 0.71411494828392, 0.71128675915902, 0.70849190843208 };
|
@ -1,163 +1,221 @@
|
|||||||
/* @(#)s_atan.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
/************************************************************************/
|
||||||
for performance improvement on pipelined processors.
|
/* MODULE_NAME: atnat.c */
|
||||||
*/
|
/* */
|
||||||
|
/* FUNCTIONS: uatan */
|
||||||
|
/* atanMp */
|
||||||
|
/* signArctan */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */
|
||||||
|
/* mpatan.c mpatan2.c mpsqrt.c */
|
||||||
|
/* uatan.tbl */
|
||||||
|
/* */
|
||||||
|
/* An ultimate atan() routine. Given an IEEE double machine number x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of atan(x). */
|
||||||
|
/* */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
#include "dla.h"
|
||||||
static char rcsid[] = "$NetBSD: s_atan.c,v 1.8 1995/05/10 20:46:45 jtc Exp $";
|
#include "mpa.h"
|
||||||
#endif
|
#include "MathLib.h"
|
||||||
|
#include "uatan.tbl"
|
||||||
|
#include "atnat.h"
|
||||||
|
|
||||||
/* atan(x)
|
void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */
|
||||||
* Method
|
static double atanMp(double,const int[]);
|
||||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
double __signArctan(double,double);
|
||||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
/* An ultimate atan() routine. Given an IEEE double machine number x, */
|
||||||
* is further reduced to one of the following intervals and the
|
/* routine computes the correctly rounded (to nearest) value of atan(x). */
|
||||||
* arctangent of t is evaluated by the corresponding formula:
|
double atan(double x) {
|
||||||
*
|
|
||||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
|
||||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
|
||||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
|
||||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
|
||||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
|
||||||
*
|
|
||||||
* Constants:
|
|
||||||
* The hexadecimal values are the intended ones for the following
|
|
||||||
* constants. The decimal values may be used, provided that the
|
|
||||||
* compiler will convert from decimal to binary accurately enough
|
|
||||||
* to produce the hexadecimal values shown.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
|
||||||
#include "math_private.h"
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
double cor,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,u,u2,u3,
|
||||||
static const double atanhi[] = {
|
v,vv,w,ww,y,yy,y1,y2,z,zz;
|
||||||
#else
|
int i,ux,dx,p;
|
||||||
static double atanhi[] = {
|
static const int pr[M]={6,8,10,32};
|
||||||
#endif
|
number num;
|
||||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
|
||||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
|
||||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
|
||||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
|
||||||
};
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;
|
||||||
static const double atanlo[] = {
|
|
||||||
#else
|
|
||||||
static double atanlo[] = {
|
|
||||||
#endif
|
|
||||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
|
||||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
|
||||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
|
||||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
|
||||||
};
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
|
||||||
static const double aT[] = {
|
|
||||||
#else
|
|
||||||
static double aT[] = {
|
|
||||||
#endif
|
|
||||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
|
||||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
|
||||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
|
||||||
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
|
||||||
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
|
||||||
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
|
||||||
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
|
||||||
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
|
||||||
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
|
||||||
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
|
||||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
|
||||||
};
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
/* x=NaN */
|
||||||
static const double
|
if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000))
|
||||||
#else
|
return x+x;
|
||||||
static double
|
|
||||||
#endif
|
|
||||||
one = 1.0,
|
|
||||||
huge = 1.0e300;
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
/* Regular values of x, including denormals +-0 and +-INF */
|
||||||
double __atan(double x)
|
u = (x<ZERO) ? -x : x;
|
||||||
#else
|
if (u<C) {
|
||||||
double __atan(x)
|
if (u<B) {
|
||||||
double x;
|
if (u<A) { /* u < A */
|
||||||
#endif
|
return x; }
|
||||||
{
|
else { /* A <= u < B */
|
||||||
double w,s1,z,s,w2,w4,s11,s12,s13,s21,s22,s23;
|
v=x*x; yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
||||||
int32_t ix,hx,id;
|
if ((y=x+(yy-U1*x)) == x+(yy+U1*x)) return y;
|
||||||
|
|
||||||
|
EMULV(x,x,v,vv,t1,t2,t3,t4,t5) /* v+vv=x^2 */
|
||||||
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
||||||
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1)) return y;
|
||||||
|
|
||||||
|
return atanMp(x,pr);
|
||||||
|
} }
|
||||||
|
else { /* B <= u < C */
|
||||||
|
i=(TWO52+TWO8*u)-TWO52; i-=16;
|
||||||
|
z=u-cij[i][0].d;
|
||||||
|
yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
|
||||||
|
z*(cij[i][5].d+z* cij[i][6].d))));
|
||||||
|
t1=cij[i][1].d;
|
||||||
|
if (i<112) {
|
||||||
|
if (i<48) u2=U21; /* u < 1/4 */
|
||||||
|
else u2=U22; } /* 1/4 <= u < 1/2 */
|
||||||
|
else {
|
||||||
|
if (i<176) u2=U23; /* 1/2 <= u < 3/4 */
|
||||||
|
else u2=U24; } /* 3/4 <= u <= 1 */
|
||||||
|
if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1)) return __signArctan(x,y);
|
||||||
|
|
||||||
|
z=u-hij[i][0].d;
|
||||||
|
s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
|
||||||
|
z*(hij[i][14].d+z* hij[i][15].d))));
|
||||||
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2)) return __signArctan(x,y);
|
||||||
|
|
||||||
|
return atanMp(x,pr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (u<D) { /* C <= u < D */
|
||||||
|
w=ONE/u;
|
||||||
|
EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
|
||||||
|
ww=w*((ONE-t1)-t2);
|
||||||
|
i=(TWO52+TWO8*w)-TWO52; i-=16;
|
||||||
|
z=(w-cij[i][0].d)+ww;
|
||||||
|
yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+
|
||||||
|
z*(cij[i][5].d+z* cij[i][6].d))));
|
||||||
|
t1=HPI-cij[i][1].d;
|
||||||
|
if (i<112) u3=U31; /* w < 1/2 */
|
||||||
|
else u3=U32; /* w >= 1/2 */
|
||||||
|
if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y);
|
||||||
|
|
||||||
|
DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
t1=w-hij[i][0].d;
|
||||||
|
EADD(t1,ww,z,zz)
|
||||||
|
s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+
|
||||||
|
z*(hij[i][14].d+z* hij[i][15].d))));
|
||||||
|
ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y);
|
||||||
|
|
||||||
|
return atanMp(x,pr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (u<E) { /* D <= u < E */
|
||||||
|
w=ONE/u; v=w*w;
|
||||||
|
EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)
|
||||||
|
yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
|
||||||
|
ww=w*((ONE-t1)-t2);
|
||||||
|
ESUB(HPI,w,t3,cor)
|
||||||
|
yy=((HPI1+cor)-ww)-yy;
|
||||||
|
if ((y=t3+(yy-U4)) == t3+(yy+U4)) return __signArctan(x,y);
|
||||||
|
|
||||||
|
DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
|
||||||
|
ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(w,ww,s2,ss2,s1,ss1,t1,t2)
|
||||||
|
SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2)
|
||||||
|
if ((y=s2+(ss2-U8)) == s2+(ss2+U8)) return __signArctan(x,y);
|
||||||
|
|
||||||
|
return atanMp(x,pr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
/* u >= E */
|
||||||
|
if (x>0) return HPI;
|
||||||
|
else return MHPI; }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
GET_HIGH_WORD(hx,x);
|
|
||||||
ix = hx&0x7fffffff;
|
|
||||||
if(ix>=0x44100000) { /* if |x| >= 2^66 */
|
|
||||||
u_int32_t low;
|
|
||||||
GET_LOW_WORD(low,x);
|
|
||||||
if(ix>0x7ff00000||
|
|
||||||
(ix==0x7ff00000&&(low!=0)))
|
|
||||||
return x+x; /* NaN */
|
|
||||||
if(hx>0) return atanhi[3]+atanlo[3];
|
|
||||||
else return -atanhi[3]-atanlo[3];
|
|
||||||
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
|
||||||
if (ix < 0x3e200000) { /* |x| < 2^-29 */
|
|
||||||
if(huge+x>one) return x; /* raise inexact */
|
|
||||||
}
|
|
||||||
id = -1;
|
|
||||||
} else {
|
|
||||||
x = fabs(x);
|
|
||||||
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
|
||||||
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
|
||||||
id = 0; x = (2.0*x-one)/(2.0+x);
|
|
||||||
} else { /* 11/16<=|x|< 19/16 */
|
|
||||||
id = 1; x = (x-one)/(x+one);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
|
||||||
id = 2; x = (x-1.5)/(one+1.5*x);
|
|
||||||
} else { /* 2.4375 <= |x| < 2^66 */
|
|
||||||
id = 3; x = -1.0/x;
|
|
||||||
}
|
|
||||||
}}
|
|
||||||
/* end of argument reduction */
|
|
||||||
z = x*x;
|
|
||||||
w = z*z;
|
|
||||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
|
||||||
#ifdef DO_NOT_USE_THIS
|
|
||||||
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
|
||||||
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
|
||||||
if (id<0) return x - x*(s1+s2);
|
|
||||||
else {
|
|
||||||
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
|
||||||
return (hx<0)? -z:z;
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
s11 = aT[8]+w*aT[10]; w2=w*w;
|
|
||||||
s12 = aT[4]+w*aT[6]; w4=w2*w2;
|
|
||||||
s13 = aT[0]+w*aT[2];
|
|
||||||
s21 = aT[7]+w*aT[9];
|
|
||||||
s22 = aT[3]+w*aT[5];
|
|
||||||
s23 = w*aT[1];
|
|
||||||
s1 = s13 + w2*s12 + w4*s11;
|
|
||||||
s = s23 + w2*s22 + w4*s21 + z*s1;
|
|
||||||
if (id<0) return x - x*(s);
|
|
||||||
else {
|
|
||||||
z = atanhi[id] - ((x*(s) - atanlo[id]) - x);
|
|
||||||
return (hx<0)? -z:z;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
weak_alias (__atan, atan)
|
|
||||||
|
|
||||||
|
/* Fix the sign of y and return */
|
||||||
|
double __signArctan(double x,double y){
|
||||||
|
|
||||||
|
if (x<ZERO) return -y;
|
||||||
|
else return y;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Final stages. Compute atan(x) by multiple precision arithmetic */
|
||||||
|
static double atanMp(double x,const int pr[]){
|
||||||
|
mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;
|
||||||
|
double y1,y2;
|
||||||
|
int i,p;
|
||||||
|
|
||||||
|
for (i=0; i<M; i++) {
|
||||||
|
p = pr[i];
|
||||||
|
dbl_mp(x,&mpx,p); __mpatan(&mpx,&mpy,p);
|
||||||
|
dbl_mp(u9[i].d,&mpt1,p); mul(&mpy,&mpt1,&mperr,p);
|
||||||
|
add(&mpy,&mperr,&mpy1,p); sub(&mpy,&mperr,&mpy2,p);
|
||||||
|
mp_dbl(&mpy1,&y1,p); mp_dbl(&mpy2,&y2,p);
|
||||||
|
if (y1==y2) return y1;
|
||||||
|
}
|
||||||
|
return y1; /*if unpossible to do exact computing */
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef NO_LONG_DOUBLE
|
#ifdef NO_LONG_DOUBLE
|
||||||
strong_alias (__atan, __atanl)
|
weak_alias (atan, atanl)
|
||||||
weak_alias (__atan, atanl)
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -1,87 +1 @@
|
|||||||
/* @(#)s_cos.c 5.1 93/09/24 */
|
/* In s_sin.c. */
|
||||||
/*
|
|
||||||
* ====================================================
|
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
||||||
*
|
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
||||||
* Permission to use, copy, modify, and distribute this
|
|
||||||
* software is freely granted, provided that this notice
|
|
||||||
* is preserved.
|
|
||||||
* ====================================================
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
|
||||||
static char rcsid[] = "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* cos(x)
|
|
||||||
* Return cosine function of x.
|
|
||||||
*
|
|
||||||
* kernel function:
|
|
||||||
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
|
||||||
* __kernel_cos ... cosine function on [-pi/4,pi/4]
|
|
||||||
* __ieee754_rem_pio2 ... argument reduction routine
|
|
||||||
*
|
|
||||||
* Method.
|
|
||||||
* Let S,C and T denote the sin, cos and tan respectively on
|
|
||||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
||||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
||||||
* We have
|
|
||||||
*
|
|
||||||
* n sin(x) cos(x) tan(x)
|
|
||||||
* ----------------------------------------------------------
|
|
||||||
* 0 S C T
|
|
||||||
* 1 C -S -1/T
|
|
||||||
* 2 -S -C T
|
|
||||||
* 3 -C S -1/T
|
|
||||||
* ----------------------------------------------------------
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* Let trig be any of sin, cos, or tan.
|
|
||||||
* trig(+-INF) is NaN, with signals;
|
|
||||||
* trig(NaN) is that NaN;
|
|
||||||
*
|
|
||||||
* Accuracy:
|
|
||||||
* TRIG(x) returns trig(x) nearly rounded
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
|
||||||
#include "math_private.h"
|
|
||||||
|
|
||||||
#ifdef __STDC__
|
|
||||||
double __cos(double x)
|
|
||||||
#else
|
|
||||||
double __cos(x)
|
|
||||||
double x;
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double y[2],z=0.0;
|
|
||||||
int32_t n, ix;
|
|
||||||
|
|
||||||
/* High word of x. */
|
|
||||||
GET_HIGH_WORD(ix,x);
|
|
||||||
|
|
||||||
/* |x| ~< pi/4 */
|
|
||||||
ix &= 0x7fffffff;
|
|
||||||
if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
|
|
||||||
|
|
||||||
/* cos(Inf or NaN) is NaN */
|
|
||||||
else if (ix>=0x7ff00000) return x-x;
|
|
||||||
|
|
||||||
/* argument reduction needed */
|
|
||||||
else {
|
|
||||||
n = __ieee754_rem_pio2(x,y);
|
|
||||||
switch(n&3) {
|
|
||||||
case 0: return __kernel_cos(y[0],y[1]);
|
|
||||||
case 1: return -__kernel_sin(y[0],y[1],1);
|
|
||||||
case 2: return -__kernel_cos(y[0],y[1]);
|
|
||||||
default:
|
|
||||||
return __kernel_sin(y[0],y[1],1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
weak_alias (__cos, cos)
|
|
||||||
#ifdef NO_LONG_DOUBLE
|
|
||||||
strong_alias (__cos, __cosl)
|
|
||||||
weak_alias (__cos, cosl)
|
|
||||||
#endif
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,5 @@
|
|||||||
/* Compute sine and cosine of argument.
|
/* Compute sine and cosine of argument.
|
||||||
Copyright (C) 1997 Free Software Foundation, Inc.
|
Copyright (C) 1997, 2001 Free Software Foundation, Inc.
|
||||||
This file is part of the GNU C Library.
|
This file is part of the GNU C Library.
|
||||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||||||
|
|
||||||
@ -33,42 +33,15 @@ __sincos (double x, double *sinx, double *cosx)
|
|||||||
|
|
||||||
/* |x| ~< pi/4 */
|
/* |x| ~< pi/4 */
|
||||||
ix &= 0x7fffffff;
|
ix &= 0x7fffffff;
|
||||||
if (ix <= 0x3fe921fb)
|
if (ix>=0x7ff00000)
|
||||||
{
|
|
||||||
*sinx = __kernel_sin (x, 0.0, 0);
|
|
||||||
*cosx = __kernel_cos (x, 0.0);
|
|
||||||
}
|
|
||||||
else if (ix>=0x7ff00000)
|
|
||||||
{
|
{
|
||||||
/* sin(Inf or NaN) is NaN */
|
/* sin(Inf or NaN) is NaN */
|
||||||
*sinx = *cosx = x - x;
|
*sinx = *cosx = x - x;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
/* Argument reduction needed. */
|
*sinx = sin (x);
|
||||||
double y[2];
|
*cosx = cos (x);
|
||||||
int n;
|
|
||||||
|
|
||||||
n = __ieee754_rem_pio2 (x, y);
|
|
||||||
switch (n & 3)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
*sinx = __kernel_sin (y[0], y[1], 1);
|
|
||||||
*cosx = __kernel_cos (y[0], y[1]);
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
*sinx = __kernel_cos (y[0], y[1]);
|
|
||||||
*cosx = -__kernel_sin (y[0], y[1], 1);
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
*sinx = -__kernel_sin (y[0], y[1], 1);
|
|
||||||
*cosx = -__kernel_cos (y[0], y[1]);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
*sinx = -__kernel_cos (y[0], y[1]);
|
|
||||||
*cosx = __kernel_sin (y[0], y[1], 1);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
weak_alias (__sincos, sincos)
|
weak_alias (__sincos, sincos)
|
||||||
|
@ -1,81 +1,480 @@
|
|||||||
/* @(#)s_tan.c 5.1 93/09/24 */
|
|
||||||
/*
|
/*
|
||||||
* ====================================================
|
* IBM Accurate Mathematical Library
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
*
|
*
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
* This program is free software; you can redistribute it and/or modify
|
||||||
* Permission to use, copy, modify, and distribute this
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
* software is freely granted, provided that this notice
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
* is preserved.
|
* (at your option) any later version.
|
||||||
* ====================================================
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
*/
|
*/
|
||||||
|
/*********************************************************************/
|
||||||
|
/* MODULE_NAME: utan.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: utan */
|
||||||
|
/* tanMp */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */
|
||||||
|
/* branred.c sincos32.c mptan.c */
|
||||||
|
/* utan.tbl */
|
||||||
|
/* */
|
||||||
|
/* An ultimate tan routine. Given an IEEE double machine number x */
|
||||||
|
/* it computes the correctly rounded (to nearest) value of tan(x). */
|
||||||
|
/* Assumption: Machine arithmetic operations are performed in */
|
||||||
|
/* round to nearest mode of IEEE 754 standard. */
|
||||||
|
/* */
|
||||||
|
/*********************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "dla.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
#include "MathLib.h"
|
||||||
|
static double tanMp(double);
|
||||||
|
void __mptan(double, mp_no *, int);
|
||||||
|
|
||||||
#if defined(LIBM_SCCS) && !defined(lint)
|
double tan(double x) {
|
||||||
static char rcsid[] = "$NetBSD: s_tan.c,v 1.7 1995/05/10 20:48:18 jtc Exp $";
|
#include "utan.h"
|
||||||
#endif
|
#include "utan.tbl"
|
||||||
|
|
||||||
/* tan(x)
|
int ux,i,n;
|
||||||
* Return tangent function of x.
|
double a,da,a2,b,db,c,dc,c1,cc1,c2,cc2,c3,cc3,fi,ffi,gi,pz,s,sy,
|
||||||
*
|
t,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,w,x2,xn,xx2,y,ya,yya,z0,z,zz,z2,zz2;
|
||||||
* kernel function:
|
int p;
|
||||||
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
number num,v;
|
||||||
* __ieee754_rem_pio2 ... argument reduction routine
|
mp_no mpa,mpy,mpt1,mpt2;
|
||||||
*
|
|
||||||
* Method.
|
|
||||||
* Let S,C and T denote the sin, cos and tan respectively on
|
|
||||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
||||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
||||||
* We have
|
|
||||||
*
|
|
||||||
* n sin(x) cos(x) tan(x)
|
|
||||||
* ----------------------------------------------------------
|
|
||||||
* 0 S C T
|
|
||||||
* 1 C -S -1/T
|
|
||||||
* 2 -S -C T
|
|
||||||
* 3 -C S -1/T
|
|
||||||
* ----------------------------------------------------------
|
|
||||||
*
|
|
||||||
* Special cases:
|
|
||||||
* Let trig be any of sin, cos, or tan.
|
|
||||||
* trig(+-INF) is NaN, with signals;
|
|
||||||
* trig(NaN) is that NaN;
|
|
||||||
*
|
|
||||||
* Accuracy:
|
|
||||||
* TRIG(x) returns trig(x) nearly rounded
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "math.h"
|
int branred(double, double *, double *);
|
||||||
#include "math_private.h"
|
int mpranred(double, mp_no *, int);
|
||||||
|
|
||||||
#ifdef __STDC__
|
/* x=+-INF, x=NaN */
|
||||||
double __tan(double x)
|
num.d = x; ux = num.i[HIGH_HALF];
|
||||||
#else
|
if ((ux&0x7ff00000)==0x7ff00000) return x-x;
|
||||||
double __tan(x)
|
|
||||||
double x;
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
double y[2],z=0.0;
|
|
||||||
int32_t n, ix;
|
|
||||||
|
|
||||||
/* High word of x. */
|
w=(x<ZERO) ? -x : x;
|
||||||
GET_HIGH_WORD(ix,x);
|
|
||||||
|
|
||||||
/* |x| ~< pi/4 */
|
/* (I) The case abs(x) <= 1.259e-8 */
|
||||||
ix &= 0x7fffffff;
|
if (w<=g1.d) return x;
|
||||||
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
|
||||||
|
|
||||||
/* tan(Inf or NaN) is NaN */
|
/* (II) The case 1.259e-8 < abs(x) <= 0.0608 */
|
||||||
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
if (w<=g2.d) {
|
||||||
|
|
||||||
/* argument reduction needed */
|
/* First stage */
|
||||||
else {
|
x2 = x*x;
|
||||||
n = __ieee754_rem_pio2(x,y);
|
t2 = x*x2*(d3.d+x2*(d5.d+x2*(d7.d+x2*(d9.d+x2*d11.d))));
|
||||||
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
if ((y=x+(t2-u1.d*t2)) == x+(t2+u1.d*t2)) return y;
|
||||||
-1 -- n odd */
|
|
||||||
}
|
/* Second stage */
|
||||||
|
c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+
|
||||||
|
x2*a27.d))))));
|
||||||
|
EMULV(x,x,x2,xx2,t1,t2,t3,t4,t5)
|
||||||
|
ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(x ,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(x ,zero.d,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
if ((y=c1+(cc1-u2.d*c1)) == c1+(cc1+u2.d*c1)) return y;
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (III) The case 0.0608 < abs(x) <= 0.787 */
|
||||||
|
if (w<=g3.d) {
|
||||||
|
|
||||||
|
/* First stage */
|
||||||
|
i = ((int) (mfftnhf.d+TWO8*w));
|
||||||
|
z = w-xfg[i][0].d; z2 = z*z; s = (x<ZERO) ? MONE : ONE;
|
||||||
|
pz = z+z*z2*(e0.d+z2*e1.d);
|
||||||
|
fi = xfg[i][1].d; gi = xfg[i][2].d; t2 = pz*(gi+fi)/(gi-pz);
|
||||||
|
if ((y=fi+(t2-fi*u3.d))==fi+(t2+fi*u3.d)) return (s*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=fi+(t2-(t4=fi*ua3.d+t3*ub3.d)))==fi+(t2+t4)) return (s*y);
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
ffi = xfg[i][3].d;
|
||||||
|
c1 = z2*(a7.d+z2*(a9.d+z2*a11.d));
|
||||||
|
EMULV(z,z,z2,zz2,t1,t2,t3,t4,t5)
|
||||||
|
ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(z ,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(z ,zero.d,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2)
|
||||||
|
DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
|
||||||
|
if ((y=c3+(cc3-u4.d*c3))==c3+(cc3+u4.d*c3)) return (s*y);
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (---) The case 0.787 < abs(x) <= 25 */
|
||||||
|
if (w<=g4.d) {
|
||||||
|
/* Range reduction by algorithm i */
|
||||||
|
t = (x*hpinv.d + toint.d);
|
||||||
|
xn = t - toint.d;
|
||||||
|
v.d = t;
|
||||||
|
t1 = (x - xn*mp1.d) - xn*mp2.d;
|
||||||
|
n =v.i[LOW_HALF] & 0x00000001;
|
||||||
|
da = xn*mp3.d;
|
||||||
|
a=t1-da;
|
||||||
|
da = (t1-a)-da;
|
||||||
|
if (a<ZERO) {ya=-a; yya=-da; sy=MONE;}
|
||||||
|
else {ya= a; yya= da; sy= ONE;}
|
||||||
|
|
||||||
|
/* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */
|
||||||
|
if (ya<=gy1.d) return tanMp(x);
|
||||||
|
|
||||||
|
/* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */
|
||||||
|
if (ya<=gy2.d) {
|
||||||
|
a2 = a*a;
|
||||||
|
t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d))));
|
||||||
|
if (n) {
|
||||||
|
/* First stage -cot */
|
||||||
|
EADD(a,t2,b,db)
|
||||||
|
DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c+(dc-u6.d*c))==c+(dc+u6.d*c)) return (-y); }
|
||||||
|
else {
|
||||||
|
/* First stage tan */
|
||||||
|
if ((y=a+(t2-u5.d*a))==a+(t2+u5.d*a)) return y; }
|
||||||
|
/* Second stage */
|
||||||
|
/* Range reduction by algorithm ii */
|
||||||
|
t = (x*hpinv.d + toint.d);
|
||||||
|
xn = t - toint.d;
|
||||||
|
v.d = t;
|
||||||
|
t1 = (x - xn*mp1.d) - xn*mp2.d;
|
||||||
|
n =v.i[LOW_HALF] & 0x00000001;
|
||||||
|
da = xn*pp3.d;
|
||||||
|
t=t1-da;
|
||||||
|
da = (t1-t)-da;
|
||||||
|
t1 = xn*pp4.d;
|
||||||
|
a = t - t1;
|
||||||
|
da = ((t-a)-t1)+da;
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
EADD(a,da,t1,t2) a=t1; da=t2;
|
||||||
|
MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+
|
||||||
|
x2*a27.d))))));
|
||||||
|
ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* Second stage -cot */
|
||||||
|
DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c2+(cc2-u8.d*c2)) == c2+(cc2+u8.d*c2)) return (-y); }
|
||||||
|
else {
|
||||||
|
/* Second stage tan */
|
||||||
|
if ((y=c1+(cc1-u7.d*c1)) == c1+(cc1+u7.d*c1)) return y; }
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */
|
||||||
|
|
||||||
|
/* First stage */
|
||||||
|
i = ((int) (mfftnhf.d+TWO8*ya));
|
||||||
|
z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z;
|
||||||
|
pz = z+z*z2*(e0.d+z2*e1.d);
|
||||||
|
fi = xfg[i][1].d; gi = xfg[i][2].d;
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* -cot */
|
||||||
|
t2 = pz*(fi+gi)/(fi+pz);
|
||||||
|
if ((y=gi-(t2-gi*u10.d))==gi-(t2+gi*u10.d)) return (-sy*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=gi-(t2-(t4=gi*ua10.d+t3*ub10.d)))==gi-(t2+t4)) return (-sy*y); }
|
||||||
|
else {
|
||||||
|
/* tan */
|
||||||
|
t2 = pz*(gi+fi)/(gi-pz);
|
||||||
|
if ((y=fi+(t2-fi*u9.d))==fi+(t2+fi*u9.d)) return (sy*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=fi+(t2-(t4=fi*ua9.d+t3*ub9.d)))==fi+(t2+t4)) return (sy*y); }
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
ffi = xfg[i][3].d;
|
||||||
|
EADD(z0,yya,z,zz)
|
||||||
|
MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
c1 = z2*(a7.d+z2*(a9.d+z2*a11.d));
|
||||||
|
ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* -cot */
|
||||||
|
DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c3+(cc3-u12.d*c3))==c3+(cc3+u12.d*c3)) return (-sy*y); }
|
||||||
|
else {
|
||||||
|
/* tan */
|
||||||
|
DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c3+(cc3-u11.d*c3))==c3+(cc3+u11.d*c3)) return (sy*y); }
|
||||||
|
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (---) The case 25 < abs(x) <= 1e8 */
|
||||||
|
if (w<=g5.d) {
|
||||||
|
/* Range reduction by algorithm ii */
|
||||||
|
t = (x*hpinv.d + toint.d);
|
||||||
|
xn = t - toint.d;
|
||||||
|
v.d = t;
|
||||||
|
t1 = (x - xn*mp1.d) - xn*mp2.d;
|
||||||
|
n =v.i[LOW_HALF] & 0x00000001;
|
||||||
|
da = xn*pp3.d;
|
||||||
|
t=t1-da;
|
||||||
|
da = (t1-t)-da;
|
||||||
|
t1 = xn*pp4.d;
|
||||||
|
a = t - t1;
|
||||||
|
da = ((t-a)-t1)+da;
|
||||||
|
EADD(a,da,t1,t2) a=t1; da=t2;
|
||||||
|
if (a<ZERO) {ya=-a; yya=-da; sy=MONE;}
|
||||||
|
else {ya= a; yya= da; sy= ONE;}
|
||||||
|
|
||||||
|
/* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */
|
||||||
|
if (ya<=gy1.d) return tanMp(x);
|
||||||
|
|
||||||
|
/* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */
|
||||||
|
if (ya<=gy2.d) {
|
||||||
|
a2 = a*a;
|
||||||
|
t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d))));
|
||||||
|
if (n) {
|
||||||
|
/* First stage -cot */
|
||||||
|
EADD(a,t2,b,db)
|
||||||
|
DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c+(dc-u14.d*c))==c+(dc+u14.d*c)) return (-y); }
|
||||||
|
else {
|
||||||
|
/* First stage tan */
|
||||||
|
if ((y=a+(t2-u13.d*a))==a+(t2+u13.d*a)) return y; }
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+
|
||||||
|
x2*a27.d))))));
|
||||||
|
ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* Second stage -cot */
|
||||||
|
DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c2+(cc2-u16.d*c2)) == c2+(cc2+u16.d*c2)) return (-y); }
|
||||||
|
else {
|
||||||
|
/* Second stage tan */
|
||||||
|
if ((y=c1+(cc1-u15.d*c1)) == c1+(cc1+u15.d*c1)) return (y); }
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */
|
||||||
|
/* First stage */
|
||||||
|
i = ((int) (mfftnhf.d+TWO8*ya));
|
||||||
|
z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z;
|
||||||
|
pz = z+z*z2*(e0.d+z2*e1.d);
|
||||||
|
fi = xfg[i][1].d; gi = xfg[i][2].d;
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* -cot */
|
||||||
|
t2 = pz*(fi+gi)/(fi+pz);
|
||||||
|
if ((y=gi-(t2-gi*u18.d))==gi-(t2+gi*u18.d)) return (-sy*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=gi-(t2-(t4=gi*ua18.d+t3*ub18.d)))==gi-(t2+t4)) return (-sy*y); }
|
||||||
|
else {
|
||||||
|
/* tan */
|
||||||
|
t2 = pz*(gi+fi)/(gi-pz);
|
||||||
|
if ((y=fi+(t2-fi*u17.d))==fi+(t2+fi*u17.d)) return (sy*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=fi+(t2-(t4=fi*ua17.d+t3*ub17.d)))==fi+(t2+t4)) return (sy*y); }
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
ffi = xfg[i][3].d;
|
||||||
|
EADD(z0,yya,z,zz)
|
||||||
|
MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
c1 = z2*(a7.d+z2*(a9.d+z2*a11.d));
|
||||||
|
ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* -cot */
|
||||||
|
DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c3+(cc3-u20.d*c3))==c3+(cc3+u20.d*c3)) return (-sy*y); }
|
||||||
|
else {
|
||||||
|
/* tan */
|
||||||
|
DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c3+(cc3-u19.d*c3))==c3+(cc3+u19.d*c3)) return (sy*y); }
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (---) The case 1e8 < abs(x) < 2**1024 */
|
||||||
|
/* Range reduction by algorithm iii */
|
||||||
|
n = (branred(x,&a,&da)) & 0x00000001;
|
||||||
|
EADD(a,da,t1,t2) a=t1; da=t2;
|
||||||
|
if (a<ZERO) {ya=-a; yya=-da; sy=MONE;}
|
||||||
|
else {ya= a; yya= da; sy= ONE;}
|
||||||
|
|
||||||
|
/* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */
|
||||||
|
if (ya<=gy1.d) return tanMp(x);
|
||||||
|
|
||||||
|
/* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */
|
||||||
|
if (ya<=gy2.d) {
|
||||||
|
a2 = a*a;
|
||||||
|
t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d))));
|
||||||
|
if (n) {
|
||||||
|
/* First stage -cot */
|
||||||
|
EADD(a,t2,b,db)
|
||||||
|
DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c+(dc-u22.d*c))==c+(dc+u22.d*c)) return (-y); }
|
||||||
|
else {
|
||||||
|
/* First stage tan */
|
||||||
|
if ((y=a+(t2-u21.d*a))==a+(t2+u21.d*a)) return y; }
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
/* Reduction by algorithm iv */
|
||||||
|
p=10; n = (mpranred(x,&mpa,p)) & 0x00000001;
|
||||||
|
mp_dbl(&mpa,&a,p); dbl_mp(a,&mpt1,p);
|
||||||
|
sub(&mpa,&mpt1,&mpt2,p); mp_dbl(&mpt2,&da,p);
|
||||||
|
|
||||||
|
MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+
|
||||||
|
x2*a27.d))))));
|
||||||
|
ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* Second stage -cot */
|
||||||
|
DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c2+(cc2-u24.d*c2)) == c2+(cc2+u24.d*c2)) return (-y); }
|
||||||
|
else {
|
||||||
|
/* Second stage tan */
|
||||||
|
if ((y=c1+(cc1-u23.d*c1)) == c1+(cc1+u23.d*c1)) return y; }
|
||||||
|
return tanMp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */
|
||||||
|
/* First stage */
|
||||||
|
i = ((int) (mfftnhf.d+TWO8*ya));
|
||||||
|
z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z;
|
||||||
|
pz = z+z*z2*(e0.d+z2*e1.d);
|
||||||
|
fi = xfg[i][1].d; gi = xfg[i][2].d;
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* -cot */
|
||||||
|
t2 = pz*(fi+gi)/(fi+pz);
|
||||||
|
if ((y=gi-(t2-gi*u26.d))==gi-(t2+gi*u26.d)) return (-sy*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=gi-(t2-(t4=gi*ua26.d+t3*ub26.d)))==gi-(t2+t4)) return (-sy*y); }
|
||||||
|
else {
|
||||||
|
/* tan */
|
||||||
|
t2 = pz*(gi+fi)/(gi-pz);
|
||||||
|
if ((y=fi+(t2-fi*u25.d))==fi+(t2+fi*u25.d)) return (sy*y);
|
||||||
|
t3 = (t2<ZERO) ? -t2 : t2;
|
||||||
|
if ((y=fi+(t2-(t4=fi*ua25.d+t3*ub25.d)))==fi+(t2+t4)) return (sy*y); }
|
||||||
|
|
||||||
|
/* Second stage */
|
||||||
|
ffi = xfg[i][3].d;
|
||||||
|
EADD(z0,yya,z,zz)
|
||||||
|
MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
c1 = z2*(a7.d+z2*(a9.d+z2*a11.d));
|
||||||
|
ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2)
|
||||||
|
MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||||
|
SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2)
|
||||||
|
|
||||||
|
if (n) {
|
||||||
|
/* -cot */
|
||||||
|
DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c3+(cc3-u28.d*c3))==c3+(cc3+u28.d*c3)) return (-sy*y); }
|
||||||
|
else {
|
||||||
|
/* tan */
|
||||||
|
DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)
|
||||||
|
if ((y=c3+(cc3-u27.d*c3))==c3+(cc3+u27.d*c3)) return (sy*y); }
|
||||||
|
return tanMp(x);
|
||||||
}
|
}
|
||||||
weak_alias (__tan, tan)
|
|
||||||
|
|
||||||
|
/* multiple precision stage */
|
||||||
|
/* Convert x to multi precision number,compute tan(x) by mptan() routine */
|
||||||
|
/* and converts result back to double */
|
||||||
|
static double tanMp(double x)
|
||||||
|
{
|
||||||
|
int p;
|
||||||
|
double y;
|
||||||
|
mp_no mpy;
|
||||||
|
p=32;
|
||||||
|
__mptan(x, &mpy, p);
|
||||||
|
__mp_dbl(&mpy,&y,p);
|
||||||
|
return y;
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef NO_LONG_DOUBLE
|
#ifdef NO_LONG_DOUBLE
|
||||||
strong_alias (__tan, __tanl)
|
weak_alias (tan, tanl)
|
||||||
weak_alias (__tan, tanl)
|
|
||||||
#endif
|
#endif
|
||||||
|
892
sysdeps/ieee754/dbl-64/sincos.tbl
Normal file
892
sysdeps/ieee754/dbl-64/sincos.tbl
Normal file
@ -0,0 +1,892 @@
|
|||||||
|
/****************************************************************/
|
||||||
|
/* TABLES FOR THE usin() and ucos() FUNCTION */
|
||||||
|
/****************************************************************/
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const union {int4 i[880]; double x[40];}sincos = {
|
||||||
|
/**/ 0x00000000, 0x00000000,
|
||||||
|
/**/ 0x00000000, 0x00000000,
|
||||||
|
/**/ 0x3FF00000, 0x00000000,
|
||||||
|
/**/ 0x00000000, 0x00000000,
|
||||||
|
/**/ 0x3F7FFFEA, 0xAAAEEEEF,
|
||||||
|
/**/ 0xBC1E45E2, 0xEC67B77C,
|
||||||
|
/**/ 0x3FEFFFC0, 0x00155552,
|
||||||
|
/**/ 0x3C8F4A01, 0xA0196DAE,
|
||||||
|
/**/ 0x3F8FFFAA, 0xAAEEEED5,
|
||||||
|
/**/ 0xBC02AB63, 0x9A9F0777,
|
||||||
|
/**/ 0x3FEFFF00, 0x0155549F,
|
||||||
|
/**/ 0x3C828A28, 0xA03A5EF3,
|
||||||
|
/**/ 0x3F97FF70, 0x01033255,
|
||||||
|
/**/ 0x3BFEFE2B, 0x51527336,
|
||||||
|
/**/ 0x3FEFFDC0, 0x06BFF7E6,
|
||||||
|
/**/ 0x3C8AE6DA, 0xE86977BD,
|
||||||
|
/**/ 0x3F9FFEAA, 0xAEEEE86F,
|
||||||
|
/**/ 0xBC3CD406, 0xFB224AE2,
|
||||||
|
/**/ 0x3FEFFC00, 0x155527D3,
|
||||||
|
/**/ 0xBC83B544, 0x92D89B5B,
|
||||||
|
/**/ 0x3FA3FEB2, 0xB12D45D5,
|
||||||
|
/**/ 0x3C34EC54, 0x203D1C11,
|
||||||
|
/**/ 0x3FEFF9C0, 0x3414A7BA,
|
||||||
|
/**/ 0x3C6991F4, 0xBE6C59BF,
|
||||||
|
/**/ 0x3FA7FDC0, 0x1032FBA9,
|
||||||
|
/**/ 0xBC4599BD, 0xF46E997A,
|
||||||
|
/**/ 0x3FEFF700, 0x6BFDF99F,
|
||||||
|
/**/ 0xBC78B3B5, 0x60648D5F,
|
||||||
|
/**/ 0x3FABFC6D, 0x78586DAC,
|
||||||
|
/**/ 0x3C18E4FD, 0x03DBF236,
|
||||||
|
/**/ 0x3FEFF3C0, 0xC8103A31,
|
||||||
|
/**/ 0x3C74856D, 0xBDDC0E66,
|
||||||
|
/**/ 0x3FAFFAAA, 0xEEED4EDB,
|
||||||
|
/**/ 0xBC42D16D, 0x32684B69,
|
||||||
|
/**/ 0x3FEFF001, 0x5549F4D3,
|
||||||
|
/**/ 0x3C832838, 0x7B99426F,
|
||||||
|
/**/ 0x3FB1FC34, 0x3D808BEF,
|
||||||
|
/**/ 0xBC5F3D32, 0xE6F3BE4F,
|
||||||
|
/**/ 0x3FEFEBC2, 0x22A8EF9F,
|
||||||
|
/**/ 0x3C579349, 0x34F54C77,
|
||||||
|
/**/ 0x3FB3FACB, 0x12D1755B,
|
||||||
|
/**/ 0xBC592191, 0x5299468C,
|
||||||
|
/**/ 0x3FEFE703, 0x4129EF6F,
|
||||||
|
/**/ 0xBC6CBF43, 0x37C96F97,
|
||||||
|
/**/ 0x3FB5F911, 0xFD10B737,
|
||||||
|
/**/ 0xBC50184F, 0x02BE9102,
|
||||||
|
/**/ 0x3FEFE1C4, 0xC3C873EB,
|
||||||
|
/**/ 0xBC35A9C9, 0x057C4A02,
|
||||||
|
/**/ 0x3FB7F701, 0x032550E4,
|
||||||
|
/**/ 0x3C3AFC2D, 0x1800501A,
|
||||||
|
/**/ 0x3FEFDC06, 0xBF7E6B9B,
|
||||||
|
/**/ 0x3C831902, 0xB535F8DB,
|
||||||
|
/**/ 0x3FB9F490, 0x2D55D1F9,
|
||||||
|
/**/ 0x3C52696D, 0x7EAC1DC1,
|
||||||
|
/**/ 0x3FEFD5C9, 0x4B43E000,
|
||||||
|
/**/ 0xBC62E768, 0xCB4F92F9,
|
||||||
|
/**/ 0x3FBBF1B7, 0x8568391D,
|
||||||
|
/**/ 0x3C5E9184, 0x1DEA4CC8,
|
||||||
|
/**/ 0x3FEFCF0C, 0x800E99B1,
|
||||||
|
/**/ 0x3C6EA3D7, 0x86D186AC,
|
||||||
|
/**/ 0x3FBDEE6F, 0x16C1CCE6,
|
||||||
|
/**/ 0xBC450F8E, 0x2FB71673,
|
||||||
|
/**/ 0x3FEFC7D0, 0x78D1BC88,
|
||||||
|
/**/ 0x3C8075D2, 0x447DB685,
|
||||||
|
/**/ 0x3FBFEAAE, 0xEE86EE36,
|
||||||
|
/**/ 0xBC4AFCB2, 0xBCC6F03B,
|
||||||
|
/**/ 0x3FEFC015, 0x527D5BD3,
|
||||||
|
/**/ 0x3C8B68F3, 0x5094EFB8,
|
||||||
|
/**/ 0x3FC0F337, 0x8DDD71D1,
|
||||||
|
/**/ 0x3C6D8468, 0x724F0F9E,
|
||||||
|
/**/ 0x3FEFB7DB, 0x2BFE0695,
|
||||||
|
/**/ 0x3C821DAD, 0xF4F65AB1,
|
||||||
|
/**/ 0x3FC1F0D3, 0xD7AFCEAF,
|
||||||
|
/**/ 0xBC66EF95, 0x099769A5,
|
||||||
|
/**/ 0x3FEFAF22, 0x263C4BD3,
|
||||||
|
/**/ 0xBC552ACE, 0x133A2769,
|
||||||
|
/**/ 0x3FC2EE28, 0x5E4AB88F,
|
||||||
|
/**/ 0xBC6E4D0F, 0x05DEE058,
|
||||||
|
/**/ 0x3FEFA5EA, 0x641C36F2,
|
||||||
|
/**/ 0x3C404DA6, 0xED17CC7C,
|
||||||
|
/**/ 0x3FC3EB31, 0x2C5D66CB,
|
||||||
|
/**/ 0x3C647D66, 0x6B66CB91,
|
||||||
|
/**/ 0x3FEF9C34, 0x0A7CC428,
|
||||||
|
/**/ 0x3C8C5B6B, 0x063B7462,
|
||||||
|
/**/ 0x3FC4E7EA, 0x4DC5F27B,
|
||||||
|
/**/ 0x3C5949DB, 0x2AC072FC,
|
||||||
|
/**/ 0x3FEF91FF, 0x40374D01,
|
||||||
|
/**/ 0xBC67D03F, 0x4D3A9E4C,
|
||||||
|
/**/ 0x3FC5E44F, 0xCFA126F3,
|
||||||
|
/**/ 0xBC66F443, 0x063F89B6,
|
||||||
|
/**/ 0x3FEF874C, 0x2E1EECF6,
|
||||||
|
/**/ 0xBC8C6514, 0xE1332B16,
|
||||||
|
/**/ 0x3FC6E05D, 0xC05A4D4C,
|
||||||
|
/**/ 0xBBD32C5C, 0x8B81C940,
|
||||||
|
/**/ 0x3FEF7C1A, 0xFEFFDE24,
|
||||||
|
/**/ 0xBC78F55B, 0xC47540B1,
|
||||||
|
/**/ 0x3FC7DC10, 0x2FBAF2B5,
|
||||||
|
/**/ 0x3C45AB50, 0xE23C97C3,
|
||||||
|
/**/ 0x3FEF706B, 0xDF9ECE1C,
|
||||||
|
/**/ 0xBC8698C8, 0x0C36DCB4,
|
||||||
|
/**/ 0x3FC8D763, 0x2EFAA944,
|
||||||
|
/**/ 0xBC620FA2, 0x62CBB953,
|
||||||
|
/**/ 0x3FEF643E, 0xFEB82ACD,
|
||||||
|
/**/ 0x3C76B00A, 0xC1FE28AC,
|
||||||
|
/**/ 0x3FC9D252, 0xD0CEC312,
|
||||||
|
/**/ 0x3C59C43D, 0x80B1137D,
|
||||||
|
/**/ 0x3FEF5794, 0x8CFF6797,
|
||||||
|
/**/ 0x3C6E3A0D, 0x3E03B1D5,
|
||||||
|
/**/ 0x3FCACCDB, 0x297A0765,
|
||||||
|
/**/ 0xBC59883B, 0x57D6CDEB,
|
||||||
|
/**/ 0x3FEF4A6C, 0xBD1E3A79,
|
||||||
|
/**/ 0x3C813DF0, 0xEDAEBB57,
|
||||||
|
/**/ 0x3FCBC6F8, 0x4EDC6199,
|
||||||
|
/**/ 0x3C69C1A5, 0x6A7B0CAB,
|
||||||
|
/**/ 0x3FEF3CC7, 0xC3B3D16E,
|
||||||
|
/**/ 0xBC621A3A, 0xD28A3494,
|
||||||
|
/**/ 0x3FCCC0A6, 0x588289A3,
|
||||||
|
/**/ 0xBC6868D0, 0x9BC87C6B,
|
||||||
|
/**/ 0x3FEF2EA5, 0xD753FFED,
|
||||||
|
/**/ 0x3C8CC421, 0x5F56D583,
|
||||||
|
/**/ 0x3FCDB9E1, 0x5FB5A5D0,
|
||||||
|
/**/ 0xBC632E20, 0xD6CC6FC2,
|
||||||
|
/**/ 0x3FEF2007, 0x3086649F,
|
||||||
|
/**/ 0x3C7B9404, 0x16C1984B,
|
||||||
|
/**/ 0x3FCEB2A5, 0x7F8AE5A3,
|
||||||
|
/**/ 0xBC60BE06, 0xAF572CEB,
|
||||||
|
/**/ 0x3FEF10EC, 0x09C5873B,
|
||||||
|
/**/ 0x3C8D9072, 0x762C1283,
|
||||||
|
/**/ 0x3FCFAAEE, 0xD4F31577,
|
||||||
|
/**/ 0xBC615D88, 0x508E32B8,
|
||||||
|
/**/ 0x3FEF0154, 0x9F7DEEA1,
|
||||||
|
/**/ 0x3C8D3C1E, 0x99E5CAFD,
|
||||||
|
/**/ 0x3FD0515C, 0xBF65155C,
|
||||||
|
/**/ 0xBC79B8C2, 0x9DFD8EC8,
|
||||||
|
/**/ 0x3FEEF141, 0x300D2F26,
|
||||||
|
/**/ 0xBC82AA1B, 0x08DED372,
|
||||||
|
/**/ 0x3FD0CD00, 0xCEF36436,
|
||||||
|
/**/ 0xBC79FB0A, 0x0C93E2B5,
|
||||||
|
/**/ 0x3FEEE0B1, 0xFBC0F11C,
|
||||||
|
/**/ 0xBC4BFD23, 0x80BBC3B1,
|
||||||
|
/**/ 0x3FD14861, 0xAA94DDEB,
|
||||||
|
/**/ 0xBC6BE881, 0xB5B615A4,
|
||||||
|
/**/ 0x3FEECFA7, 0x44D5EFA1,
|
||||||
|
/**/ 0xBC556D0A, 0x4AF541D0,
|
||||||
|
/**/ 0x3FD1C37D, 0x64C6B876,
|
||||||
|
/**/ 0x3C746076, 0xFE0DCFF5,
|
||||||
|
/**/ 0x3FEEBE21, 0x4F76EFA8,
|
||||||
|
/**/ 0xBC802F9F, 0x12BA543E,
|
||||||
|
/**/ 0x3FD23E52, 0x111AAF36,
|
||||||
|
/**/ 0xBC74F080, 0x334EFF18,
|
||||||
|
/**/ 0x3FEEAC20, 0x61BBAF4F,
|
||||||
|
/**/ 0x3C62C1D5, 0x3E94658D,
|
||||||
|
/**/ 0x3FD2B8DD, 0xC43EB49F,
|
||||||
|
/**/ 0x3C615538, 0x99F2D807,
|
||||||
|
/**/ 0x3FEE99A4, 0xC3A7CD83,
|
||||||
|
/**/ 0xBC82264B, 0x1BC53CE8,
|
||||||
|
/**/ 0x3FD3331E, 0x94049F87,
|
||||||
|
/**/ 0x3C7E0CB6, 0xB40C302C,
|
||||||
|
/**/ 0x3FEE86AE, 0xBF29A9ED,
|
||||||
|
/**/ 0x3C89397A, 0xFDBB58A7,
|
||||||
|
/**/ 0x3FD3AD12, 0x9769D3D8,
|
||||||
|
/**/ 0x3C003D55, 0x04878398,
|
||||||
|
/**/ 0x3FEE733E, 0xA0193D40,
|
||||||
|
/**/ 0xBC86428B, 0x3546CE13,
|
||||||
|
/**/ 0x3FD426B7, 0xE69EE697,
|
||||||
|
/**/ 0xBC7F09C7, 0x5705C59F,
|
||||||
|
/**/ 0x3FEE5F54, 0xB436E9D0,
|
||||||
|
/**/ 0x3C87EB0F, 0xD02FC8BC,
|
||||||
|
/**/ 0x3FD4A00C, 0x9B0F3D20,
|
||||||
|
/**/ 0x3C7823BA, 0x6BB08EAD,
|
||||||
|
/**/ 0x3FEE4AF1, 0x4B2A449C,
|
||||||
|
/**/ 0xBC868CA0, 0x2E8A6833,
|
||||||
|
/**/ 0x3FD5190E, 0xCF68A77A,
|
||||||
|
/**/ 0x3C7B3571, 0x55EEF0F3,
|
||||||
|
/**/ 0x3FEE3614, 0xB680D6A5,
|
||||||
|
/**/ 0xBC727793, 0xAA015237,
|
||||||
|
/**/ 0x3FD591BC, 0x9FA2F597,
|
||||||
|
/**/ 0x3C67C74B, 0xAC3FE0CB,
|
||||||
|
/**/ 0x3FEE20BF, 0x49ACD6C1,
|
||||||
|
/**/ 0xBC5660AE, 0xC7EF636C,
|
||||||
|
/**/ 0x3FD60A14, 0x29078775,
|
||||||
|
/**/ 0x3C5B1FD8, 0x0BA89133,
|
||||||
|
/**/ 0x3FEE0AF1, 0x5A03DBCE,
|
||||||
|
/**/ 0x3C5FE8E7, 0x02771AE6,
|
||||||
|
/**/ 0x3FD68213, 0x8A38D7F7,
|
||||||
|
/**/ 0xBC7D8892, 0x02444AAD,
|
||||||
|
/**/ 0x3FEDF4AB, 0x3EBD875E,
|
||||||
|
/**/ 0xBC8E2D8A, 0x7E6736C4,
|
||||||
|
/**/ 0x3FD6F9B8, 0xE33A0255,
|
||||||
|
/**/ 0x3C742BC1, 0x4EE9DA0D,
|
||||||
|
/**/ 0x3FEDDDED, 0x50F228D6,
|
||||||
|
/**/ 0xBC6E80C8, 0xD42BA2BF,
|
||||||
|
/**/ 0x3FD77102, 0x55764214,
|
||||||
|
/**/ 0xBC66EAD7, 0x314BB6CE,
|
||||||
|
/**/ 0x3FEDC6B7, 0xEB995912,
|
||||||
|
/**/ 0x3C54B364, 0x776DCD35,
|
||||||
|
/**/ 0x3FD7E7EE, 0x03C86D4E,
|
||||||
|
/**/ 0xBC7B63BC, 0xDABF5AF2,
|
||||||
|
/**/ 0x3FEDAF0B, 0x6B888E83,
|
||||||
|
/**/ 0x3C8A249E, 0x2B5E5CEA,
|
||||||
|
/**/ 0x3FD85E7A, 0x12826949,
|
||||||
|
/**/ 0x3C78A40E, 0x9B5FACE0,
|
||||||
|
/**/ 0x3FED96E8, 0x2F71A9DC,
|
||||||
|
/**/ 0x3C8FF61B, 0xD5D2039D,
|
||||||
|
/**/ 0x3FD8D4A4, 0xA774992F,
|
||||||
|
/**/ 0x3C744A02, 0xEA766326,
|
||||||
|
/**/ 0x3FED7E4E, 0x97E17B4A,
|
||||||
|
/**/ 0xBC63B770, 0x352BED94,
|
||||||
|
/**/ 0x3FD94A6B, 0xE9F546C5,
|
||||||
|
/**/ 0xBC769CE1, 0x3E683F58,
|
||||||
|
/**/ 0x3FED653F, 0x073E4040,
|
||||||
|
/**/ 0xBC876236, 0x434BEC37,
|
||||||
|
/**/ 0x3FD9BFCE, 0x02E80510,
|
||||||
|
/**/ 0x3C709E39, 0xA320B0A4,
|
||||||
|
/**/ 0x3FED4BB9, 0xE1C619E0,
|
||||||
|
/**/ 0x3C8F34BB, 0x77858F61,
|
||||||
|
/**/ 0x3FDA34C9, 0x1CC50CCA,
|
||||||
|
/**/ 0xBC5A310E, 0x3B50CECD,
|
||||||
|
/**/ 0x3FED31BF, 0x8D8D7C06,
|
||||||
|
/**/ 0x3C7E60DD, 0x3089CBDD,
|
||||||
|
/**/ 0x3FDAA95B, 0x63A09277,
|
||||||
|
/**/ 0xBC66293E, 0xB13C0381,
|
||||||
|
/**/ 0x3FED1750, 0x727D94F0,
|
||||||
|
/**/ 0x3C80D52B, 0x1EC1A48E,
|
||||||
|
/**/ 0x3FDB1D83, 0x05321617,
|
||||||
|
/**/ 0xBC7AE242, 0xCB99F519,
|
||||||
|
/**/ 0x3FECFC6C, 0xFA52AD9F,
|
||||||
|
/**/ 0x3C88B5B5, 0x508F2A0D,
|
||||||
|
/**/ 0x3FDB913E, 0x30DBAC43,
|
||||||
|
/**/ 0xBC7E38AD, 0x2F6C3FF1,
|
||||||
|
/**/ 0x3FECE115, 0x909A82E5,
|
||||||
|
/**/ 0x3C81F139, 0xBB31109A,
|
||||||
|
/**/ 0x3FDC048B, 0x17B140A3,
|
||||||
|
/**/ 0x3C619FE6, 0x757E9FA7,
|
||||||
|
/**/ 0x3FECC54A, 0xA2B2972E,
|
||||||
|
/**/ 0x3C64EE16, 0x2BA83A98,
|
||||||
|
/**/ 0x3FDC7767, 0xEC7FD19E,
|
||||||
|
/**/ 0xBC5EB14D, 0x1A3D5826,
|
||||||
|
/**/ 0x3FECA90C, 0x9FC67D0B,
|
||||||
|
/**/ 0xBC646A81, 0x485E3462,
|
||||||
|
/**/ 0x3FDCE9D2, 0xE3D4A51F,
|
||||||
|
/**/ 0xBC62FC8A, 0x12DAE298,
|
||||||
|
/**/ 0x3FEC8C5B, 0xF8CE1A84,
|
||||||
|
/**/ 0x3C7AB3D1, 0xA1590123,
|
||||||
|
/**/ 0x3FDD5BCA, 0x34047661,
|
||||||
|
/**/ 0x3C728A44, 0xA75FC29C,
|
||||||
|
/**/ 0x3FEC6F39, 0x208BE53B,
|
||||||
|
/**/ 0xBC8741DB, 0xFBAADB42,
|
||||||
|
/**/ 0x3FDDCD4C, 0x15329C9A,
|
||||||
|
/**/ 0x3C70D4C6, 0xE171FD9A,
|
||||||
|
/**/ 0x3FEC51A4, 0x8B8B175E,
|
||||||
|
/**/ 0xBC61BBB4, 0x3B9AA880,
|
||||||
|
/**/ 0x3FDE3E56, 0xC1582A69,
|
||||||
|
/**/ 0xBC50A482, 0x1099F88F,
|
||||||
|
/**/ 0x3FEC339E, 0xB01DDD81,
|
||||||
|
/**/ 0xBC8CAAF5, 0xEE82C5C0,
|
||||||
|
/**/ 0x3FDEAEE8, 0x744B05F0,
|
||||||
|
/**/ 0xBC5789B4, 0x3C9B027D,
|
||||||
|
/**/ 0x3FEC1528, 0x065B7D50,
|
||||||
|
/**/ 0xBC889211, 0x1312E828,
|
||||||
|
/**/ 0x3FDF1EFF, 0x6BC4F97B,
|
||||||
|
/**/ 0x3C717212, 0xF8A7525C,
|
||||||
|
/**/ 0x3FEBF641, 0x081E7536,
|
||||||
|
/**/ 0x3C8B7BD7, 0x1628A9A1,
|
||||||
|
/**/ 0x3FDF8E99, 0xE76ABC97,
|
||||||
|
/**/ 0x3C59D950, 0xAF2D00A3,
|
||||||
|
/**/ 0x3FEBD6EA, 0x310294F5,
|
||||||
|
/**/ 0x3C731BBC, 0xC88C109D,
|
||||||
|
/**/ 0x3FDFFDB6, 0x28D2F57A,
|
||||||
|
/**/ 0x3C6F4A99, 0x2E905B6A,
|
||||||
|
/**/ 0x3FEBB723, 0xFE630F32,
|
||||||
|
/**/ 0x3C772BD2, 0x452D0A39,
|
||||||
|
/**/ 0x3FE03629, 0x39C69955,
|
||||||
|
/**/ 0xBC82D8CD, 0x78397B01,
|
||||||
|
/**/ 0x3FEB96EE, 0xEF58840E,
|
||||||
|
/**/ 0x3C545A3C, 0xC78FADE0,
|
||||||
|
/**/ 0x3FE06D36, 0x86946E5B,
|
||||||
|
/**/ 0x3C83F5AE, 0x4538FF1B,
|
||||||
|
/**/ 0x3FEB764B, 0x84B704C2,
|
||||||
|
/**/ 0xBC8F5848, 0xC21B389B,
|
||||||
|
/**/ 0x3FE0A402, 0x1E9E1001,
|
||||||
|
/**/ 0xBC86F643, 0xA13914F6,
|
||||||
|
/**/ 0x3FEB553A, 0x410C104E,
|
||||||
|
/**/ 0x3C58FF79, 0x47027A16,
|
||||||
|
/**/ 0x3FE0DA8B, 0x26B5672E,
|
||||||
|
/**/ 0xBC8A58DE, 0xF0BEE909,
|
||||||
|
/**/ 0x3FEB33BB, 0xA89C8948,
|
||||||
|
/**/ 0x3C8EA6A5, 0x1D1F6CA9,
|
||||||
|
/**/ 0x3FE110D0, 0xC4B69C3B,
|
||||||
|
/**/ 0x3C8D9189, 0x98809981,
|
||||||
|
/**/ 0x3FEB11D0, 0x4162A4C6,
|
||||||
|
/**/ 0x3C71DD56, 0x1EFBC0C2,
|
||||||
|
/**/ 0x3FE146D2, 0x1F8B7F82,
|
||||||
|
/**/ 0x3C7BF953, 0x5E2739A8,
|
||||||
|
/**/ 0x3FEAEF78, 0x930BD275,
|
||||||
|
/**/ 0xBC7F8362, 0x79746F94,
|
||||||
|
/**/ 0x3FE17C8E, 0x5F2EEDB0,
|
||||||
|
/**/ 0x3C635E57, 0x102E2488,
|
||||||
|
/**/ 0x3FEACCB5, 0x26F69DE5,
|
||||||
|
/**/ 0x3C88FB6A, 0x8DD6B6CC,
|
||||||
|
/**/ 0x3FE1B204, 0xACB02FDD,
|
||||||
|
/**/ 0xBC5F190C, 0x70CBB5FF,
|
||||||
|
/**/ 0x3FEAA986, 0x88308913,
|
||||||
|
/**/ 0xBC0B83D6, 0x07CD5070,
|
||||||
|
/**/ 0x3FE1E734, 0x3236574C,
|
||||||
|
/**/ 0x3C722A3F, 0xA4F41D5A,
|
||||||
|
/**/ 0x3FEA85ED, 0x4373E02D,
|
||||||
|
/**/ 0x3C69BE06, 0x385EC792,
|
||||||
|
/**/ 0x3FE21C1C, 0x1B0394CF,
|
||||||
|
/**/ 0x3C5E5B32, 0x4B23AA31,
|
||||||
|
/**/ 0x3FEA61E9, 0xE72586AF,
|
||||||
|
/**/ 0x3C858330, 0xE2FD453F,
|
||||||
|
/**/ 0x3FE250BB, 0x93788BBB,
|
||||||
|
/**/ 0x3C7EA3D0, 0x2457BCCE,
|
||||||
|
/**/ 0x3FEA3D7D, 0x0352BDCF,
|
||||||
|
/**/ 0xBC868DBA, 0xECA19669,
|
||||||
|
/**/ 0x3FE28511, 0xC917A067,
|
||||||
|
/**/ 0xBC801DF1, 0xD9A16B70,
|
||||||
|
/**/ 0x3FEA18A7, 0x29AEE445,
|
||||||
|
/**/ 0x3C395E25, 0x736C0358,
|
||||||
|
/**/ 0x3FE2B91D, 0xEA88421E,
|
||||||
|
/**/ 0xBC8FA371, 0xDB216AB0,
|
||||||
|
/**/ 0x3FE9F368, 0xED912F85,
|
||||||
|
/**/ 0xBC81D200, 0xC5791606,
|
||||||
|
/**/ 0x3FE2ECDF, 0x279A3082,
|
||||||
|
/**/ 0x3C8D3557, 0xE0E7E37E,
|
||||||
|
/**/ 0x3FE9CDC2, 0xE3F25E5C,
|
||||||
|
/**/ 0x3C83F991, 0x12993F62,
|
||||||
|
/**/ 0x3FE32054, 0xB148BC4F,
|
||||||
|
/**/ 0x3C8F6B42, 0x095A135B,
|
||||||
|
/**/ 0x3FE9A7B5, 0xA36A6514,
|
||||||
|
/**/ 0x3C8722CF, 0xCC9FA7A9,
|
||||||
|
/**/ 0x3FE3537D, 0xB9BE0367,
|
||||||
|
/**/ 0x3C6B327E, 0x7AF040F0,
|
||||||
|
/**/ 0x3FE98141, 0xC42E1310,
|
||||||
|
/**/ 0x3C8D1FF8, 0x0488F08D,
|
||||||
|
/**/ 0x3FE38659, 0x7456282B,
|
||||||
|
/**/ 0xBC710FAD, 0xA93B07A8,
|
||||||
|
/**/ 0x3FE95A67, 0xE00CB1FD,
|
||||||
|
/**/ 0xBC80BEFD, 0xA21F862D,
|
||||||
|
/**/ 0x3FE3B8E7, 0x15A2840A,
|
||||||
|
/**/ 0xBC797653, 0xA7D2F07B,
|
||||||
|
/**/ 0x3FE93328, 0x926D9E92,
|
||||||
|
/**/ 0xBC8BB770, 0x03600CDA,
|
||||||
|
/**/ 0x3FE3EB25, 0xD36CD53A,
|
||||||
|
/**/ 0xBC5BE570, 0xE1570FC0,
|
||||||
|
/**/ 0x3FE90B84, 0x784DDAF7,
|
||||||
|
/**/ 0xBC70FEB1, 0x0AB93B87,
|
||||||
|
/**/ 0x3FE41D14, 0xE4BA6790,
|
||||||
|
/**/ 0x3C84608F, 0xD287ECF5,
|
||||||
|
/**/ 0x3FE8E37C, 0x303D9AD1,
|
||||||
|
/**/ 0xBC6463A4, 0xB53D4BF8,
|
||||||
|
/**/ 0x3FE44EB3, 0x81CF386B,
|
||||||
|
/**/ 0xBC83ED6C, 0x1E6A5505,
|
||||||
|
/**/ 0x3FE8BB10, 0x5A5DC900,
|
||||||
|
/**/ 0x3C8863E0, 0x3E9474C1,
|
||||||
|
/**/ 0x3FE48000, 0xE431159F,
|
||||||
|
/**/ 0xBC8B194A, 0x7463ED10,
|
||||||
|
/**/ 0x3FE89241, 0x985D871F,
|
||||||
|
/**/ 0x3C8C48D9, 0xC413ED84,
|
||||||
|
/**/ 0x3FE4B0FC, 0x46AAB761,
|
||||||
|
/**/ 0x3C20DA05, 0x738CC59A,
|
||||||
|
/**/ 0x3FE86910, 0x8D77A6C6,
|
||||||
|
/**/ 0x3C7338FF, 0xE2BFE9DD,
|
||||||
|
/**/ 0x3FE4E1A4, 0xE54ED51B,
|
||||||
|
/**/ 0xBC8A492F, 0x89B7C76A,
|
||||||
|
/**/ 0x3FE83F7D, 0xDE701CA0,
|
||||||
|
/**/ 0xBC4152CF, 0x609BC6E8,
|
||||||
|
/**/ 0x3FE511F9, 0xFD7B351C,
|
||||||
|
/**/ 0xBC85C0E8, 0x61C48831,
|
||||||
|
/**/ 0x3FE8158A, 0x31916D5D,
|
||||||
|
/**/ 0xBC6DE8B9, 0x0B8228DE,
|
||||||
|
/**/ 0x3FE541FA, 0xCDDBB724,
|
||||||
|
/**/ 0x3C7232C2, 0x8520D391,
|
||||||
|
/**/ 0x3FE7EB36, 0x2EAA1488,
|
||||||
|
/**/ 0x3C5A1D65, 0xA4A5959F,
|
||||||
|
/**/ 0x3FE571A6, 0x966D59B3,
|
||||||
|
/**/ 0x3C5C843B, 0x4D0FB198,
|
||||||
|
/**/ 0x3FE7C082, 0x7F09E54F,
|
||||||
|
/**/ 0xBC6C73D6, 0xD72AEE68,
|
||||||
|
/**/ 0x3FE5A0FC, 0x98813A12,
|
||||||
|
/**/ 0xBC8D82E2, 0xB7D4227B,
|
||||||
|
/**/ 0x3FE7956F, 0xCD7F6543,
|
||||||
|
/**/ 0xBC8AB276, 0xE9D45AE4,
|
||||||
|
/**/ 0x3FE5CFFC, 0x16BF8F0D,
|
||||||
|
/**/ 0x3C896CB3, 0x70EB578A,
|
||||||
|
/**/ 0x3FE769FE, 0xC655211F,
|
||||||
|
/**/ 0xBC6827D5, 0xCF8C68C5,
|
||||||
|
/**/ 0x3FE5FEA4, 0x552A9E57,
|
||||||
|
/**/ 0x3C80B6CE, 0xF7EE20B7,
|
||||||
|
/**/ 0x3FE73E30, 0x174EFBA1,
|
||||||
|
/**/ 0xBC65D3AE, 0x3D94AD5F,
|
||||||
|
/**/ 0x3FE62CF4, 0x9921AC79,
|
||||||
|
/**/ 0xBC8EDD98, 0x55B6241A,
|
||||||
|
/**/ 0x3FE71204, 0x6FA77678,
|
||||||
|
/**/ 0x3C8425B0, 0xA5029C81,
|
||||||
|
/**/ 0x3FE65AEC, 0x2963E755,
|
||||||
|
/**/ 0x3C8126F9, 0x6B71053C,
|
||||||
|
/**/ 0x3FE6E57C, 0x800CF55E,
|
||||||
|
/**/ 0x3C860286, 0xDEDBD0A6,
|
||||||
|
/**/ 0x3FE6888A, 0x4E134B2F,
|
||||||
|
/**/ 0xBC86B7D3, 0x7644D5E6,
|
||||||
|
/**/ 0x3FE6B898, 0xFA9EFB5D,
|
||||||
|
/**/ 0x3C715AC7, 0x86CCF4B2,
|
||||||
|
/**/ 0x3FE6B5CE, 0x50B7821A,
|
||||||
|
/**/ 0xBC65D515, 0x8F702E0F,
|
||||||
|
/**/ 0x3FE68B5A, 0x92EB6253,
|
||||||
|
/**/ 0xBC89A91A, 0xD985F89C,
|
||||||
|
/**/ 0x3FE6E2B7, 0x7C40BDE1,
|
||||||
|
/**/ 0xBC70E729, 0x857FAD53,
|
||||||
|
/**/ 0x3FE65DC1, 0xFDEB8CBA,
|
||||||
|
/**/ 0xBC597C1B, 0x47337C77,
|
||||||
|
/**/ 0x3FE70F45, 0x1D0A8C40,
|
||||||
|
/**/ 0x3C697EDE, 0x3885770D,
|
||||||
|
/**/ 0x3FE62FCF, 0xF20191C7,
|
||||||
|
/**/ 0x3C6D9143, 0x895756EF,
|
||||||
|
/**/ 0x3FE73B76, 0x80DEA578,
|
||||||
|
/**/ 0xBC722483, 0x06DC12A2,
|
||||||
|
/**/ 0x3FE60185, 0x26F563DF,
|
||||||
|
/**/ 0x3C846CA5, 0xE0E432D0,
|
||||||
|
/**/ 0x3FE7674A, 0xF6F7B524,
|
||||||
|
/**/ 0x3C7E9D3F, 0x94AC84A8,
|
||||||
|
/**/ 0x3FE5D2E2, 0x55F1F17A,
|
||||||
|
/**/ 0x3C803141, 0x04C8892B,
|
||||||
|
/**/ 0x3FE792C1, 0xD0041D52,
|
||||||
|
/**/ 0xBC8ABF05, 0xEEB354EB,
|
||||||
|
/**/ 0x3FE5A3E8, 0x39824077,
|
||||||
|
/**/ 0x3C8428AA, 0x2759BE62,
|
||||||
|
/**/ 0x3FE7BDDA, 0x5E28B3C2,
|
||||||
|
/**/ 0x3C4AD119, 0x7CCD0393,
|
||||||
|
/**/ 0x3FE57497, 0x8D8E83F2,
|
||||||
|
/**/ 0x3C8F4714, 0xAF282D23,
|
||||||
|
/**/ 0x3FE7E893, 0xF5037959,
|
||||||
|
/**/ 0x3C80EEFB, 0xAA650C4C,
|
||||||
|
/**/ 0x3FE544F1, 0x0F592CA5,
|
||||||
|
/**/ 0xBC8E7AE8, 0xE6C7A62F,
|
||||||
|
/**/ 0x3FE812ED, 0xE9AE4BA4,
|
||||||
|
/**/ 0xBC87830A, 0xDF402DDA,
|
||||||
|
/**/ 0x3FE514F5, 0x7D7BF3DA,
|
||||||
|
/**/ 0x3C747A10, 0x8073C259 };
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const union {int4 i[880]; double x[440];} sincos = {
|
||||||
|
/**/ 0x00000000, 0x00000000,
|
||||||
|
/**/ 0x00000000, 0x00000000,
|
||||||
|
/**/ 0x00000000, 0x3FF00000,
|
||||||
|
/**/ 0x00000000, 0x00000000,
|
||||||
|
/**/ 0xAAAEEEEF, 0x3F7FFFEA,
|
||||||
|
/**/ 0xEC67B77C, 0xBC1E45E2,
|
||||||
|
/**/ 0x00155552, 0x3FEFFFC0,
|
||||||
|
/**/ 0xA0196DAE, 0x3C8F4A01,
|
||||||
|
/**/ 0xAAEEEED5, 0x3F8FFFAA,
|
||||||
|
/**/ 0x9A9F0777, 0xBC02AB63,
|
||||||
|
/**/ 0x0155549F, 0x3FEFFF00,
|
||||||
|
/**/ 0xA03A5EF3, 0x3C828A28,
|
||||||
|
/**/ 0x01033255, 0x3F97FF70,
|
||||||
|
/**/ 0x51527336, 0x3BFEFE2B,
|
||||||
|
/**/ 0x06BFF7E6, 0x3FEFFDC0,
|
||||||
|
/**/ 0xE86977BD, 0x3C8AE6DA,
|
||||||
|
/**/ 0xAEEEE86F, 0x3F9FFEAA,
|
||||||
|
/**/ 0xFB224AE2, 0xBC3CD406,
|
||||||
|
/**/ 0x155527D3, 0x3FEFFC00,
|
||||||
|
/**/ 0x92D89B5B, 0xBC83B544,
|
||||||
|
/**/ 0xB12D45D5, 0x3FA3FEB2,
|
||||||
|
/**/ 0x203D1C11, 0x3C34EC54,
|
||||||
|
/**/ 0x3414A7BA, 0x3FEFF9C0,
|
||||||
|
/**/ 0xBE6C59BF, 0x3C6991F4,
|
||||||
|
/**/ 0x1032FBA9, 0x3FA7FDC0,
|
||||||
|
/**/ 0xF46E997A, 0xBC4599BD,
|
||||||
|
/**/ 0x6BFDF99F, 0x3FEFF700,
|
||||||
|
/**/ 0x60648D5F, 0xBC78B3B5,
|
||||||
|
/**/ 0x78586DAC, 0x3FABFC6D,
|
||||||
|
/**/ 0x03DBF236, 0x3C18E4FD,
|
||||||
|
/**/ 0xC8103A31, 0x3FEFF3C0,
|
||||||
|
/**/ 0xBDDC0E66, 0x3C74856D,
|
||||||
|
/**/ 0xEEED4EDB, 0x3FAFFAAA,
|
||||||
|
/**/ 0x32684B69, 0xBC42D16D,
|
||||||
|
/**/ 0x5549F4D3, 0x3FEFF001,
|
||||||
|
/**/ 0x7B99426F, 0x3C832838,
|
||||||
|
/**/ 0x3D808BEF, 0x3FB1FC34,
|
||||||
|
/**/ 0xE6F3BE4F, 0xBC5F3D32,
|
||||||
|
/**/ 0x22A8EF9F, 0x3FEFEBC2,
|
||||||
|
/**/ 0x34F54C77, 0x3C579349,
|
||||||
|
/**/ 0x12D1755B, 0x3FB3FACB,
|
||||||
|
/**/ 0x5299468C, 0xBC592191,
|
||||||
|
/**/ 0x4129EF6F, 0x3FEFE703,
|
||||||
|
/**/ 0x37C96F97, 0xBC6CBF43,
|
||||||
|
/**/ 0xFD10B737, 0x3FB5F911,
|
||||||
|
/**/ 0x02BE9102, 0xBC50184F,
|
||||||
|
/**/ 0xC3C873EB, 0x3FEFE1C4,
|
||||||
|
/**/ 0x057C4A02, 0xBC35A9C9,
|
||||||
|
/**/ 0x032550E4, 0x3FB7F701,
|
||||||
|
/**/ 0x1800501A, 0x3C3AFC2D,
|
||||||
|
/**/ 0xBF7E6B9B, 0x3FEFDC06,
|
||||||
|
/**/ 0xB535F8DB, 0x3C831902,
|
||||||
|
/**/ 0x2D55D1F9, 0x3FB9F490,
|
||||||
|
/**/ 0x7EAC1DC1, 0x3C52696D,
|
||||||
|
/**/ 0x4B43E000, 0x3FEFD5C9,
|
||||||
|
/**/ 0xCB4F92F9, 0xBC62E768,
|
||||||
|
/**/ 0x8568391D, 0x3FBBF1B7,
|
||||||
|
/**/ 0x1DEA4CC8, 0x3C5E9184,
|
||||||
|
/**/ 0x800E99B1, 0x3FEFCF0C,
|
||||||
|
/**/ 0x86D186AC, 0x3C6EA3D7,
|
||||||
|
/**/ 0x16C1CCE6, 0x3FBDEE6F,
|
||||||
|
/**/ 0x2FB71673, 0xBC450F8E,
|
||||||
|
/**/ 0x78D1BC88, 0x3FEFC7D0,
|
||||||
|
/**/ 0x447DB685, 0x3C8075D2,
|
||||||
|
/**/ 0xEE86EE36, 0x3FBFEAAE,
|
||||||
|
/**/ 0xBCC6F03B, 0xBC4AFCB2,
|
||||||
|
/**/ 0x527D5BD3, 0x3FEFC015,
|
||||||
|
/**/ 0x5094EFB8, 0x3C8B68F3,
|
||||||
|
/**/ 0x8DDD71D1, 0x3FC0F337,
|
||||||
|
/**/ 0x724F0F9E, 0x3C6D8468,
|
||||||
|
/**/ 0x2BFE0695, 0x3FEFB7DB,
|
||||||
|
/**/ 0xF4F65AB1, 0x3C821DAD,
|
||||||
|
/**/ 0xD7AFCEAF, 0x3FC1F0D3,
|
||||||
|
/**/ 0x099769A5, 0xBC66EF95,
|
||||||
|
/**/ 0x263C4BD3, 0x3FEFAF22,
|
||||||
|
/**/ 0x133A2769, 0xBC552ACE,
|
||||||
|
/**/ 0x5E4AB88F, 0x3FC2EE28,
|
||||||
|
/**/ 0x05DEE058, 0xBC6E4D0F,
|
||||||
|
/**/ 0x641C36F2, 0x3FEFA5EA,
|
||||||
|
/**/ 0xED17CC7C, 0x3C404DA6,
|
||||||
|
/**/ 0x2C5D66CB, 0x3FC3EB31,
|
||||||
|
/**/ 0x6B66CB91, 0x3C647D66,
|
||||||
|
/**/ 0x0A7CC428, 0x3FEF9C34,
|
||||||
|
/**/ 0x063B7462, 0x3C8C5B6B,
|
||||||
|
/**/ 0x4DC5F27B, 0x3FC4E7EA,
|
||||||
|
/**/ 0x2AC072FC, 0x3C5949DB,
|
||||||
|
/**/ 0x40374D01, 0x3FEF91FF,
|
||||||
|
/**/ 0x4D3A9E4C, 0xBC67D03F,
|
||||||
|
/**/ 0xCFA126F3, 0x3FC5E44F,
|
||||||
|
/**/ 0x063F89B6, 0xBC66F443,
|
||||||
|
/**/ 0x2E1EECF6, 0x3FEF874C,
|
||||||
|
/**/ 0xE1332B16, 0xBC8C6514,
|
||||||
|
/**/ 0xC05A4D4C, 0x3FC6E05D,
|
||||||
|
/**/ 0x8B81C940, 0xBBD32C5C,
|
||||||
|
/**/ 0xFEFFDE24, 0x3FEF7C1A,
|
||||||
|
/**/ 0xC47540B1, 0xBC78F55B,
|
||||||
|
/**/ 0x2FBAF2B5, 0x3FC7DC10,
|
||||||
|
/**/ 0xE23C97C3, 0x3C45AB50,
|
||||||
|
/**/ 0xDF9ECE1C, 0x3FEF706B,
|
||||||
|
/**/ 0x0C36DCB4, 0xBC8698C8,
|
||||||
|
/**/ 0x2EFAA944, 0x3FC8D763,
|
||||||
|
/**/ 0x62CBB953, 0xBC620FA2,
|
||||||
|
/**/ 0xFEB82ACD, 0x3FEF643E,
|
||||||
|
/**/ 0xC1FE28AC, 0x3C76B00A,
|
||||||
|
/**/ 0xD0CEC312, 0x3FC9D252,
|
||||||
|
/**/ 0x80B1137D, 0x3C59C43D,
|
||||||
|
/**/ 0x8CFF6797, 0x3FEF5794,
|
||||||
|
/**/ 0x3E03B1D5, 0x3C6E3A0D,
|
||||||
|
/**/ 0x297A0765, 0x3FCACCDB,
|
||||||
|
/**/ 0x57D6CDEB, 0xBC59883B,
|
||||||
|
/**/ 0xBD1E3A79, 0x3FEF4A6C,
|
||||||
|
/**/ 0xEDAEBB57, 0x3C813DF0,
|
||||||
|
/**/ 0x4EDC6199, 0x3FCBC6F8,
|
||||||
|
/**/ 0x6A7B0CAB, 0x3C69C1A5,
|
||||||
|
/**/ 0xC3B3D16E, 0x3FEF3CC7,
|
||||||
|
/**/ 0xD28A3494, 0xBC621A3A,
|
||||||
|
/**/ 0x588289A3, 0x3FCCC0A6,
|
||||||
|
/**/ 0x9BC87C6B, 0xBC6868D0,
|
||||||
|
/**/ 0xD753FFED, 0x3FEF2EA5,
|
||||||
|
/**/ 0x5F56D583, 0x3C8CC421,
|
||||||
|
/**/ 0x5FB5A5D0, 0x3FCDB9E1,
|
||||||
|
/**/ 0xD6CC6FC2, 0xBC632E20,
|
||||||
|
/**/ 0x3086649F, 0x3FEF2007,
|
||||||
|
/**/ 0x16C1984B, 0x3C7B9404,
|
||||||
|
/**/ 0x7F8AE5A3, 0x3FCEB2A5,
|
||||||
|
/**/ 0xAF572CEB, 0xBC60BE06,
|
||||||
|
/**/ 0x09C5873B, 0x3FEF10EC,
|
||||||
|
/**/ 0x762C1283, 0x3C8D9072,
|
||||||
|
/**/ 0xD4F31577, 0x3FCFAAEE,
|
||||||
|
/**/ 0x508E32B8, 0xBC615D88,
|
||||||
|
/**/ 0x9F7DEEA1, 0x3FEF0154,
|
||||||
|
/**/ 0x99E5CAFD, 0x3C8D3C1E,
|
||||||
|
/**/ 0xBF65155C, 0x3FD0515C,
|
||||||
|
/**/ 0x9DFD8EC8, 0xBC79B8C2,
|
||||||
|
/**/ 0x300D2F26, 0x3FEEF141,
|
||||||
|
/**/ 0x08DED372, 0xBC82AA1B,
|
||||||
|
/**/ 0xCEF36436, 0x3FD0CD00,
|
||||||
|
/**/ 0x0C93E2B5, 0xBC79FB0A,
|
||||||
|
/**/ 0xFBC0F11C, 0x3FEEE0B1,
|
||||||
|
/**/ 0x80BBC3B1, 0xBC4BFD23,
|
||||||
|
/**/ 0xAA94DDEB, 0x3FD14861,
|
||||||
|
/**/ 0xB5B615A4, 0xBC6BE881,
|
||||||
|
/**/ 0x44D5EFA1, 0x3FEECFA7,
|
||||||
|
/**/ 0x4AF541D0, 0xBC556D0A,
|
||||||
|
/**/ 0x64C6B876, 0x3FD1C37D,
|
||||||
|
/**/ 0xFE0DCFF5, 0x3C746076,
|
||||||
|
/**/ 0x4F76EFA8, 0x3FEEBE21,
|
||||||
|
/**/ 0x12BA543E, 0xBC802F9F,
|
||||||
|
/**/ 0x111AAF36, 0x3FD23E52,
|
||||||
|
/**/ 0x334EFF18, 0xBC74F080,
|
||||||
|
/**/ 0x61BBAF4F, 0x3FEEAC20,
|
||||||
|
/**/ 0x3E94658D, 0x3C62C1D5,
|
||||||
|
/**/ 0xC43EB49F, 0x3FD2B8DD,
|
||||||
|
/**/ 0x99F2D807, 0x3C615538,
|
||||||
|
/**/ 0xC3A7CD83, 0x3FEE99A4,
|
||||||
|
/**/ 0x1BC53CE8, 0xBC82264B,
|
||||||
|
/**/ 0x94049F87, 0x3FD3331E,
|
||||||
|
/**/ 0xB40C302C, 0x3C7E0CB6,
|
||||||
|
/**/ 0xBF29A9ED, 0x3FEE86AE,
|
||||||
|
/**/ 0xFDBB58A7, 0x3C89397A,
|
||||||
|
/**/ 0x9769D3D8, 0x3FD3AD12,
|
||||||
|
/**/ 0x04878398, 0x3C003D55,
|
||||||
|
/**/ 0xA0193D40, 0x3FEE733E,
|
||||||
|
/**/ 0x3546CE13, 0xBC86428B,
|
||||||
|
/**/ 0xE69EE697, 0x3FD426B7,
|
||||||
|
/**/ 0x5705C59F, 0xBC7F09C7,
|
||||||
|
/**/ 0xB436E9D0, 0x3FEE5F54,
|
||||||
|
/**/ 0xD02FC8BC, 0x3C87EB0F,
|
||||||
|
/**/ 0x9B0F3D20, 0x3FD4A00C,
|
||||||
|
/**/ 0x6BB08EAD, 0x3C7823BA,
|
||||||
|
/**/ 0x4B2A449C, 0x3FEE4AF1,
|
||||||
|
/**/ 0x2E8A6833, 0xBC868CA0,
|
||||||
|
/**/ 0xCF68A77A, 0x3FD5190E,
|
||||||
|
/**/ 0x55EEF0F3, 0x3C7B3571,
|
||||||
|
/**/ 0xB680D6A5, 0x3FEE3614,
|
||||||
|
/**/ 0xAA015237, 0xBC727793,
|
||||||
|
/**/ 0x9FA2F597, 0x3FD591BC,
|
||||||
|
/**/ 0xAC3FE0CB, 0x3C67C74B,
|
||||||
|
/**/ 0x49ACD6C1, 0x3FEE20BF,
|
||||||
|
/**/ 0xC7EF636C, 0xBC5660AE,
|
||||||
|
/**/ 0x29078775, 0x3FD60A14,
|
||||||
|
/**/ 0x0BA89133, 0x3C5B1FD8,
|
||||||
|
/**/ 0x5A03DBCE, 0x3FEE0AF1,
|
||||||
|
/**/ 0x02771AE6, 0x3C5FE8E7,
|
||||||
|
/**/ 0x8A38D7F7, 0x3FD68213,
|
||||||
|
/**/ 0x02444AAD, 0xBC7D8892,
|
||||||
|
/**/ 0x3EBD875E, 0x3FEDF4AB,
|
||||||
|
/**/ 0x7E6736C4, 0xBC8E2D8A,
|
||||||
|
/**/ 0xE33A0255, 0x3FD6F9B8,
|
||||||
|
/**/ 0x4EE9DA0D, 0x3C742BC1,
|
||||||
|
/**/ 0x50F228D6, 0x3FEDDDED,
|
||||||
|
/**/ 0xD42BA2BF, 0xBC6E80C8,
|
||||||
|
/**/ 0x55764214, 0x3FD77102,
|
||||||
|
/**/ 0x314BB6CE, 0xBC66EAD7,
|
||||||
|
/**/ 0xEB995912, 0x3FEDC6B7,
|
||||||
|
/**/ 0x776DCD35, 0x3C54B364,
|
||||||
|
/**/ 0x03C86D4E, 0x3FD7E7EE,
|
||||||
|
/**/ 0xDABF5AF2, 0xBC7B63BC,
|
||||||
|
/**/ 0x6B888E83, 0x3FEDAF0B,
|
||||||
|
/**/ 0x2B5E5CEA, 0x3C8A249E,
|
||||||
|
/**/ 0x12826949, 0x3FD85E7A,
|
||||||
|
/**/ 0x9B5FACE0, 0x3C78A40E,
|
||||||
|
/**/ 0x2F71A9DC, 0x3FED96E8,
|
||||||
|
/**/ 0xD5D2039D, 0x3C8FF61B,
|
||||||
|
/**/ 0xA774992F, 0x3FD8D4A4,
|
||||||
|
/**/ 0xEA766326, 0x3C744A02,
|
||||||
|
/**/ 0x97E17B4A, 0x3FED7E4E,
|
||||||
|
/**/ 0x352BED94, 0xBC63B770,
|
||||||
|
/**/ 0xE9F546C5, 0x3FD94A6B,
|
||||||
|
/**/ 0x3E683F58, 0xBC769CE1,
|
||||||
|
/**/ 0x073E4040, 0x3FED653F,
|
||||||
|
/**/ 0x434BEC37, 0xBC876236,
|
||||||
|
/**/ 0x02E80510, 0x3FD9BFCE,
|
||||||
|
/**/ 0xA320B0A4, 0x3C709E39,
|
||||||
|
/**/ 0xE1C619E0, 0x3FED4BB9,
|
||||||
|
/**/ 0x77858F61, 0x3C8F34BB,
|
||||||
|
/**/ 0x1CC50CCA, 0x3FDA34C9,
|
||||||
|
/**/ 0x3B50CECD, 0xBC5A310E,
|
||||||
|
/**/ 0x8D8D7C06, 0x3FED31BF,
|
||||||
|
/**/ 0x3089CBDD, 0x3C7E60DD,
|
||||||
|
/**/ 0x63A09277, 0x3FDAA95B,
|
||||||
|
/**/ 0xB13C0381, 0xBC66293E,
|
||||||
|
/**/ 0x727D94F0, 0x3FED1750,
|
||||||
|
/**/ 0x1EC1A48E, 0x3C80D52B,
|
||||||
|
/**/ 0x05321617, 0x3FDB1D83,
|
||||||
|
/**/ 0xCB99F519, 0xBC7AE242,
|
||||||
|
/**/ 0xFA52AD9F, 0x3FECFC6C,
|
||||||
|
/**/ 0x508F2A0D, 0x3C88B5B5,
|
||||||
|
/**/ 0x30DBAC43, 0x3FDB913E,
|
||||||
|
/**/ 0x2F6C3FF1, 0xBC7E38AD,
|
||||||
|
/**/ 0x909A82E5, 0x3FECE115,
|
||||||
|
/**/ 0xBB31109A, 0x3C81F139,
|
||||||
|
/**/ 0x17B140A3, 0x3FDC048B,
|
||||||
|
/**/ 0x757E9FA7, 0x3C619FE6,
|
||||||
|
/**/ 0xA2B2972E, 0x3FECC54A,
|
||||||
|
/**/ 0x2BA83A98, 0x3C64EE16,
|
||||||
|
/**/ 0xEC7FD19E, 0x3FDC7767,
|
||||||
|
/**/ 0x1A3D5826, 0xBC5EB14D,
|
||||||
|
/**/ 0x9FC67D0B, 0x3FECA90C,
|
||||||
|
/**/ 0x485E3462, 0xBC646A81,
|
||||||
|
/**/ 0xE3D4A51F, 0x3FDCE9D2,
|
||||||
|
/**/ 0x12DAE298, 0xBC62FC8A,
|
||||||
|
/**/ 0xF8CE1A84, 0x3FEC8C5B,
|
||||||
|
/**/ 0xA1590123, 0x3C7AB3D1,
|
||||||
|
/**/ 0x34047661, 0x3FDD5BCA,
|
||||||
|
/**/ 0xA75FC29C, 0x3C728A44,
|
||||||
|
/**/ 0x208BE53B, 0x3FEC6F39,
|
||||||
|
/**/ 0xFBAADB42, 0xBC8741DB,
|
||||||
|
/**/ 0x15329C9A, 0x3FDDCD4C,
|
||||||
|
/**/ 0xE171FD9A, 0x3C70D4C6,
|
||||||
|
/**/ 0x8B8B175E, 0x3FEC51A4,
|
||||||
|
/**/ 0x3B9AA880, 0xBC61BBB4,
|
||||||
|
/**/ 0xC1582A69, 0x3FDE3E56,
|
||||||
|
/**/ 0x1099F88F, 0xBC50A482,
|
||||||
|
/**/ 0xB01DDD81, 0x3FEC339E,
|
||||||
|
/**/ 0xEE82C5C0, 0xBC8CAAF5,
|
||||||
|
/**/ 0x744B05F0, 0x3FDEAEE8,
|
||||||
|
/**/ 0x3C9B027D, 0xBC5789B4,
|
||||||
|
/**/ 0x065B7D50, 0x3FEC1528,
|
||||||
|
/**/ 0x1312E828, 0xBC889211,
|
||||||
|
/**/ 0x6BC4F97B, 0x3FDF1EFF,
|
||||||
|
/**/ 0xF8A7525C, 0x3C717212,
|
||||||
|
/**/ 0x081E7536, 0x3FEBF641,
|
||||||
|
/**/ 0x1628A9A1, 0x3C8B7BD7,
|
||||||
|
/**/ 0xE76ABC97, 0x3FDF8E99,
|
||||||
|
/**/ 0xAF2D00A3, 0x3C59D950,
|
||||||
|
/**/ 0x310294F5, 0x3FEBD6EA,
|
||||||
|
/**/ 0xC88C109D, 0x3C731BBC,
|
||||||
|
/**/ 0x28D2F57A, 0x3FDFFDB6,
|
||||||
|
/**/ 0x2E905B6A, 0x3C6F4A99,
|
||||||
|
/**/ 0xFE630F32, 0x3FEBB723,
|
||||||
|
/**/ 0x452D0A39, 0x3C772BD2,
|
||||||
|
/**/ 0x39C69955, 0x3FE03629,
|
||||||
|
/**/ 0x78397B01, 0xBC82D8CD,
|
||||||
|
/**/ 0xEF58840E, 0x3FEB96EE,
|
||||||
|
/**/ 0xC78FADE0, 0x3C545A3C,
|
||||||
|
/**/ 0x86946E5B, 0x3FE06D36,
|
||||||
|
/**/ 0x4538FF1B, 0x3C83F5AE,
|
||||||
|
/**/ 0x84B704C2, 0x3FEB764B,
|
||||||
|
/**/ 0xC21B389B, 0xBC8F5848,
|
||||||
|
/**/ 0x1E9E1001, 0x3FE0A402,
|
||||||
|
/**/ 0xA13914F6, 0xBC86F643,
|
||||||
|
/**/ 0x410C104E, 0x3FEB553A,
|
||||||
|
/**/ 0x47027A16, 0x3C58FF79,
|
||||||
|
/**/ 0x26B5672E, 0x3FE0DA8B,
|
||||||
|
/**/ 0xF0BEE909, 0xBC8A58DE,
|
||||||
|
/**/ 0xA89C8948, 0x3FEB33BB,
|
||||||
|
/**/ 0x1D1F6CA9, 0x3C8EA6A5,
|
||||||
|
/**/ 0xC4B69C3B, 0x3FE110D0,
|
||||||
|
/**/ 0x98809981, 0x3C8D9189,
|
||||||
|
/**/ 0x4162A4C6, 0x3FEB11D0,
|
||||||
|
/**/ 0x1EFBC0C2, 0x3C71DD56,
|
||||||
|
/**/ 0x1F8B7F82, 0x3FE146D2,
|
||||||
|
/**/ 0x5E2739A8, 0x3C7BF953,
|
||||||
|
/**/ 0x930BD275, 0x3FEAEF78,
|
||||||
|
/**/ 0x79746F94, 0xBC7F8362,
|
||||||
|
/**/ 0x5F2EEDB0, 0x3FE17C8E,
|
||||||
|
/**/ 0x102E2488, 0x3C635E57,
|
||||||
|
/**/ 0x26F69DE5, 0x3FEACCB5,
|
||||||
|
/**/ 0x8DD6B6CC, 0x3C88FB6A,
|
||||||
|
/**/ 0xACB02FDD, 0x3FE1B204,
|
||||||
|
/**/ 0x70CBB5FF, 0xBC5F190C,
|
||||||
|
/**/ 0x88308913, 0x3FEAA986,
|
||||||
|
/**/ 0x07CD5070, 0xBC0B83D6,
|
||||||
|
/**/ 0x3236574C, 0x3FE1E734,
|
||||||
|
/**/ 0xA4F41D5A, 0x3C722A3F,
|
||||||
|
/**/ 0x4373E02D, 0x3FEA85ED,
|
||||||
|
/**/ 0x385EC792, 0x3C69BE06,
|
||||||
|
/**/ 0x1B0394CF, 0x3FE21C1C,
|
||||||
|
/**/ 0x4B23AA31, 0x3C5E5B32,
|
||||||
|
/**/ 0xE72586AF, 0x3FEA61E9,
|
||||||
|
/**/ 0xE2FD453F, 0x3C858330,
|
||||||
|
/**/ 0x93788BBB, 0x3FE250BB,
|
||||||
|
/**/ 0x2457BCCE, 0x3C7EA3D0,
|
||||||
|
/**/ 0x0352BDCF, 0x3FEA3D7D,
|
||||||
|
/**/ 0xECA19669, 0xBC868DBA,
|
||||||
|
/**/ 0xC917A067, 0x3FE28511,
|
||||||
|
/**/ 0xD9A16B70, 0xBC801DF1,
|
||||||
|
/**/ 0x29AEE445, 0x3FEA18A7,
|
||||||
|
/**/ 0x736C0358, 0x3C395E25,
|
||||||
|
/**/ 0xEA88421E, 0x3FE2B91D,
|
||||||
|
/**/ 0xDB216AB0, 0xBC8FA371,
|
||||||
|
/**/ 0xED912F85, 0x3FE9F368,
|
||||||
|
/**/ 0xC5791606, 0xBC81D200,
|
||||||
|
/**/ 0x279A3082, 0x3FE2ECDF,
|
||||||
|
/**/ 0xE0E7E37E, 0x3C8D3557,
|
||||||
|
/**/ 0xE3F25E5C, 0x3FE9CDC2,
|
||||||
|
/**/ 0x12993F62, 0x3C83F991,
|
||||||
|
/**/ 0xB148BC4F, 0x3FE32054,
|
||||||
|
/**/ 0x095A135B, 0x3C8F6B42,
|
||||||
|
/**/ 0xA36A6514, 0x3FE9A7B5,
|
||||||
|
/**/ 0xCC9FA7A9, 0x3C8722CF,
|
||||||
|
/**/ 0xB9BE0367, 0x3FE3537D,
|
||||||
|
/**/ 0x7AF040F0, 0x3C6B327E,
|
||||||
|
/**/ 0xC42E1310, 0x3FE98141,
|
||||||
|
/**/ 0x0488F08D, 0x3C8D1FF8,
|
||||||
|
/**/ 0x7456282B, 0x3FE38659,
|
||||||
|
/**/ 0xA93B07A8, 0xBC710FAD,
|
||||||
|
/**/ 0xE00CB1FD, 0x3FE95A67,
|
||||||
|
/**/ 0xA21F862D, 0xBC80BEFD,
|
||||||
|
/**/ 0x15A2840A, 0x3FE3B8E7,
|
||||||
|
/**/ 0xA7D2F07B, 0xBC797653,
|
||||||
|
/**/ 0x926D9E92, 0x3FE93328,
|
||||||
|
/**/ 0x03600CDA, 0xBC8BB770,
|
||||||
|
/**/ 0xD36CD53A, 0x3FE3EB25,
|
||||||
|
/**/ 0xE1570FC0, 0xBC5BE570,
|
||||||
|
/**/ 0x784DDAF7, 0x3FE90B84,
|
||||||
|
/**/ 0x0AB93B87, 0xBC70FEB1,
|
||||||
|
/**/ 0xE4BA6790, 0x3FE41D14,
|
||||||
|
/**/ 0xD287ECF5, 0x3C84608F,
|
||||||
|
/**/ 0x303D9AD1, 0x3FE8E37C,
|
||||||
|
/**/ 0xB53D4BF8, 0xBC6463A4,
|
||||||
|
/**/ 0x81CF386B, 0x3FE44EB3,
|
||||||
|
/**/ 0x1E6A5505, 0xBC83ED6C,
|
||||||
|
/**/ 0x5A5DC900, 0x3FE8BB10,
|
||||||
|
/**/ 0x3E9474C1, 0x3C8863E0,
|
||||||
|
/**/ 0xE431159F, 0x3FE48000,
|
||||||
|
/**/ 0x7463ED10, 0xBC8B194A,
|
||||||
|
/**/ 0x985D871F, 0x3FE89241,
|
||||||
|
/**/ 0xC413ED84, 0x3C8C48D9,
|
||||||
|
/**/ 0x46AAB761, 0x3FE4B0FC,
|
||||||
|
/**/ 0x738CC59A, 0x3C20DA05,
|
||||||
|
/**/ 0x8D77A6C6, 0x3FE86910,
|
||||||
|
/**/ 0xE2BFE9DD, 0x3C7338FF,
|
||||||
|
/**/ 0xE54ED51B, 0x3FE4E1A4,
|
||||||
|
/**/ 0x89B7C76A, 0xBC8A492F,
|
||||||
|
/**/ 0xDE701CA0, 0x3FE83F7D,
|
||||||
|
/**/ 0x609BC6E8, 0xBC4152CF,
|
||||||
|
/**/ 0xFD7B351C, 0x3FE511F9,
|
||||||
|
/**/ 0x61C48831, 0xBC85C0E8,
|
||||||
|
/**/ 0x31916D5D, 0x3FE8158A,
|
||||||
|
/**/ 0x0B8228DE, 0xBC6DE8B9,
|
||||||
|
/**/ 0xCDDBB724, 0x3FE541FA,
|
||||||
|
/**/ 0x8520D391, 0x3C7232C2,
|
||||||
|
/**/ 0x2EAA1488, 0x3FE7EB36,
|
||||||
|
/**/ 0xA4A5959F, 0x3C5A1D65,
|
||||||
|
/**/ 0x966D59B3, 0x3FE571A6,
|
||||||
|
/**/ 0x4D0FB198, 0x3C5C843B,
|
||||||
|
/**/ 0x7F09E54F, 0x3FE7C082,
|
||||||
|
/**/ 0xD72AEE68, 0xBC6C73D6,
|
||||||
|
/**/ 0x98813A12, 0x3FE5A0FC,
|
||||||
|
/**/ 0xB7D4227B, 0xBC8D82E2,
|
||||||
|
/**/ 0xCD7F6543, 0x3FE7956F,
|
||||||
|
/**/ 0xE9D45AE4, 0xBC8AB276,
|
||||||
|
/**/ 0x16BF8F0D, 0x3FE5CFFC,
|
||||||
|
/**/ 0x70EB578A, 0x3C896CB3,
|
||||||
|
/**/ 0xC655211F, 0x3FE769FE,
|
||||||
|
/**/ 0xCF8C68C5, 0xBC6827D5,
|
||||||
|
/**/ 0x552A9E57, 0x3FE5FEA4,
|
||||||
|
/**/ 0xF7EE20B7, 0x3C80B6CE,
|
||||||
|
/**/ 0x174EFBA1, 0x3FE73E30,
|
||||||
|
/**/ 0x3D94AD5F, 0xBC65D3AE,
|
||||||
|
/**/ 0x9921AC79, 0x3FE62CF4,
|
||||||
|
/**/ 0x55B6241A, 0xBC8EDD98,
|
||||||
|
/**/ 0x6FA77678, 0x3FE71204,
|
||||||
|
/**/ 0xA5029C81, 0x3C8425B0,
|
||||||
|
/**/ 0x2963E755, 0x3FE65AEC,
|
||||||
|
/**/ 0x6B71053C, 0x3C8126F9,
|
||||||
|
/**/ 0x800CF55E, 0x3FE6E57C,
|
||||||
|
/**/ 0xDEDBD0A6, 0x3C860286,
|
||||||
|
/**/ 0x4E134B2F, 0x3FE6888A,
|
||||||
|
/**/ 0x7644D5E6, 0xBC86B7D3,
|
||||||
|
/**/ 0xFA9EFB5D, 0x3FE6B898,
|
||||||
|
/**/ 0x86CCF4B2, 0x3C715AC7,
|
||||||
|
/**/ 0x50B7821A, 0x3FE6B5CE,
|
||||||
|
/**/ 0x8F702E0F, 0xBC65D515,
|
||||||
|
/**/ 0x92EB6253, 0x3FE68B5A,
|
||||||
|
/**/ 0xD985F89C, 0xBC89A91A,
|
||||||
|
/**/ 0x7C40BDE1, 0x3FE6E2B7,
|
||||||
|
/**/ 0x857FAD53, 0xBC70E729,
|
||||||
|
/**/ 0xFDEB8CBA, 0x3FE65DC1,
|
||||||
|
/**/ 0x47337C77, 0xBC597C1B,
|
||||||
|
/**/ 0x1D0A8C40, 0x3FE70F45,
|
||||||
|
/**/ 0x3885770D, 0x3C697EDE,
|
||||||
|
/**/ 0xF20191C7, 0x3FE62FCF,
|
||||||
|
/**/ 0x895756EF, 0x3C6D9143,
|
||||||
|
/**/ 0x80DEA578, 0x3FE73B76,
|
||||||
|
/**/ 0x06DC12A2, 0xBC722483,
|
||||||
|
/**/ 0x26F563DF, 0x3FE60185,
|
||||||
|
/**/ 0xE0E432D0, 0x3C846CA5,
|
||||||
|
/**/ 0xF6F7B524, 0x3FE7674A,
|
||||||
|
/**/ 0x94AC84A8, 0x3C7E9D3F,
|
||||||
|
/**/ 0x55F1F17A, 0x3FE5D2E2,
|
||||||
|
/**/ 0x04C8892B, 0x3C803141,
|
||||||
|
/**/ 0xD0041D52, 0x3FE792C1,
|
||||||
|
/**/ 0xEEB354EB, 0xBC8ABF05,
|
||||||
|
/**/ 0x39824077, 0x3FE5A3E8,
|
||||||
|
/**/ 0x2759BE62, 0x3C8428AA,
|
||||||
|
/**/ 0x5E28B3C2, 0x3FE7BDDA,
|
||||||
|
/**/ 0x7CCD0393, 0x3C4AD119,
|
||||||
|
/**/ 0x8D8E83F2, 0x3FE57497,
|
||||||
|
/**/ 0xAF282D23, 0x3C8F4714,
|
||||||
|
/**/ 0xF5037959, 0x3FE7E893,
|
||||||
|
/**/ 0xAA650C4C, 0x3C80EEFB,
|
||||||
|
/**/ 0x0F592CA5, 0x3FE544F1,
|
||||||
|
/**/ 0xE6C7A62F, 0xBC8E7AE8,
|
||||||
|
/**/ 0xE9AE4BA4, 0x3FE812ED,
|
||||||
|
/**/ 0xDF402DDA, 0xBC87830A,
|
||||||
|
/**/ 0x7D7BF3DA, 0x3FE514F5,
|
||||||
|
/**/ 0x8073C259, 0x3C747A10 };
|
||||||
|
#endif
|
||||||
|
#endif
|
339
sysdeps/ieee754/dbl-64/sincos32.c
Normal file
339
sysdeps/ieee754/dbl-64/sincos32.c
Normal file
@ -0,0 +1,339 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/****************************************************************/
|
||||||
|
/* MODULE_NAME: sincos32.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTIONS: ss32 */
|
||||||
|
/* cc32 */
|
||||||
|
/* c32 */
|
||||||
|
/* sin32 */
|
||||||
|
/* cos32 */
|
||||||
|
/* mpsin */
|
||||||
|
/* mpcos */
|
||||||
|
/* mpranred */
|
||||||
|
/* mpsin1 */
|
||||||
|
/* mpcos1 */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED: endian.h mpa.h sincos32.h */
|
||||||
|
/* mpa.c */
|
||||||
|
/* */
|
||||||
|
/* Multi Precision sin() and cos() function with p=32 for sin()*/
|
||||||
|
/* cos() arcsin() and arccos() routines */
|
||||||
|
/* In addition mpranred() routine performs range reduction of */
|
||||||
|
/* a double number x into multi precision number y, */
|
||||||
|
/* such that y=x-n*pi/2, abs(y)<pi/4, n=0,+-1,+-2,.... */
|
||||||
|
/****************************************************************/
|
||||||
|
#include "endian.h"
|
||||||
|
#include "mpa.h"
|
||||||
|
#include "sincos32.h"
|
||||||
|
|
||||||
|
/****************************************************************/
|
||||||
|
/* Compute Multi-Precision sin() function for given p. Receive */
|
||||||
|
/* Multi Precision number x and result stored at y */
|
||||||
|
/****************************************************************/
|
||||||
|
void ss32(mp_no *x, mp_no *y, int p) {
|
||||||
|
int i;
|
||||||
|
double a,b;
|
||||||
|
static const mp_no mpone = {1,1.0,1.0};
|
||||||
|
mp_no mpt1,mpt2,x2,gor,sum ,mpk={1,1.0};
|
||||||
|
for (i=1;i<=p;i++) mpk.d[i]=0;
|
||||||
|
|
||||||
|
mul(x,x,&x2,p);
|
||||||
|
cpy(&oofac27,&gor,p);
|
||||||
|
cpy(&gor,&sum,p);
|
||||||
|
for (a=27.0;a>1.0;a-=2.0) {
|
||||||
|
mpk.d[1]=a*(a-1.0);
|
||||||
|
mul(&gor,&mpk,&mpt1,p);
|
||||||
|
cpy(&mpt1,&gor,p);
|
||||||
|
mul(&x2,&sum,&mpt1,p);
|
||||||
|
sub(&gor,&mpt1,&sum,p);
|
||||||
|
}
|
||||||
|
mul(x,&sum,y,p);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**********************************************************************/
|
||||||
|
/* Compute Multi-Precision cos() function for given p. Receive Multi */
|
||||||
|
/* Precision number x and result stored at y */
|
||||||
|
/**********************************************************************/
|
||||||
|
void cc32(mp_no *x, mp_no *y, int p) {
|
||||||
|
int i;
|
||||||
|
double a,b;
|
||||||
|
static const mp_no mpone = {1,1.0,1.0};
|
||||||
|
mp_no mpt1,mpt2,x2,gor,sum ,mpk={1,1.0};
|
||||||
|
for (i=1;i<=p;i++) mpk.d[i]=0;
|
||||||
|
|
||||||
|
mul(x,x,&x2,p);
|
||||||
|
mpk.d[1]=27.0;
|
||||||
|
mul(&oofac27,&mpk,&gor,p);
|
||||||
|
cpy(&gor,&sum,p);
|
||||||
|
for (a=26.0;a>2.0;a-=2.0) {
|
||||||
|
mpk.d[1]=a*(a-1.0);
|
||||||
|
mul(&gor,&mpk,&mpt1,p);
|
||||||
|
cpy(&mpt1,&gor,p);
|
||||||
|
mul(&x2,&sum,&mpt1,p);
|
||||||
|
sub(&gor,&mpt1,&sum,p);
|
||||||
|
}
|
||||||
|
mul(&x2,&sum,y,p);
|
||||||
|
}
|
||||||
|
|
||||||
|
/***************************************************************************/
|
||||||
|
/* c32() computes both sin(x), cos(x) as Multi precision numbers */
|
||||||
|
/***************************************************************************/
|
||||||
|
void c32(mp_no *x, mp_no *y, mp_no *z, int p) {
|
||||||
|
static const mp_no mpt={1,1.0,2.0}, one={1,1.0,1.0};
|
||||||
|
mp_no u,t,t1,t2,c,s;
|
||||||
|
int i;
|
||||||
|
cpy(x,&u,p);
|
||||||
|
u.e=u.e-1;
|
||||||
|
cc32(&u,&c,p);
|
||||||
|
ss32(&u,&s,p);
|
||||||
|
for (i=0;i<24;i++) {
|
||||||
|
mul(&c,&s,&t,p);
|
||||||
|
sub(&s,&t,&t1,p);
|
||||||
|
add(&t1,&t1,&s,p);
|
||||||
|
sub(&mpt,&c,&t1,p);
|
||||||
|
mul(&t1,&c,&t2,p);
|
||||||
|
add(&t2,&t2,&c,p);
|
||||||
|
}
|
||||||
|
sub(&one,&c,y,p);
|
||||||
|
cpy(&s,z,p);
|
||||||
|
}
|
||||||
|
|
||||||
|
/************************************************************************/
|
||||||
|
/*Routine receive double x and two double results of sin(x) and return */
|
||||||
|
/*result which is more accurate */
|
||||||
|
/*Computing sin(x) with multi precision routine c32 */
|
||||||
|
/************************************************************************/
|
||||||
|
double sin32(double x, double res, double res1) {
|
||||||
|
int p;
|
||||||
|
mp_no a,b,c;
|
||||||
|
p=32;
|
||||||
|
dbl_mp(res,&a,p);
|
||||||
|
dbl_mp(0.5*(res1-res),&b,p);
|
||||||
|
add(&a,&b,&c,p);
|
||||||
|
if (x>0.8)
|
||||||
|
{ sub(&hp,&c,&a,p);
|
||||||
|
c32(&a,&b,&c,p);
|
||||||
|
}
|
||||||
|
else c32(&c,&a,&b,p); /* b=sin(0.5*(res+res1)) */
|
||||||
|
dbl_mp(x,&c,p); /* c = x */
|
||||||
|
sub(&b,&c,&a,p);
|
||||||
|
/* if a>0 return min(res,res1), otherwise return max(res,res1) */
|
||||||
|
if (a.d[0]>0) return (res<res1)?res:res1;
|
||||||
|
else return (res>res1)?res:res1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/************************************************************************/
|
||||||
|
/*Routine receive double x and two double results of cos(x) and return */
|
||||||
|
/*result which is more accurate */
|
||||||
|
/*Computing cos(x) with multi precision routine c32 */
|
||||||
|
/************************************************************************/
|
||||||
|
double cos32(double x, double res, double res1) {
|
||||||
|
int p;
|
||||||
|
mp_no a,b,c;
|
||||||
|
p=32;
|
||||||
|
dbl_mp(res,&a,p);
|
||||||
|
dbl_mp(0.5*(res1-res),&b,p);
|
||||||
|
add(&a,&b,&c,p);
|
||||||
|
if (x>2.4)
|
||||||
|
{ sub(&pi,&c,&a,p);
|
||||||
|
c32(&a,&b,&c,p);
|
||||||
|
b.d[0]=-b.d[0];
|
||||||
|
}
|
||||||
|
else if (x>0.8)
|
||||||
|
{ sub(&hp,&c,&a,p);
|
||||||
|
c32(&a,&c,&b,p);
|
||||||
|
}
|
||||||
|
else c32(&c,&b,&a,p); /* b=cos(0.5*(res+res1)) */
|
||||||
|
dbl_mp(x,&c,p); /* c = x */
|
||||||
|
sub(&b,&c,&a,p);
|
||||||
|
/* if a>0 return max(res,res1), otherwise return min(res,res1) */
|
||||||
|
if (a.d[0]>0) return (res>res1)?res:res1;
|
||||||
|
else return (res<res1)?res:res1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*******************************************************************/
|
||||||
|
/*Compute sin(x+dx) as Multi Precision number and return result as */
|
||||||
|
/* double */
|
||||||
|
/*******************************************************************/
|
||||||
|
double mpsin(double x, double dx) {
|
||||||
|
int p;
|
||||||
|
double y;
|
||||||
|
mp_no a,b,c;
|
||||||
|
p=32;
|
||||||
|
dbl_mp(x,&a,p);
|
||||||
|
dbl_mp(dx,&b,p);
|
||||||
|
add(&a,&b,&c,p);
|
||||||
|
if (x>0.8) { sub(&hp,&c,&a,p); c32(&a,&b,&c,p); }
|
||||||
|
else c32(&c,&a,&b,p); /* b = sin(x+dx) */
|
||||||
|
mp_dbl(&b,&y,p);
|
||||||
|
return y;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*******************************************************************/
|
||||||
|
/* Compute cos()of double-length number (x+dx) as Multi Precision */
|
||||||
|
/* number and return result as double */
|
||||||
|
/*******************************************************************/
|
||||||
|
double mpcos(double x, double dx) {
|
||||||
|
int p;
|
||||||
|
double y;
|
||||||
|
mp_no a,b,c;
|
||||||
|
p=32;
|
||||||
|
dbl_mp(x,&a,p);
|
||||||
|
dbl_mp(dx,&b,p);
|
||||||
|
add(&a,&b,&c,p);
|
||||||
|
if (x>0.8)
|
||||||
|
{ sub(&hp,&c,&b,p);
|
||||||
|
c32(&b,&a,&c,p);
|
||||||
|
}
|
||||||
|
else c32(&c,&a,&b,p); /* a = cos(x+dx) */
|
||||||
|
mp_dbl(&a,&y,p);
|
||||||
|
return y;
|
||||||
|
}
|
||||||
|
|
||||||
|
/******************************************************************/
|
||||||
|
/* mpranred() performs range reduction of a double number x into */
|
||||||
|
/* multi precision number y, such that y=x-n*pi/2, abs(y)<pi/4, */
|
||||||
|
/* n=0,+-1,+-2,.... */
|
||||||
|
/* Return int which indicates in which quarter of circle x is */
|
||||||
|
/******************************************************************/
|
||||||
|
int mpranred(double x, mp_no *y, int p)
|
||||||
|
{
|
||||||
|
number v;
|
||||||
|
double t,xn;
|
||||||
|
int i,k,n;
|
||||||
|
static const mp_no one = {1,1.0,1.0};
|
||||||
|
mp_no a,b,c;
|
||||||
|
|
||||||
|
if (ABS(x) < 2.8e14) {
|
||||||
|
t = (x*hpinv.d + toint.d);
|
||||||
|
xn = t - toint.d;
|
||||||
|
v.d = t;
|
||||||
|
n =v.i[LOW_HALF]&3;
|
||||||
|
dbl_mp(xn,&a,p);
|
||||||
|
mul(&a,&hp,&b,p);
|
||||||
|
dbl_mp(x,&c,p);
|
||||||
|
sub(&c,&b,y,p);
|
||||||
|
return n;
|
||||||
|
}
|
||||||
|
else { /* if x is very big more precision required */
|
||||||
|
dbl_mp(x,&a,p);
|
||||||
|
a.d[0]=1.0;
|
||||||
|
k = a.e-5;
|
||||||
|
if (k < 0) k=0;
|
||||||
|
b.e = -k;
|
||||||
|
b.d[0] = 1.0;
|
||||||
|
for (i=0;i<p;i++) b.d[i+1] = toverp[i+k];
|
||||||
|
mul(&a,&b,&c,p);
|
||||||
|
t = c.d[c.e];
|
||||||
|
for (i=1;i<=p-c.e;i++) c.d[i]=c.d[i+c.e];
|
||||||
|
for (i=p+1-c.e;i<=p;i++) c.d[i]=0;
|
||||||
|
c.e=0;
|
||||||
|
if (c.d[1] >= 8388608.0)
|
||||||
|
{ t +=1.0;
|
||||||
|
sub(&c,&one,&b,p);
|
||||||
|
mul(&b,&hp,y,p);
|
||||||
|
}
|
||||||
|
else mul(&c,&hp,y,p);
|
||||||
|
n = (int) t;
|
||||||
|
if (x < 0) { y->d[0] = - y->d[0]; n = -n; }
|
||||||
|
return (n&3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*******************************************************************/
|
||||||
|
/* Multi-Precision sin() function subroutine, for p=32. It is */
|
||||||
|
/* based on the routines mpranred() and c32(). */
|
||||||
|
/*******************************************************************/
|
||||||
|
double mpsin1(double x)
|
||||||
|
{
|
||||||
|
int p;
|
||||||
|
int n;
|
||||||
|
mp_no u,s,c;
|
||||||
|
double y;
|
||||||
|
p=32;
|
||||||
|
n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */
|
||||||
|
c32(&u,&c,&s,p);
|
||||||
|
switch (n) { /* in which quarter of unit circle y is*/
|
||||||
|
case 0:
|
||||||
|
mp_dbl(&s,&y,p);
|
||||||
|
return y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
mp_dbl(&s,&y,p);
|
||||||
|
return -y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
mp_dbl(&c,&y,p);
|
||||||
|
return y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
mp_dbl(&c,&y,p);
|
||||||
|
return -y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
}
|
||||||
|
return 0; /* unreachable, to make the compiler happy */
|
||||||
|
}
|
||||||
|
|
||||||
|
/*****************************************************************/
|
||||||
|
/* Multi-Precision cos() function subroutine, for p=32. It is */
|
||||||
|
/* based on the routines mpranred() and c32(). */
|
||||||
|
/*****************************************************************/
|
||||||
|
|
||||||
|
double mpcos1(double x)
|
||||||
|
{
|
||||||
|
int p;
|
||||||
|
int n;
|
||||||
|
mp_no u,s,c;
|
||||||
|
double y;
|
||||||
|
|
||||||
|
p=32;
|
||||||
|
n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */
|
||||||
|
c32(&u,&c,&s,p);
|
||||||
|
switch (n) { /* in what quarter of unit circle y is*/
|
||||||
|
|
||||||
|
case 0:
|
||||||
|
mp_dbl(&c,&y,p);
|
||||||
|
return y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
mp_dbl(&c,&y,p);
|
||||||
|
return -y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
mp_dbl(&s,&y,p);
|
||||||
|
return -y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
mp_dbl(&s,&y,p);
|
||||||
|
return y;
|
||||||
|
break;
|
||||||
|
|
||||||
|
}
|
||||||
|
return 0; /* unreachable, to make the compiler happy */
|
||||||
|
}
|
||||||
|
/******************************************************************/
|
81
sysdeps/ieee754/dbl-64/sincos32.h
Normal file
81
sysdeps/ieee754/dbl-64/sincos32.h
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:sincos32.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef SINCOS32_H
|
||||||
|
#define SINCCOS32_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ hpinv = {0x3FE45F30, 0x6DC9C883 }, /* 0.63661977236758138 */
|
||||||
|
/**/ toint = {0x43380000, 0x00000000 }; /* 6755399441055744 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
/**/ hpinv = {0x6DC9C883, 0x3FE45F30 }, /* 0.63661977236758138 */
|
||||||
|
/**/ toint = {0x00000000, 0x43380000 }; /* 6755399441055744 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static const mp_no
|
||||||
|
oofac27 = {-3, 1.0,7.0,4631664.0,12006312.0,13118056.0,6538613.0,646354.0,
|
||||||
|
8508025.0,9131256.0,7548776.0,2529842.0,8864927.0,660489.0,15595125.0,12777885.0,
|
||||||
|
11618489.0,13348664.0,5486686.0,514518.0,11275535.0,4727621.0,3575562.0,
|
||||||
|
13579710.0,5829745.0,7531862.0,9507898.0,6915060.0,4079264.0,1907586.0,
|
||||||
|
6078398.0,13789314.0,5504104.0,14136.0},
|
||||||
|
pi = {1,1.0,3.0,
|
||||||
|
2375530.0,8947107.0,578323.0,1673774.0,225395.0,4498441.0,3678761.0,
|
||||||
|
10432976.0,536314.0,10021966.0,7113029.0,2630118.0,3723283.0,7847508.0,
|
||||||
|
6737716.0,15273068.0,12626985.0,12044668.0,5299519.0,8705461.0,11880201.0,
|
||||||
|
1544726.0,14014857.0,7994139.0,13709579.0,10918111.0,11906095.0,16610011.0,
|
||||||
|
13638367.0,12040417.0,11529578.0,2522774.0},
|
||||||
|
hp = {1, 1.0, 1.0,
|
||||||
|
9576373.0,4473553.0,8677769.0,9225495.0,112697.0,10637828.0,
|
||||||
|
10227988.0,13605096.0,268157.0,5010983.0,3556514.0,9703667.0,
|
||||||
|
1861641.0,12312362.0,3368858.0,7636534.0,6313492.0,14410942.0,
|
||||||
|
2649759.0,12741338.0,14328708.0,9160971.0,7007428.0,12385677.0,
|
||||||
|
15243397.0,13847663.0,14341655.0,16693613.0,15207791.0,14408816.0,
|
||||||
|
14153397.0,1261387.0,6110792.0,2291862.0,4181138.0,5295267.0};
|
||||||
|
|
||||||
|
static const double toverp[75] = {
|
||||||
|
10680707.0, 7228996.0, 1387004.0, 2578385.0, 16069853.0,
|
||||||
|
12639074.0, 9804092.0, 4427841.0, 16666979.0, 11263675.0,
|
||||||
|
12935607.0, 2387514.0, 4345298.0, 14681673.0, 3074569.0,
|
||||||
|
13734428.0, 16653803.0, 1880361.0, 10960616.0, 8533493.0,
|
||||||
|
3062596.0, 8710556.0, 7349940.0, 6258241.0, 3772886.0,
|
||||||
|
3769171.0, 3798172.0, 8675211.0, 12450088.0, 3874808.0,
|
||||||
|
9961438.0, 366607.0, 15675153.0, 9132554.0, 7151469.0,
|
||||||
|
3571407.0, 2607881.0, 12013382.0, 4155038.0, 6285869.0,
|
||||||
|
7677882.0, 13102053.0, 15825725.0, 473591.0, 9065106.0,
|
||||||
|
15363067.0, 6271263.0, 9264392.0, 5636912.0, 4652155.0,
|
||||||
|
7056368.0, 13614112.0, 10155062.0, 1944035.0, 9527646.0,
|
||||||
|
15080200.0, 6658437.0, 6231200.0, 6832269.0, 16767104.0,
|
||||||
|
5075751.0, 3212806.0, 1398474.0, 7579849.0, 6349435.0,
|
||||||
|
12618859.0, 4703257.0, 12806093.0, 14477321.0, 2786137.0,
|
||||||
|
12875403.0, 9837734.0, 14528324.0, 13719321.0, 343717.0 };
|
||||||
|
|
||||||
|
#endif
|
60
sysdeps/ieee754/dbl-64/slowexp.c
Normal file
60
sysdeps/ieee754/dbl-64/slowexp.c
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/**************************************************************************/
|
||||||
|
/* MODULE_NAME:slowexp.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION:slowexp */
|
||||||
|
/* */
|
||||||
|
/* FILES NEEDED:mpa.h */
|
||||||
|
/* mpa.c mpexp.c */
|
||||||
|
/* */
|
||||||
|
/*Converting from double precision to Multi-precision and calculating */
|
||||||
|
/* e^x */
|
||||||
|
/**************************************************************************/
|
||||||
|
#include "mpa.h"
|
||||||
|
|
||||||
|
void mpexp(mp_no *x, mp_no *y, int p);
|
||||||
|
|
||||||
|
/*Converting from double precision to Multi-precision and calculating e^x */
|
||||||
|
double slowexp(double x) {
|
||||||
|
double y,w,z,res,eps=3.0e-26;
|
||||||
|
int orig,i,p;
|
||||||
|
mp_no mpx, mpy, mpz,mpw,mpeps,mpcor;
|
||||||
|
|
||||||
|
p=6;
|
||||||
|
dbl_mp(x,&mpx,p); /* Convert a double precision number x */
|
||||||
|
/* into a multiple precision number mpx with prec. p. */
|
||||||
|
mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */
|
||||||
|
dbl_mp(eps,&mpeps,p);
|
||||||
|
mul(&mpeps,&mpy,&mpcor,p);
|
||||||
|
add(&mpy,&mpcor,&mpw,p);
|
||||||
|
sub(&mpy,&mpcor,&mpz,p);
|
||||||
|
mp_dbl(&mpw, &w, p);
|
||||||
|
mp_dbl(&mpz, &z, p);
|
||||||
|
if (w == z) return w;
|
||||||
|
else { /* if calculating is not exactly */
|
||||||
|
p = 32;
|
||||||
|
dbl_mp(x,&mpx,p);
|
||||||
|
mpexp(&mpx, &mpy, p);
|
||||||
|
mp_dbl(&mpy, &res, p);
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
73
sysdeps/ieee754/dbl-64/slowpow.c
Normal file
73
sysdeps/ieee754/dbl-64/slowpow.c
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/*************************************************************************/
|
||||||
|
/* MODULE_NAME:slowpow.c */
|
||||||
|
/* */
|
||||||
|
/* FUNCTION:slowpow */
|
||||||
|
/* */
|
||||||
|
/*FILES NEEDED:mpa.h */
|
||||||
|
/* mpa.c mpexp.c mplog.c halfulp.c */
|
||||||
|
/* */
|
||||||
|
/* Given two IEEE double machine numbers y,x , routine computes the */
|
||||||
|
/* correctly rounded (to nearest) value of x^y. Result calculated by */
|
||||||
|
/* multiplication (in halfulp.c) or if result isn't accurate enough */
|
||||||
|
/* then routine converts x and y into multi-precision doubles and */
|
||||||
|
/* calls to mpexp routine */
|
||||||
|
/*************************************************************************/
|
||||||
|
|
||||||
|
#include "mpa.h"
|
||||||
|
|
||||||
|
void mpexp(mp_no *x, mp_no *y, int p);
|
||||||
|
void mplog(mp_no *x, mp_no *y, int p);
|
||||||
|
double ulog(double);
|
||||||
|
double halfulp(double x,double y);
|
||||||
|
|
||||||
|
double slowpow(double x, double y, double z) {
|
||||||
|
double res,res1;
|
||||||
|
mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;
|
||||||
|
static const mp_no eps = {-3,1.0,4.0};
|
||||||
|
int p;
|
||||||
|
|
||||||
|
res = halfulp(x,y); /* halfulp() returns -10 or x^y */
|
||||||
|
if (res >= 0) return res; /* if result was really computed by halfulp */
|
||||||
|
/* else, if result was not really computed by halfulp */
|
||||||
|
p = 10; /* p=precision */
|
||||||
|
dbl_mp(x,&mpx,p);
|
||||||
|
dbl_mp(y,&mpy,p);
|
||||||
|
dbl_mp(z,&mpz,p);
|
||||||
|
mplog(&mpx, &mpz, p); /* log(x) = z */
|
||||||
|
mul(&mpy,&mpz,&mpw,p); /* y * z =w */
|
||||||
|
mpexp(&mpw, &mpp, p); /* e^w =pp */
|
||||||
|
add(&mpp,&eps,&mpr,p); /* pp+eps =r */
|
||||||
|
mp_dbl(&mpr, &res, p);
|
||||||
|
sub(&mpp,&eps,&mpr1,p); /* pp -eps =r1 */
|
||||||
|
mp_dbl(&mpr1, &res1, p); /* converting into double precision */
|
||||||
|
if (res == res1) return res;
|
||||||
|
|
||||||
|
p = 32; /* if we get here result wasn't calculated exactly, continue */
|
||||||
|
dbl_mp(x,&mpx,p); /* for more exact calculation */
|
||||||
|
dbl_mp(y,&mpy,p);
|
||||||
|
dbl_mp(z,&mpz,p);
|
||||||
|
mplog(&mpx, &mpz, p); /* log(c)=z */
|
||||||
|
mul(&mpy,&mpz,&mpw,p); /* y*z =w */
|
||||||
|
mpexp(&mpw, &mpp, p); /* e^w=pp */
|
||||||
|
mp_dbl(&mpp, &res, p); /* converting into double precision */
|
||||||
|
return res;
|
||||||
|
}
|
69
sysdeps/ieee754/dbl-64/uasncs.h
Normal file
69
sysdeps/ieee754/dbl-64/uasncs.h
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:uasncs.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef UANSNCS_H
|
||||||
|
#define UANSNCS_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const mynumber
|
||||||
|
/**/ a1 = {0x3FC55580, 0x00000000 }, /* 0.1666717529296875 */
|
||||||
|
/**/ a2 = {0xBED55555, 0x55552330 }, /* -5.0862630208224597e-06 */
|
||||||
|
/**/ hp0 = {0x3FF921FB, 0x54442D18 }, /* 1.5707963267948966 */
|
||||||
|
/**/ hp1 = {0x3C91A626, 0x33145C07 }; /* 6.123233995736766e-17 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const mynumber
|
||||||
|
/**/ a1 = {0x00000000, 0x3FC55580 }, /* 0.1666717529296875 */
|
||||||
|
/**/ a2 = {0x55552330, 0xBED55555 }, /* -5.0862630208224597e-06 */
|
||||||
|
/**/ hp0 = {0x54442D18, 0x3FF921FB }, /* 1.5707963267948966 */
|
||||||
|
/**/ hp1 = {0x33145C07, 0x3C91A626 }; /* 6.123233995736766e-17 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static const double
|
||||||
|
f1 = 1.66666666666664110590506577996662E-01,
|
||||||
|
f2 = 7.50000000026122686814431784722623E-02,
|
||||||
|
f3 = 4.46428561421059750978517350006940E-02,
|
||||||
|
f4 = 3.03821268582119319911193410625235E-02,
|
||||||
|
f5 = 2.23551211026525610742786300334557E-02,
|
||||||
|
f6 = 1.81382903404565056280372531963613E-02;
|
||||||
|
static const double
|
||||||
|
c2 = 0.74999999999985410757087492918602258E-01,
|
||||||
|
c3 = 0.44642857150311968932423372477866076E-01,
|
||||||
|
c4 = 0.30381942574778615766200591683810471E-01,
|
||||||
|
c5 = 0.22372413472984868331447708777000650E-01,
|
||||||
|
c6 = 0.17333630246451830686009693735025490E-01,
|
||||||
|
c7 = 0.14710362893628210269950864741085777E-01;
|
||||||
|
|
||||||
|
static const double big = 103079215104.0, t24 = 16777216.0, t27 = 134217728.0;
|
||||||
|
static const double
|
||||||
|
rt0 = 9.99999999859990725855365213134618E-01,
|
||||||
|
rt1 = 4.99999999495955425917856814202739E-01,
|
||||||
|
rt2 = 3.75017500867345182581453026130850E-01,
|
||||||
|
rt3 = 3.12523626554518656309172508769531E-01;
|
||||||
|
#endif
|
11116
sysdeps/ieee754/dbl-64/uatan.tbl
Normal file
11116
sysdeps/ieee754/dbl-64/uatan.tbl
Normal file
File diff suppressed because it is too large
Load Diff
69
sysdeps/ieee754/dbl-64/uexp.h
Normal file
69
sysdeps/ieee754/dbl-64/uexp.h
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:uexp.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef UEXP_H
|
||||||
|
#define UEXP_H
|
||||||
|
|
||||||
|
#include "mydefs.h"
|
||||||
|
|
||||||
|
const static double one = 1.0, zero = 0.0, hhuge = 1.0e300, tiny = 1.0e-300,
|
||||||
|
err_0 = 1.000014, err_1 = 0.000016;
|
||||||
|
const static int4 bigint = 0x40862002,
|
||||||
|
badint = 0x40876000,smallint = 0x3C8fffff;
|
||||||
|
const static int4 hugeint = 0x7FFFFFFF, infint = 0x7ff00000;
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
const static mynumber inf = {0x7FF00000, 0}; /* inf */
|
||||||
|
const static mynumber t256 = {0x4ff00000, 0}; /* 2^256 */
|
||||||
|
|
||||||
|
const static mynumber ln_two1 = { 0x3FE62E42, 0xFEFA3800 };/*0.69314718055989033 */
|
||||||
|
const static mynumber ln_two2 = { 0x3D2EF357, 0x93C76730 };/*5.4979230187083712e-14*/
|
||||||
|
const static mynumber log2e = { 0x3FF71547, 0x652B82FE };/* 1.4426950408889634 */
|
||||||
|
|
||||||
|
const static mynumber p2 = { 0x3FE00000, 0x000004DC };/* 0.50000000000013811 */
|
||||||
|
const static mynumber p3 = { 0x3FC55555, 0x55555A0F };/* 0.16666666666670024 */
|
||||||
|
|
||||||
|
const static mynumber three33 = { 0x42180000, 0 }; /* 25769803776 */
|
||||||
|
const static mynumber three51 = { 0x43380000, 0 }; /* 6755399441055744 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
const static mynumber inf = {0, 0x7FF00000}; /* inf */
|
||||||
|
const static mynumber t256 = {0, 0x4ff00000}; /* 2^256 */
|
||||||
|
|
||||||
|
const static mynumber ln_two1 = { 0xFEFA3800, 0x3FE62E42 };/*0.69314718055989033 */
|
||||||
|
const static mynumber ln_two2 = { 0x93C76730, 0x3D2EF357 };/*5.4979230187083712e-14*/
|
||||||
|
const static mynumber log2e = { 0x652B82FE, 0x3FF71547 };/* 1.4426950408889634 */
|
||||||
|
|
||||||
|
const static mynumber p2 = { 0x000004DC, 0x3FE00000 };/* 0.50000000000013811 */
|
||||||
|
const static mynumber p3 = { 0x55555A0F, 0x3FC55555 };/* 0.16666666666670024 */
|
||||||
|
|
||||||
|
const static mynumber three33 = { 0, 0x42180000 }; /* 25769803776 */
|
||||||
|
const static mynumber three51 = { 0, 0x43380000 }; /* 6755399441055744 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
1767
sysdeps/ieee754/dbl-64/uexp.tbl
Normal file
1767
sysdeps/ieee754/dbl-64/uexp.tbl
Normal file
File diff suppressed because it is too large
Load Diff
195
sysdeps/ieee754/dbl-64/ulog.h
Normal file
195
sysdeps/ieee754/dbl-64/ulog.h
Normal file
@ -0,0 +1,195 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:ulog.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef ULOG_H
|
||||||
|
#define ULOG_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ a2 = {0xbfe00000, 0x0001aa8f, }, /* -0.500... */
|
||||||
|
/**/ a3 = {0x3fd55555, 0x55588d2e, }, /* 0.333... */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ b0 = {0x3fd55555, 0x55555555, }, /* 0.333... */
|
||||||
|
/**/ b1 = {0xbfcfffff, 0xffffffbb, }, /* -0.249... */
|
||||||
|
/**/ b2 = {0x3fc99999, 0x9999992f, }, /* 0.199... */
|
||||||
|
/**/ b3 = {0xbfc55555, 0x556503fd, }, /* -0.166... */
|
||||||
|
/**/ b4 = {0x3fc24924, 0x925b3d62, }, /* 0.142... */
|
||||||
|
/**/ b5 = {0xbfbffffe, 0x160472fc, }, /* -0.124... */
|
||||||
|
/**/ b6 = {0x3fbc71c5, 0x25db58ac, }, /* 0.111... */
|
||||||
|
/**/ b7 = {0xbfb9a4ac, 0x11a2a61c, }, /* -0.100... */
|
||||||
|
/**/ b8 = {0x3fb75077, 0x0df2b591, }, /* 0.091... */
|
||||||
|
/* polynomial III */
|
||||||
|
/**/ c1 = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ c2 = {0xbfe00000, 0x00000000, }, /* -1/2 */
|
||||||
|
/**/ c3 = {0x3fd55555, 0x55555555, }, /* 1/3 */
|
||||||
|
/**/ c4 = {0xbfd00000, 0x00000000, }, /* -1/4 */
|
||||||
|
/**/ c5 = {0x3fc99999, 0x9999999a, }, /* 1/5 */
|
||||||
|
/* polynomial IV */
|
||||||
|
/**/ d2 = {0xbfe00000, 0x00000000, }, /* -1/2 */
|
||||||
|
/**/ dd2 = {0x00000000, 0x00000000, }, /* -1/2-d2 */
|
||||||
|
/**/ d3 = {0x3fd55555, 0x55555555, }, /* 1/3 */
|
||||||
|
/**/ dd3 = {0x3c755555, 0x55555555, }, /* 1/3-d3 */
|
||||||
|
/**/ d4 = {0xbfd00000, 0x00000000, }, /* -1/4 */
|
||||||
|
/**/ dd4 = {0x00000000, 0x00000000, }, /* -1/4-d4 */
|
||||||
|
/**/ d5 = {0x3fc99999, 0x9999999a, }, /* 1/5 */
|
||||||
|
/**/ dd5 = {0xbc699999, 0x9999999a, }, /* 1/5-d5 */
|
||||||
|
/**/ d6 = {0xbfc55555, 0x55555555, }, /* -1/6 */
|
||||||
|
/**/ dd6 = {0xbc655555, 0x55555555, }, /* -1/6-d6 */
|
||||||
|
/**/ d7 = {0x3fc24924, 0x92492492, }, /* 1/7 */
|
||||||
|
/**/ dd7 = {0x3c624924, 0x92492492, }, /* 1/7-d7 */
|
||||||
|
/**/ d8 = {0xbfc00000, 0x00000000, }, /* -1/8 */
|
||||||
|
/**/ dd8 = {0x00000000, 0x00000000, }, /* -1/8-d8 */
|
||||||
|
/**/ d9 = {0x3fbc71c7, 0x1c71c71c, }, /* 1/9 */
|
||||||
|
/**/ dd9 = {0x3c5c71c7, 0x1c71c71c, }, /* 1/9-d9 */
|
||||||
|
/**/ d10 = {0xbfb99999, 0x9999999a, }, /* -1/10 */
|
||||||
|
/**/ dd10 = {0x3c599999, 0x9999999a, }, /* -1/10-d10 */
|
||||||
|
/**/ d11 = {0x3fb745d1, 0x745d1746, }, /* 1/11 */
|
||||||
|
/**/ d12 = {0xbfb55555, 0x55555555, }, /* -1/12 */
|
||||||
|
/**/ d13 = {0x3fb3b13b, 0x13b13b14, }, /* 1/13 */
|
||||||
|
/**/ d14 = {0xbfb24924, 0x92492492, }, /* -1/14 */
|
||||||
|
/**/ d15 = {0x3fb11111, 0x11111111, }, /* 1/15 */
|
||||||
|
/**/ d16 = {0xbfb00000, 0x00000000, }, /* -1/16 */
|
||||||
|
/**/ d17 = {0x3fae1e1e, 0x1e1e1e1e, }, /* 1/17 */
|
||||||
|
/**/ d18 = {0xbfac71c7, 0x1c71c71c, }, /* -1/18 */
|
||||||
|
/**/ d19 = {0x3faaf286, 0xbca1af28, }, /* 1/19 */
|
||||||
|
/**/ d20 = {0xbfa99999, 0x9999999a, }, /* -1/20 */
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ half = {0x3fe00000, 0x00000000, }, /* 1/2 */
|
||||||
|
/**/ mhalf = {0xbfe00000, 0x00000000, }, /* -1/2 */
|
||||||
|
/**/ sqrt_2 = {0x3ff6a09e, 0x667f3bcc, }, /* sqrt(2) */
|
||||||
|
/**/ h1 = {0x3fd2e000, 0x00000000, }, /* 151/2**9 */
|
||||||
|
/**/ h2 = {0x3f669000, 0x00000000, }, /* 361/2**17 */
|
||||||
|
/**/ delu = {0x3f700000, 0x00000000, }, /* 1/2**8 */
|
||||||
|
/**/ delv = {0x3ef00000, 0x00000000, }, /* 1/2**16 */
|
||||||
|
/**/ ln2a = {0x3fe62e42, 0xfefa3800, }, /* ln(2) 43 bits */
|
||||||
|
/**/ ln2b = {0x3d2ef357, 0x93c76730, }, /* ln(2)-ln2a */
|
||||||
|
/**/ e1 = {0x3bbcc868, 0x00000000, }, /* 6.095e-21 */
|
||||||
|
/**/ e2 = {0x3c1138ce, 0x00000000, }, /* 2.334e-19 */
|
||||||
|
/**/ e3 = {0x3aa1565d, 0x00000000, }, /* 2.801e-26 */
|
||||||
|
/**/ e4 = {0x39809d88, 0x00000000, }, /* 1.024e-31 */
|
||||||
|
/**/ e[M] ={{0x37da223a, 0x00000000, }, /* 1.2e-39 */
|
||||||
|
/**/ {0x35c851c4, 0x00000000, }, /* 1.3e-49 */
|
||||||
|
/**/ {0x2ab85e51, 0x00000000, }, /* 6.8e-103 */
|
||||||
|
/**/ {0x17383827, 0x00000000, }},/* 8.1e-197 */
|
||||||
|
/**/ two54 = {0x43500000, 0x00000000, }, /* 2**54 */
|
||||||
|
/**/ u03 = {0x3f9eb851, 0xeb851eb8, }; /* 0.03 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ a2 = {0x0001aa8f, 0xbfe00000, }, /* -0.500... */
|
||||||
|
/**/ a3 = {0x55588d2e, 0x3fd55555, }, /* 0.333... */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ b0 = {0x55555555, 0x3fd55555, }, /* 0.333... */
|
||||||
|
/**/ b1 = {0xffffffbb, 0xbfcfffff, }, /* -0.249... */
|
||||||
|
/**/ b2 = {0x9999992f, 0x3fc99999, }, /* 0.199... */
|
||||||
|
/**/ b3 = {0x556503fd, 0xbfc55555, }, /* -0.166... */
|
||||||
|
/**/ b4 = {0x925b3d62, 0x3fc24924, }, /* 0.142... */
|
||||||
|
/**/ b5 = {0x160472fc, 0xbfbffffe, }, /* -0.124... */
|
||||||
|
/**/ b6 = {0x25db58ac, 0x3fbc71c5, }, /* 0.111... */
|
||||||
|
/**/ b7 = {0x11a2a61c, 0xbfb9a4ac, }, /* -0.100... */
|
||||||
|
/**/ b8 = {0x0df2b591, 0x3fb75077, }, /* 0.091... */
|
||||||
|
/* polynomial III */
|
||||||
|
/**/ c1 = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ c2 = {0x00000000, 0xbfe00000, }, /* -1/2 */
|
||||||
|
/**/ c3 = {0x55555555, 0x3fd55555, }, /* 1/3 */
|
||||||
|
/**/ c4 = {0x00000000, 0xbfd00000, }, /* -1/4 */
|
||||||
|
/**/ c5 = {0x9999999a, 0x3fc99999, }, /* 1/5 */
|
||||||
|
/* polynomial IV */
|
||||||
|
/**/ d2 = {0x00000000, 0xbfe00000, }, /* -1/2 */
|
||||||
|
/**/ dd2 = {0x00000000, 0x00000000, }, /* -1/2-d2 */
|
||||||
|
/**/ d3 = {0x55555555, 0x3fd55555, }, /* 1/3 */
|
||||||
|
/**/ dd3 = {0x55555555, 0x3c755555, }, /* 1/3-d3 */
|
||||||
|
/**/ d4 = {0x00000000, 0xbfd00000, }, /* -1/4 */
|
||||||
|
/**/ dd4 = {0x00000000, 0x00000000, }, /* -1/4-d4 */
|
||||||
|
/**/ d5 = {0x9999999a, 0x3fc99999, }, /* 1/5 */
|
||||||
|
/**/ dd5 = {0x9999999a, 0xbc699999, }, /* 1/5-d5 */
|
||||||
|
/**/ d6 = {0x55555555, 0xbfc55555, }, /* -1/6 */
|
||||||
|
/**/ dd6 = {0x55555555, 0xbc655555, }, /* -1/6-d6 */
|
||||||
|
/**/ d7 = {0x92492492, 0x3fc24924, }, /* 1/7 */
|
||||||
|
/**/ dd7 = {0x92492492, 0x3c624924, }, /* 1/7-d7 */
|
||||||
|
/**/ d8 = {0x00000000, 0xbfc00000, }, /* -1/8 */
|
||||||
|
/**/ dd8 = {0x00000000, 0x00000000, }, /* -1/8-d8 */
|
||||||
|
/**/ d9 = {0x1c71c71c, 0x3fbc71c7, }, /* 1/9 */
|
||||||
|
/**/ dd9 = {0x1c71c71c, 0x3c5c71c7, }, /* 1/9-d9 */
|
||||||
|
/**/ d10 = {0x9999999a, 0xbfb99999, }, /* -1/10 */
|
||||||
|
/**/ dd10 = {0x9999999a, 0x3c599999, }, /* -1/10-d10 */
|
||||||
|
/**/ d11 = {0x745d1746, 0x3fb745d1, }, /* 1/11 */
|
||||||
|
/**/ d12 = {0x55555555, 0xbfb55555, }, /* -1/12 */
|
||||||
|
/**/ d13 = {0x13b13b14, 0x3fb3b13b, }, /* 1/13 */
|
||||||
|
/**/ d14 = {0x92492492, 0xbfb24924, }, /* -1/14 */
|
||||||
|
/**/ d15 = {0x11111111, 0x3fb11111, }, /* 1/15 */
|
||||||
|
/**/ d16 = {0x00000000, 0xbfb00000, }, /* -1/16 */
|
||||||
|
/**/ d17 = {0x1e1e1e1e, 0x3fae1e1e, }, /* 1/17 */
|
||||||
|
/**/ d18 = {0x1c71c71c, 0xbfac71c7, }, /* -1/18 */
|
||||||
|
/**/ d19 = {0xbca1af28, 0x3faaf286, }, /* 1/19 */
|
||||||
|
/**/ d20 = {0x9999999a, 0xbfa99999, }, /* -1/20 */
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ half = {0x00000000, 0x3fe00000, }, /* 1/2 */
|
||||||
|
/**/ mhalf = {0x00000000, 0xbfe00000, }, /* -1/2 */
|
||||||
|
/**/ sqrt_2 = {0x667f3bcc, 0x3ff6a09e, }, /* sqrt(2) */
|
||||||
|
/**/ h1 = {0x00000000, 0x3fd2e000, }, /* 151/2**9 */
|
||||||
|
/**/ h2 = {0x00000000, 0x3f669000, }, /* 361/2**17 */
|
||||||
|
/**/ delu = {0x00000000, 0x3f700000, }, /* 1/2**8 */
|
||||||
|
/**/ delv = {0x00000000, 0x3ef00000, }, /* 1/2**16 */
|
||||||
|
/**/ ln2a = {0xfefa3800, 0x3fe62e42, }, /* ln(2) 43 bits */
|
||||||
|
/**/ ln2b = {0x93c76730, 0x3d2ef357, }, /* ln(2)-ln2a */
|
||||||
|
/**/ e1 = {0x00000000, 0x3bbcc868, }, /* 6.095e-21 */
|
||||||
|
/**/ e2 = {0x00000000, 0x3c1138ce, }, /* 2.334e-19 */
|
||||||
|
/**/ e3 = {0x00000000, 0x3aa1565d, }, /* 2.801e-26 */
|
||||||
|
/**/ e4 = {0x00000000, 0x39809d88, }, /* 1.024e-31 */
|
||||||
|
/**/ e[M] ={{0x00000000, 0x37da223a, }, /* 1.2e-39 */
|
||||||
|
/**/ {0x00000000, 0x35c851c4, }, /* 1.3e-49 */
|
||||||
|
/**/ {0x00000000, 0x2ab85e51, }, /* 6.8e-103 */
|
||||||
|
/**/ {0x00000000, 0x17383827, }},/* 8.1e-197 */
|
||||||
|
/**/ two54 = {0x00000000, 0x43500000, }, /* 2**54 */
|
||||||
|
/**/ u03 = {0xeb851eb8, 0x3f9eb851, }; /* 0.03 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define ZERO zero.d
|
||||||
|
#define ONE one.d
|
||||||
|
#define HALF half.d
|
||||||
|
#define MHALF mhalf.d
|
||||||
|
#define SQRT_2 sqrt_2.d
|
||||||
|
#define DEL_U delu.d
|
||||||
|
#define DEL_V delv.d
|
||||||
|
#define LN2A ln2a.d
|
||||||
|
#define LN2B ln2b.d
|
||||||
|
#define E1 e1.d
|
||||||
|
#define E2 e2.d
|
||||||
|
#define E3 e3.d
|
||||||
|
#define E4 e4.d
|
||||||
|
#define U03 u03.d
|
||||||
|
|
||||||
|
#endif
|
3307
sysdeps/ieee754/dbl-64/ulog.tbl
Normal file
3307
sysdeps/ieee754/dbl-64/ulog.tbl
Normal file
File diff suppressed because it is too large
Load Diff
82
sysdeps/ieee754/dbl-64/upow.h
Normal file
82
sysdeps/ieee754/dbl-64/upow.h
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:upow.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef UPOW_H
|
||||||
|
#define UPOW_H
|
||||||
|
|
||||||
|
#include "mydefs.h"
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
const static mynumber
|
||||||
|
/**/ INF = {0x7ff00000, 0x00000000 }, /* INF */
|
||||||
|
/**/ NaNQ = {0x7ff80000, 0x00000000 }, /* NaNQ */
|
||||||
|
/**/ sqrt_2 = {0x3ff6a09e, 0x667f3bcc }, /* sqrt(2) */
|
||||||
|
/**/ ln2a = {0x3fe62e42, 0xfefa3800 }, /* ln(2) 43 bits */
|
||||||
|
/**/ ln2b = {0x3d2ef357, 0x93c76730 }, /* ln(2)-ln2a */
|
||||||
|
/**/ bigu = {0x4297ffff, 0xfffffd2c }, /* 1.5*2**42 -724*2**-10 */
|
||||||
|
/**/ bigv = {0x4207ffff, 0xfff8016a }, /* 1.5*2**33-1+362*2**-19 */
|
||||||
|
/**/ t52 = {0x43300000, 0x00000000 }, /* 2**52 */
|
||||||
|
/**/ two52e = {0x43300000, 0x000003ff }; /* 2**52' */
|
||||||
|
|
||||||
|
mynumber
|
||||||
|
/**/ two52 = {0x43300000, 0x00000000 }; /* 2**52 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
const static mynumber
|
||||||
|
/**/ INF = {0x00000000, 0x7ff00000 }, /* INF */
|
||||||
|
/**/ NaNQ = {0x00000000, 0x7ff80000 }, /* NaNQ */
|
||||||
|
/**/ sqrt_2 = {0x667f3bcc, 0x3ff6a09e }, /* sqrt(2) */
|
||||||
|
/**/ ln2a = {0xfefa3800, 0x3fe62e42 }, /* ln(2) 43 bits */
|
||||||
|
/**/ ln2b = {0x93c76730, 0x3d2ef357 }, /* ln(2)-ln2a */
|
||||||
|
/**/ bigu = {0xfffffd2c, 0x4297ffff }, /* 1.5*2**42 -724*2**-10 */
|
||||||
|
/**/ bigv = {0xfff8016a, 0x4207ffff }, /* 1.5*2**33-1+362*2**-19 */
|
||||||
|
/**/ t52 = {0x00000000, 0x43300000 }, /* 2**52 */
|
||||||
|
/**/ two52e = {0x000003ff, 0x43300000 }; /* 2**52' */
|
||||||
|
|
||||||
|
mynumber
|
||||||
|
/**/ two52 = {0x00000000, 0x43300000 }; /* 2**52 */
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
const static double p2=-0.5, p3 = 3.3333333333333333333e-1, p4 = -0.25,
|
||||||
|
q2 = -0.5, q3 = 3.3333333333331404e-01, q4 = -2.4999999999996436e-01,
|
||||||
|
q5 = 2.0000010500004459e-01, q6 = -1.6666678916688004e-01,
|
||||||
|
r3 = 3.33333333333333333372884096563030E-01,
|
||||||
|
r4 = -2.50000000000000000213574153875908E-01,
|
||||||
|
r5 = 1.99999999999683593814072199830603E-01,
|
||||||
|
r6 = -1.66666666666065494878165510225378E-01,
|
||||||
|
r7 = 1.42857517857114380606360005067609E-01,
|
||||||
|
r8 = -1.25000449999974370683775964001702E-01,
|
||||||
|
s3 = 0.333251953125000000e0,
|
||||||
|
ss3 = 8.138020833333333333e-05,
|
||||||
|
s4 = -2.500000000000000000e-01,
|
||||||
|
s5 = 1.999999999999960937e-01,
|
||||||
|
s6 = -1.666666666666592447e-01,
|
||||||
|
s7 = 1.428571845238194705e-01,
|
||||||
|
s8 = -1.250000500000149097e-01;
|
||||||
|
#endif
|
10169
sysdeps/ieee754/dbl-64/upow.tbl
Normal file
10169
sysdeps/ieee754/dbl-64/upow.tbl
Normal file
File diff suppressed because it is too large
Load Diff
50
sysdeps/ieee754/dbl-64/urem.h
Normal file
50
sysdeps/ieee754/dbl-64/urem.h
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: urem.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
#ifndef UREM_H
|
||||||
|
#define UREM_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const mynumber big = {0x43380000, 0}, /* 6755399441055744 */
|
||||||
|
t128 = {0x47f00000, 0}, /* 2^ 128 */
|
||||||
|
tm128 = {0x37f00000, 0}, /* 2^-128 */
|
||||||
|
ZERO = {0, 0}, /* 0.0 */
|
||||||
|
nZERO = {0x80000000, 0}, /* -0.0 */
|
||||||
|
NAN = {0x7ff80000, 0}, /* NaN */
|
||||||
|
nNAN = {0xfff80000, 0}; /* -NaN */
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const mynumber big = {0, 0x43380000}, /* 6755399441055744 */
|
||||||
|
t128 = {0, 0x47f00000}, /* 2^ 128 */
|
||||||
|
tm128 = {0, 0x37f00000}, /* 2^-128 */
|
||||||
|
ZERO = {0, 0}, /* 0.0 */
|
||||||
|
nZERO = {0, 0x80000000}, /* -0.0 */
|
||||||
|
NAN = {0, 0x7ff80000}, /* NaN */
|
||||||
|
nNAN = {0, 0xfff80000}; /* -NaN */
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
43
sysdeps/ieee754/dbl-64/uroot.h
Normal file
43
sysdeps/ieee754/dbl-64/uroot.h
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:uroot.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef UROOT_H
|
||||||
|
#define UROOT_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const mynumber
|
||||||
|
/**/ t512 = {0x5ff00000, 0x00000000 }, /* 2^512 */
|
||||||
|
/**/ tm256 = {0x2ff00000, 0x00000000 }; /* 2^-256 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const mynumber
|
||||||
|
/**/ t512 = {0x00000000, 0x5ff00000 }, /* 2^512 */
|
||||||
|
/**/ tm256 = {0x00000000, 0x2ff00000 }; /* 2^-256 */
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
79
sysdeps/ieee754/dbl-64/usncs.h
Normal file
79
sysdeps/ieee754/dbl-64/usncs.h
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/************************************************************************/
|
||||||
|
/* MODULE_NAME: dosincos.h */
|
||||||
|
/* */
|
||||||
|
/* */
|
||||||
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
||||||
|
/************************************************************************/
|
||||||
|
|
||||||
|
#ifndef USNCS_H
|
||||||
|
#define USNCS_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const mynumber
|
||||||
|
|
||||||
|
/**/ NAN = {0x7ff80000, 0x00000000 }, /* NaN */
|
||||||
|
/**/ s1 = {0xBFC55555, 0x55555555 }, /* -0.16666666666666666 */
|
||||||
|
/**/ s2 = {0x3F811111, 0x11110ECE }, /* 0.0083333333333323288 */
|
||||||
|
/**/ s3 = {0xBF2A01A0, 0x19DB08B8 }, /* -0.00019841269834414642 */
|
||||||
|
/**/ s4 = {0x3EC71DE2, 0x7B9A7ED9 }, /* 2.755729806860771e-06 */
|
||||||
|
/**/ s5 = {0xBE5ADDFF, 0xC2FCDF59 }, /* -2.5022014848318398e-08 */
|
||||||
|
/**/ aa = {0xBFC55580, 0x00000000 }, /* -0.1666717529296875 */
|
||||||
|
/**/ bb = {0x3ED55555, 0x55556E24 }, /* 5.0862630208387126e-06 */
|
||||||
|
/**/ big = {0x42c80000, 0x00000000 }, /* 52776558133248 */
|
||||||
|
/**/ hp0 = {0x3FF921FB, 0x54442D18 }, /* 1.5707963267948966 */
|
||||||
|
/**/ hp1 = {0x3C91A626, 0x33145C07 }, /* 6.123233995736766e-17 */
|
||||||
|
/**/ mp1 = {0x3FF921FB, 0x58000000 }, /* 1.5707963407039642 */
|
||||||
|
/**/ mp2 = {0xBE4DDE97, 0x3C000000 }, /* -1.3909067564377153e-08 */
|
||||||
|
/**/ mp3 = {0xBC8CB3B3, 0x99D747F2 }, /* -4.9789962505147994e-17 */
|
||||||
|
/**/ pp3 = {0xBC8CB3B3, 0x98000000 }, /* -4.9789962314799099e-17 */
|
||||||
|
/**/ pp4 = {0xbacd747f, 0x23e32ed7 }, /* -1.9034889620193266e-25 */
|
||||||
|
/**/ hpinv = {0x3FE45F30, 0x6DC9C883 }, /* 0.63661977236758138 */
|
||||||
|
/**/ toint = {0x43380000, 0x00000000 }; /* 6755399441055744 */
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
static const mynumber
|
||||||
|
|
||||||
|
/**/ NAN = {0x00000000, 0x7ff80000 },/* NaN */
|
||||||
|
/**/ s1 = {0x55555555, 0xBFC55555 },/* -0.16666666666666666 */
|
||||||
|
/**/ s2 = {0x11110ECE, 0x3F811111 },/* 0.0083333333333323288 */
|
||||||
|
/**/ s3 = {0x19DB08B8, 0xBF2A01A0 },/* -0.00019841269834414642 */
|
||||||
|
/**/ s4 = {0x7B9A7ED9, 0x3EC71DE2 },/* 2.755729806860771e-06 */
|
||||||
|
/**/ s5 = {0xC2FCDF59, 0xBE5ADDFF },/* -2.5022014848318398e-08 */
|
||||||
|
/**/ aa = {0x00000000, 0xBFC55580 },/* -0.1666717529296875 */
|
||||||
|
/**/ bb = {0x55556E24, 0x3ED55555 },/* 5.0862630208387126e-06 */
|
||||||
|
/**/ big = {0x00000000, 0x42c80000 },/* 52776558133248 */
|
||||||
|
/**/ hp0 = {0x54442D18, 0x3FF921FB },/* 1.5707963267948966 */
|
||||||
|
/**/ hp1 = {0x33145C07, 0x3C91A626 },/* 6.123233995736766e-17 */
|
||||||
|
/**/ mp1 = {0x58000000, 0x3FF921FB },/* 1.5707963407039642 */
|
||||||
|
/**/ mp2 = {0x3C000000, 0xBE4DDE97 },/* -1.3909067564377153e-08 */
|
||||||
|
/**/ mp3 = {0x99D747F2, 0xBC8CB3B3 },/* -4.9789962505147994e-17 */
|
||||||
|
/**/ pp3 = {0x98000000, 0xBC8CB3B3 },/* -4.9789962314799099e-17 */
|
||||||
|
/**/ pp4 = {0x23e32ed7, 0xbacd747f },/* -1.9034889620193266e-25 */
|
||||||
|
/**/ hpinv = {0x6DC9C883, 0x3FE45F30 },/* 0.63661977236758138 */
|
||||||
|
/**/ toint = {0x00000000, 0x43380000 };/* 6755399441055744 */
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
251
sysdeps/ieee754/dbl-64/utan.h
Normal file
251
sysdeps/ieee754/dbl-64/utan.h
Normal file
@ -0,0 +1,251 @@
|
|||||||
|
|
||||||
|
/*
|
||||||
|
* IBM Accurate Mathematical Library
|
||||||
|
* Copyright (c) International Business Machines Corp., 2001
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU Lesser General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public License
|
||||||
|
* along with this program; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||||
|
*/
|
||||||
|
/******************************************************************/
|
||||||
|
/* */
|
||||||
|
/* MODULE_NAME:utan.h */
|
||||||
|
/* */
|
||||||
|
/* common data and variables prototype and definition */
|
||||||
|
/******************************************************************/
|
||||||
|
|
||||||
|
#ifndef UTAN_H
|
||||||
|
#define UTAN_H
|
||||||
|
|
||||||
|
#ifdef BIG_ENDI
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ d3 = {0x3FD55555, 0x55555555, }, /* 0.333... */
|
||||||
|
/**/ d5 = {0x3FC11111, 0x111107C6, }, /* 0.133... */
|
||||||
|
/**/ d7 = {0x3FABA1BA, 0x1CDB8745, }, /* . */
|
||||||
|
/**/ d9 = {0x3F9664ED, 0x49CFC666, }, /* . */
|
||||||
|
/**/ d11 = {0x3F82385A, 0x3CF2E4EA, }, /* . */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ a3 = {0x3fd55555, 0x55555555, }, /* 1/3 */
|
||||||
|
/**/ aa3 = {0x3c755555, 0x55555555, }, /* 1/3-a3 */
|
||||||
|
/**/ a5 = {0x3fc11111, 0x11111111, }, /* 2/15 */
|
||||||
|
/**/ aa5 = {0x3c411111, 0x11111111, }, /* 2/15-a5 */
|
||||||
|
/**/ a7 = {0x3faba1ba, 0x1ba1ba1c, }, /* 17/315 */
|
||||||
|
/**/ aa7 = {0xbc479179, 0x17917918, }, /* ()-a7 */
|
||||||
|
/**/ a9 = {0x3f9664f4, 0x882c10fa, }, /* 62/2835 */
|
||||||
|
/**/ aa9 = {0xbc09a528, 0x8b6c44fd, }, /* ()-a9 */
|
||||||
|
/**/ a11 = {0x3f8226e3, 0x55e6c23d, }, /* . */
|
||||||
|
/**/ aa11 = {0xbc2c292b, 0x8f1a2c13, }, /* . */
|
||||||
|
/**/ a13 = {0x3f6d6d3d, 0x0e157de0, }, /* . */
|
||||||
|
/**/ aa13 = {0xbc0280cf, 0xc968d971, }, /* . */
|
||||||
|
/**/ a15 = {0x3f57da36, 0x452b75e3, }, /* . */
|
||||||
|
/**/ aa15 = {0xbbf25789, 0xb285d2ed, }, /* . */
|
||||||
|
/**/ a17 = {0x3f435582, 0x48036744, }, /* . */
|
||||||
|
/**/ aa17 = {0x3be488d9, 0x563f1f23, }, /* . */
|
||||||
|
/**/ a19 = {0x3f2f57d7, 0x734d1664, }, /* . */
|
||||||
|
/**/ aa19 = {0x3bb0d55a, 0x913ccb50, }, /* . */
|
||||||
|
/**/ a21 = {0x3f1967e1, 0x8afcafad, }, /* . */
|
||||||
|
/**/ aa21 = {0xbbbd7614, 0xa42d44e6, }, /* . */
|
||||||
|
/**/ a23 = {0x3f0497d8, 0xeea25259, }, /* . */
|
||||||
|
/**/ aa23 = {0x3b99f2d0, 0x2e4d2863, }, /* . */
|
||||||
|
/**/ a25 = {0x3ef0b132, 0xd39a6050, }, /* . */
|
||||||
|
/**/ aa25 = {0x3b93b274, 0xc2c19614, }, /* . */
|
||||||
|
/**/ a27 = {0x3edb0f72, 0xd3ee24e9, }, /* . */
|
||||||
|
/**/ aa27 = {0x3b61688d, 0xdd595609, }, /* . */
|
||||||
|
/* polynomial III */
|
||||||
|
/**/ e0 = {0x3FD55555, 0x55554DBD, }, /* . */
|
||||||
|
/**/ e1 = {0x3FC11112, 0xE0A6B45F, }, /* . */
|
||||||
|
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x3ff00000, 0x00000000, }, /* 1 */
|
||||||
|
/**/ mone = {0xbff00000, 0x00000000, }, /*-1 */
|
||||||
|
/**/ mfftnhf = {0xc02f0000, 0x00000000, }, /*-15.5 */
|
||||||
|
/**/ two8 = {0x40700000, 0x00000000, }, /* 256 */
|
||||||
|
|
||||||
|
/**/ g1 = {0x3e4b096c, 0x00000000, }, /* 1.259e-8 */
|
||||||
|
/**/ g2 = {0x3faf212d, 0x00000000, }, /* 0.0608 */
|
||||||
|
/**/ g3 = {0x3fe92f1a, 0x00000000, }, /* 0.787 */
|
||||||
|
/**/ g4 = {0x40390000, 0x00000000, }, /* 25.0 */
|
||||||
|
/**/ g5 = {0x4197d784, 0x00000000, }, /* 1e8 */
|
||||||
|
/**/ gy1 = {0x3e7ad7f2, 0x9abcaf48, }, /* 1e-7 */
|
||||||
|
/**/ gy2 = {0x3faf212d, 0x00000000, }, /* 0.0608 */
|
||||||
|
|
||||||
|
/**/ u1 = {0x3cc8c33a, 0x00000000, }, /* 6.873e-16 */
|
||||||
|
/**/ u2 = {0x3983dc4d, 0x00000000, }, /* 1.224e-31 */
|
||||||
|
/**/ u3 = {0x3c78e14b, 0x00000000, }, /* 2.158e-17 */
|
||||||
|
/**/ ua3 = {0x3bfd8b58, 0x00000000, }, /* 1.001e-19 */
|
||||||
|
/**/ ub3 = {0x3cc81898, 0x00000000, }, /* 6.688e-16 */
|
||||||
|
/**/ u4 = {0x399856c2, 0x00000000, }, /* 3e-31 */
|
||||||
|
/**/ u5 = {0x3c39d80a, 0x00000000, }, /* 1.401e-18 */
|
||||||
|
/**/ u6 = {0x3c374c5a, 0x00000000, }, /* 1.263e-18 */
|
||||||
|
/**/ u7 = {0x39903beb, 0x00000000, }, /* 2.001e-31 */
|
||||||
|
/**/ u8 = {0x399c56ae, 0x00000000, }, /* 3.493e-31 */
|
||||||
|
/**/ u9 = {0x3c7d0ac7, 0x00000000, }, /* 2.519e-17 */
|
||||||
|
/**/ ua9 = {0x3bfd8b58, 0x00000000, }, /* 1.001e-19 */
|
||||||
|
/**/ ub9 = {0x3ccc2375, 0x00000000, }, /* 7.810e-16 */
|
||||||
|
/**/ u10 = {0x3c7e40af, 0x00000000, }, /* 2.624e-17 */
|
||||||
|
/**/ ua10 = {0x3bfd8b58, 0x00000000, }, /* 1.001e-19 */
|
||||||
|
/**/ ub10 = {0x3ccc6405, 0x00000000, }, /* 7.880e-16 */
|
||||||
|
/**/ u11 = {0x39e509b6, 0x00000000, }, /* 8.298e-30 */
|
||||||
|
/**/ u12 = {0x39e509b6, 0x00000000, }, /* 8.298e-30 */
|
||||||
|
/**/ u13 = {0x3c39d80a, 0x00000000, }, /* 1.401e-18 */
|
||||||
|
/**/ u14 = {0x3c374c5a, 0x00000000, }, /* 1.263e-18 */
|
||||||
|
/**/ u15 = {0x3ab5767a, 0x00000000, }, /* 6.935e-26 */
|
||||||
|
/**/ u16 = {0x3ab57744, 0x00000000, }, /* 6.936e-26 */
|
||||||
|
/**/ u17 = {0x3c7d0ac7, 0x00000000, }, /* 2.519e-17 */
|
||||||
|
/**/ ua17 = {0x3bfdb11f, 0x00000000, }, /* 1.006e-19 */
|
||||||
|
/**/ ub17 = {0x3ccc2375, 0x00000000, }, /* 7.810e-16 */
|
||||||
|
/**/ u18 = {0x3c7e40af, 0x00000000, }, /* 2.624e-17 */
|
||||||
|
/**/ ua18 = {0x3bfdb11f, 0x00000000, }, /* 1.006e-19 */
|
||||||
|
/**/ ub18 = {0x3ccc6405, 0x00000000, }, /* 7.880e-16 */
|
||||||
|
/**/ u19 = {0x39a13b61, 0x00000000, }, /* 4.248e-31 */
|
||||||
|
/**/ u20 = {0x39a13b61, 0x00000000, }, /* 4.248e-31 */
|
||||||
|
/**/ u21 = {0x3c3bb9b8, 0x00000000, }, /* 1.503e-18 */
|
||||||
|
/**/ u22 = {0x3c392e08, 0x00000000, }, /* 1.365e-18 */
|
||||||
|
/**/ u23 = {0x3a0ce706, 0x00000000, }, /* 4.560e-29 */
|
||||||
|
/**/ u24 = {0x3a0cff5d, 0x00000000, }, /* 4.575e-29 */
|
||||||
|
/**/ u25 = {0x3c7d0ac7, 0x00000000, }, /* 2.519e-17 */
|
||||||
|
/**/ ua25 = {0x3bfd8b58, 0x00000000, }, /* 1.001e-19 */
|
||||||
|
/**/ ub25 = {0x3ccc2375, 0x00000000, }, /* 7.810e-16 */
|
||||||
|
/**/ u26 = {0x3c7e40af, 0x00000000, }, /* 2.624e-17 */
|
||||||
|
/**/ ua26 = {0x3bfd8b58, 0x00000000, }, /* 1.001e-19 */
|
||||||
|
/**/ ub26 = {0x3ccc6405, 0x00000000, }, /* 7.880e-16 */
|
||||||
|
/**/ u27 = {0x3ad421cb, 0x00000000, }, /* 2.602e-25 */
|
||||||
|
/**/ u28 = {0x3ad421cb, 0x00000000, }, /* 2.602e-25 */
|
||||||
|
|
||||||
|
/**/ mp1 = {0x3FF921FB, 0x58000000, },
|
||||||
|
/**/ mp2 = {0xBE4DDE97, 0x3C000000, },
|
||||||
|
/**/ mp3 = {0xBC8CB3B3, 0x99D747F2, },
|
||||||
|
/**/ pp3 = {0xBC8CB3B3, 0x98000000, },
|
||||||
|
/**/ pp4 = {0xbacd747f, 0x23e32ed7, },
|
||||||
|
/**/ hpinv = {0x3FE45F30, 0x6DC9C883, },
|
||||||
|
/**/ toint = {0x43380000, 0x00000000, };
|
||||||
|
|
||||||
|
#else
|
||||||
|
#ifdef LITTLE_ENDI
|
||||||
|
|
||||||
|
static const number
|
||||||
|
/* polynomial I */
|
||||||
|
/**/ d3 = {0x55555555, 0x3FD55555, }, /* 0.333... */
|
||||||
|
/**/ d5 = {0x111107C6, 0x3FC11111, }, /* 0.133... */
|
||||||
|
/**/ d7 = {0x1CDB8745, 0x3FABA1BA, }, /* . */
|
||||||
|
/**/ d9 = {0x49CFC666, 0x3F9664ED, }, /* . */
|
||||||
|
/**/ d11 = {0x3CF2E4EA, 0x3F82385A, }, /* . */
|
||||||
|
/* polynomial II */
|
||||||
|
/**/ a3 = {0x55555555, 0x3fd55555, }, /* 1/3 */
|
||||||
|
/**/ aa3 = {0x55555555, 0x3c755555, }, /* 1/3-a3 */
|
||||||
|
/**/ a5 = {0x11111111, 0x3fc11111, }, /* 2/15 */
|
||||||
|
/**/ aa5 = {0x11111111, 0x3c411111, }, /* 2/15-a5 */
|
||||||
|
/**/ a7 = {0x1ba1ba1c, 0x3faba1ba, }, /* 17/315 */
|
||||||
|
/**/ aa7 = {0x17917918, 0xbc479179, }, /* ()-a7 */
|
||||||
|
/**/ a9 = {0x882c10fa, 0x3f9664f4, }, /* 62/2835 */
|
||||||
|
/**/ aa9 = {0x8b6c44fd, 0xbc09a528, }, /* ()-a9 */
|
||||||
|
/**/ a11 = {0x55e6c23d, 0x3f8226e3, }, /* . */
|
||||||
|
/**/ aa11 = {0x8f1a2c13, 0xbc2c292b, }, /* . */
|
||||||
|
/**/ a13 = {0x0e157de0, 0x3f6d6d3d, }, /* . */
|
||||||
|
/**/ aa13 = {0xc968d971, 0xbc0280cf, }, /* . */
|
||||||
|
/**/ a15 = {0x452b75e3, 0x3f57da36, }, /* . */
|
||||||
|
/**/ aa15 = {0xb285d2ed, 0xbbf25789, }, /* . */
|
||||||
|
/**/ a17 = {0x48036744, 0x3f435582, }, /* . */
|
||||||
|
/**/ aa17 = {0x563f1f23, 0x3be488d9, }, /* . */
|
||||||
|
/**/ a19 = {0x734d1664, 0x3f2f57d7, }, /* . */
|
||||||
|
/**/ aa19 = {0x913ccb50, 0x3bb0d55a, }, /* . */
|
||||||
|
/**/ a21 = {0x8afcafad, 0x3f1967e1, }, /* . */
|
||||||
|
/**/ aa21 = {0xa42d44e6, 0xbbbd7614, }, /* . */
|
||||||
|
/**/ a23 = {0xeea25259, 0x3f0497d8, }, /* . */
|
||||||
|
/**/ aa23 = {0x2e4d2863, 0x3b99f2d0, }, /* . */
|
||||||
|
/**/ a25 = {0xd39a6050, 0x3ef0b132, }, /* . */
|
||||||
|
/**/ aa25 = {0xc2c19614, 0x3b93b274, }, /* . */
|
||||||
|
/**/ a27 = {0xd3ee24e9, 0x3edb0f72, }, /* . */
|
||||||
|
/**/ aa27 = {0xdd595609, 0x3b61688d, }, /* . */
|
||||||
|
/* polynomial III */
|
||||||
|
/**/ e0 = {0x55554DBD, 0x3FD55555, }, /* . */
|
||||||
|
/**/ e1 = {0xE0A6B45F, 0x3FC11112, }, /* . */
|
||||||
|
|
||||||
|
/* constants */
|
||||||
|
/**/ zero = {0x00000000, 0x00000000, }, /* 0 */
|
||||||
|
/**/ one = {0x00000000, 0x3ff00000, }, /* 1 */
|
||||||
|
/**/ mone = {0x00000000, 0xbff00000, }, /*-1 */
|
||||||
|
/**/ mfftnhf = {0x00000000, 0xc02f0000, }, /*-15.5 */
|
||||||
|
/**/ two8 = {0x00000000, 0x40700000, }, /* 256 */
|
||||||
|
|
||||||
|
/**/ g1 = {0x00000000, 0x3e4b096c, }, /* 1.259e-8 */
|
||||||
|
/**/ g2 = {0x00000000, 0x3faf212d, }, /* 0.0608 */
|
||||||
|
/**/ g3 = {0x00000000, 0x3fe92f1a, }, /* 0.787 */
|
||||||
|
/**/ g4 = {0x00000000, 0x40390000, }, /* 25.0 */
|
||||||
|
/**/ g5 = {0x00000000, 0x4197d784, }, /* 1e8 */
|
||||||
|
/**/ gy1 = {0x9abcaf48, 0x3e7ad7f2, }, /* 1e-7 */
|
||||||
|
/**/ gy2 = {0x00000000, 0x3faf212d, }, /* 0.0608 */
|
||||||
|
|
||||||
|
/**/ u1 = {0x00000000, 0x3cc8c33a, }, /* 6.873e-16 */
|
||||||
|
/**/ u2 = {0x00000000, 0x3983dc4d, }, /* 1.224e-31 */
|
||||||
|
/**/ u3 = {0x00000000, 0x3c78e14b, }, /* 2.158e-17 */
|
||||||
|
/**/ ua3 = {0x00000000, 0x3bfd8b58, }, /* 1.001e-19 */
|
||||||
|
/**/ ub3 = {0x00000000, 0x3cc81898, }, /* 6.688e-16 */
|
||||||
|
/**/ u4 = {0x00000000, 0x399856c2, }, /* 3e-31 */
|
||||||
|
/**/ u5 = {0x00000000, 0x3c39d80a, }, /* 1.401e-18 */
|
||||||
|
/**/ u6 = {0x00000000, 0x3c374c5a, }, /* 1.263e-18 */
|
||||||
|
/**/ u7 = {0x00000000, 0x39903beb, }, /* 2.001e-31 */
|
||||||
|
/**/ u8 = {0x00000000, 0x399c56ae, }, /* 3.493e-31 */
|
||||||
|
/**/ u9 = {0x00000000, 0x3c7d0ac7, }, /* 2.519e-17 */
|
||||||
|
/**/ ua9 = {0x00000000, 0x3bfd8b58, }, /* 1.001e-19 */
|
||||||
|
/**/ ub9 = {0x00000000, 0x3ccc2375, }, /* 7.810e-16 */
|
||||||
|
/**/ u10 = {0x00000000, 0x3c7e40af, }, /* 2.624e-17 */
|
||||||
|
/**/ ua10 = {0x00000000, 0x3bfd8b58, }, /* 1.001e-19 */
|
||||||
|
/**/ ub10 = {0x00000000, 0x3ccc6405, }, /* 7.880e-16 */
|
||||||
|
/**/ u11 = {0x00000000, 0x39e509b6, }, /* 8.298e-30 */
|
||||||
|
/**/ u12 = {0x00000000, 0x39e509b6, }, /* 8.298e-30 */
|
||||||
|
/**/ u13 = {0x00000000, 0x3c39d80a, }, /* 1.401e-18 */
|
||||||
|
/**/ u14 = {0x00000000, 0x3c374c5a, }, /* 1.263e-18 */
|
||||||
|
/**/ u15 = {0x00000000, 0x3ab5767a, }, /* 6.935e-26 */
|
||||||
|
/**/ u16 = {0x00000000, 0x3ab57744, }, /* 6.936e-26 */
|
||||||
|
/**/ u17 = {0x00000000, 0x3c7d0ac7, }, /* 2.519e-17 */
|
||||||
|
/**/ ua17 = {0x00000000, 0x3bfdb11f, }, /* 1.006e-19 */
|
||||||
|
/**/ ub17 = {0x00000000, 0x3ccc2375, }, /* 7.810e-16 */
|
||||||
|
/**/ u18 = {0x00000000, 0x3c7e40af, }, /* 2.624e-17 */
|
||||||
|
/**/ ua18 = {0x00000000, 0x3bfdb11f, }, /* 1.006e-19 */
|
||||||
|
/**/ ub18 = {0x00000000, 0x3ccc6405, }, /* 7.880e-16 */
|
||||||
|
/**/ u19 = {0x00000000, 0x39a13b61, }, /* 4.248e-31 */
|
||||||
|
/**/ u20 = {0x00000000, 0x39a13b61, }, /* 4.248e-31 */
|
||||||
|
/**/ u21 = {0x00000000, 0x3c3bb9b8, }, /* 1.503e-18 */
|
||||||
|
/**/ u22 = {0x00000000, 0x3c392e08, }, /* 1.365e-18 */
|
||||||
|
/**/ u23 = {0x00000000, 0x3a0ce706, }, /* 4.560e-29 */
|
||||||
|
/**/ u24 = {0x00000000, 0x3a0cff5d, }, /* 4.575e-29 */
|
||||||
|
/**/ u25 = {0x00000000, 0x3c7d0ac7, }, /* 2.519e-17 */
|
||||||
|
/**/ ua25 = {0x00000000, 0x3bfd8b58, }, /* 1.001e-19 */
|
||||||
|
/**/ ub25 = {0x00000000, 0x3ccc2375, }, /* 7.810e-16 */
|
||||||
|
/**/ u26 = {0x00000000, 0x3c7e40af, }, /* 2.624e-17 */
|
||||||
|
/**/ ua26 = {0x00000000, 0x3bfd8b58, }, /* 1.001e-19 */
|
||||||
|
/**/ ub26 = {0x00000000, 0x3ccc6405, }, /* 7.880e-16 */
|
||||||
|
/**/ u27 = {0x00000000, 0x3ad421cb, }, /* 2.602e-25 */
|
||||||
|
/**/ u28 = {0x00000000, 0x3ad421cb, }, /* 2.602e-25 */
|
||||||
|
|
||||||
|
/**/ mp1 = {0x58000000, 0x3FF921FB, },
|
||||||
|
/**/ mp2 = {0x3C000000, 0xBE4DDE97, },
|
||||||
|
/**/ mp3 = {0x99D747F2, 0xBC8CB3B3, },
|
||||||
|
/**/ pp3 = {0x98000000, 0xBC8CB3B3, },
|
||||||
|
/**/ pp4 = {0x23e32ed7, 0xbacd747f, },
|
||||||
|
/**/ hpinv = {0x6DC9C883, 0x3FE45F30, },
|
||||||
|
/**/ toint = {0x00000000, 0x43380000, };
|
||||||
|
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#define ZERO zero.d
|
||||||
|
#define ONE one.d
|
||||||
|
#define MONE mone.d
|
||||||
|
#define TWO8 two8.d
|
||||||
|
|
||||||
|
#endif
|
1507
sysdeps/ieee754/dbl-64/utan.tbl
Normal file
1507
sysdeps/ieee754/dbl-64/utan.tbl
Normal file
File diff suppressed because it is too large
Load Diff
1
sysdeps/m68k/fpu/branred.c
Normal file
1
sysdeps/m68k/fpu/branred.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/m68k/fpu/doasin.c
Normal file
1
sysdeps/m68k/fpu/doasin.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/m68k/fpu/dosincos.c
Normal file
1
sysdeps/m68k/fpu/dosincos.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/m68k/fpu/halfulp.c
Normal file
1
sysdeps/m68k/fpu/halfulp.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
1
sysdeps/m68k/fpu/mpa.c
Normal file
1
sysdeps/m68k/fpu/mpa.c
Normal file
@ -0,0 +1 @@
|
|||||||
|
/* Not needed. */
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user