Use long wherever possible in mpa.c

Using long throughout like powerpc does is beneficial since it reduces
the need to switch to 32-bit instructions.  It gives a very minor
performance improvement.
This commit is contained in:
Siddhesh Poyarekar 2013-02-25 16:43:02 +05:30
parent 2f22a1e8dd
commit e69804d14e
2 changed files with 50 additions and 31 deletions
ChangeLog
sysdeps/ieee754/dbl-64

View File

@ -1,5 +1,16 @@
2013-02-25 Siddhesh Poyarekar <siddhesh@redhat.com>
* sysdeps/ieee754/dbl-64/mpa.c (mcr): Use long instead of int.
(__acr): Likewise.
(__cpy): Likewise.
(norm): Likewise.
(denorm): Likewise.
(__dbl_mp): Likewise.
(add_magnitudes): Likewise.
(sub_magnitudes): Likewise.
(__mul): Likewise.
(__inv): Likewise.
* sysdeps/ieee754/dbl-64/slowexp.c: Reformat in GNU coding
style.

View File

@ -59,8 +59,9 @@ const mp_no mptwo = {1, {1.0, 2.0}};
static int
mcr (const mp_no *x, const mp_no *y, int p)
{
int i;
for (i = 1; i <= p; i++)
long i;
long p2 = p;
for (i = 1; i <= p2; i++)
{
if (X[i] == Y[i])
continue;
@ -76,7 +77,7 @@ mcr (const mp_no *x, const mp_no *y, int p)
int
__acr (const mp_no *x, const mp_no *y, int p)
{
int i;
long i;
if (X[0] == ZERO)
{
@ -107,8 +108,10 @@ __acr (const mp_no *x, const mp_no *y, int p)
void
__cpy (const mp_no *x, mp_no *y, int p)
{
long i;
EY = EX;
for (int i = 0; i <= p; i++)
for (i = 0; i <= p; i++)
Y[i] = X[i];
}
#endif
@ -120,7 +123,7 @@ static void
norm (const mp_no *x, double *y, int p)
{
#define R RADIXI
int i;
long i;
double a, c, u, v, z[5];
if (p < 5)
{
@ -194,7 +197,8 @@ norm (const mp_no *x, double *y, int p)
static void
denorm (const mp_no *x, double *y, int p)
{
int i, k;
long i, k;
long p2 = p;
double c, u, z[5];
#define R RADIXI
@ -204,7 +208,7 @@ denorm (const mp_no *x, double *y, int p)
return;
}
if (p == 1)
if (p2 == 1)
{
if (EX == -42)
{
@ -228,7 +232,7 @@ denorm (const mp_no *x, double *y, int p)
k = 1;
}
}
else if (p == 2)
else if (p2 == 2)
{
if (EX == -42)
{
@ -281,7 +285,7 @@ denorm (const mp_no *x, double *y, int p)
if (u == z[3])
{
for (i = k + 1; i <= p; i++)
for (i = k + 1; i <= p2; i++)
{
if (X[i] == ZERO)
continue;
@ -323,7 +327,8 @@ void
SECTION
__dbl_mp (double x, mp_no *y, int p)
{
int i, n;
long i, n;
long p2 = p;
double u;
/* Sign. */
@ -347,7 +352,7 @@ __dbl_mp (double x, mp_no *y, int p)
x *= RADIX;
/* Digits. */
n = MIN (p, 4);
n = MIN (p2, 4);
for (i = 1; i <= n; i++)
{
u = (x + TWO52) - TWO52;
@ -357,7 +362,7 @@ __dbl_mp (double x, mp_no *y, int p)
x -= u;
x *= RADIX;
}
for (; i <= p; i++)
for (; i <= p2; i++)
Y[i] = ZERO;
}
@ -369,14 +374,15 @@ static void
SECTION
add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int i, j, k;
long i, j, k;
long p2 = p;
double zk;
EZ = EX;
i = p;
j = p + EY - EX;
k = p + 1;
i = p2;
j = p2 + EY - EX;
k = p2 + 1;
if (__glibc_unlikely (j < 1))
{
@ -418,7 +424,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
if (zk == ZERO)
{
for (i = 1; i <= p; i++)
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
}
else
@ -436,13 +442,14 @@ static void
SECTION
sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int i, j, k;
long i, j, k;
long p2 = p;
double zk;
EZ = EX;
i = p;
j = p + EY - EX;
k = p;
i = p2;
j = p2 + EY - EX;
k = p2;
/* Y is too small compared to X, copy X over to the result. */
if (__glibc_unlikely (j < 1))
@ -453,7 +460,7 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
/* The relevant least significant digit in Y is non-zero, so we factor it in
to enhance accuracy. */
if (j < p && Y[j + 1] > ZERO)
if (j < p2 && Y[j + 1] > ZERO)
{
Z[k + 1] = RADIX - Y[j + 1];
zk = MONE;
@ -496,9 +503,9 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
/* Normalize. */
for (i = 1; Z[i] == ZERO; i++);
EZ = EZ - i + 1;
for (k = 1; i <= p + 1;)
for (k = 1; i <= p2 + 1;)
Z[k++] = Z[i++];
for (; k <= p;)
for (; k <= p2;)
Z[k++] = ZERO;
}
@ -610,7 +617,8 @@ void
SECTION
__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int i, j, k, ip, ip2;
long i, j, k, ip, ip2;
long p2 = p;
double u, zk;
const mp_no *a;
@ -623,7 +631,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
/* We need not iterate through all X's and Y's since it's pointless to
multiply zeroes. Here, both are zero... */
for (ip2 = p; ip2 > 0; ip2--)
for (ip2 = p2; ip2 > 0; ip2--)
if (X[ip2] != ZERO || Y[ip2] != ZERO)
break;
@ -660,16 +668,16 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
'internal precision' of the input numbers, i.e. digits after ip and ip2
are all ZERO. */
k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
while (k > ip + ip2 + 1)
Z[k--] = ZERO;
zk = Z[k] = ZERO;
while (k > p)
while (k > p2)
{
for (i = k - p, j = p; i < p + 1; i++, j--)
for (i = k - p2, j = p2; i < p2 + 1; i++, j--)
zk += X[i] * Y[j];
u = (zk + CUTTER) - CUTTER;
@ -701,7 +709,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
/* Is there a carry beyond the most significant digit? */
if (__glibc_unlikely (Z[1] == ZERO))
{
for (i = 1; i <= p; i++)
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
e--;
}
@ -821,7 +829,7 @@ static void
SECTION
__inv (const mp_no *x, mp_no *y, int p)
{
int i;
long i;
double t;
mp_no z, w;
static const int np1[] =