mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-10 23:30:07 +00:00
Create and use SET_RESTORE_ROUND{,_NOEX,_53BIT}{,F,L}.
This commit is contained in:
parent
7d2e8012cf
commit
eb92c487b3
24
ChangeLog
24
ChangeLog
@ -1,5 +1,29 @@
|
||||
2012-03-19 Richard Henderson <rth@twiddle.net>
|
||||
|
||||
* sysdeps/generic/math_private.h (libc_feholdsetround): New.
|
||||
(libc_feholdsetroundf, libc_feholdsetroundl): New.
|
||||
(libc_feresetround, libc_feresetroundf, libc_feresetroundl): New.
|
||||
(libc_feresetround_noex): New.
|
||||
(libc_feresetround_noexf): New.
|
||||
(libc_feresetround_noexl): New.
|
||||
(SET_RESTORE_ROUND, SET_RESTORE_ROUNDF, SET_RESTORE_ROUNDL): New.
|
||||
(SET_RESTORE_ROUND_NOEX, SET_RESTORE_ROUND_NOEXF): New.
|
||||
(SET_RESTORE_ROUND_NOEXL, SET_RESTORE_ROUND_53BIT): New.
|
||||
* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Use
|
||||
SET_RESTORE_ROUND.
|
||||
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Use SET_RESTORE_ROUND_53BIT.
|
||||
(__cos): Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_tan.c (__tan): Likewise.
|
||||
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Use
|
||||
SET_RESTORE_ROUND_NOEX.
|
||||
* sysdeps/ieee754/dbl-64/e_exp2f.c (__ieee754_exp2f): Use
|
||||
SET_RESTORE_ROUND_NOEXF.
|
||||
* sysdeps/ieee754/flt-32/e_expf.c (__ieee754_expf): Likewise.
|
||||
* sysdeps/x86_64/fpu/math_private.h (libc_feholdsetround): New.
|
||||
(libc_feholdsetroundf): New.
|
||||
(libc_feresetround, libc_feresetroundf): New.
|
||||
|
||||
* sysdeps/i386/fpu/math_private.h: Include <fenv.h>, <fpu_control.h>.
|
||||
(libc_feholdexcept_setround_53bit): Convert from macro to function.
|
||||
(libc_feupdateenv_53bit): Likewise. Don't force _FPU_EXTENDED.
|
||||
|
@ -457,6 +457,75 @@ default_libc_feupdateenv (fenv_t *e)
|
||||
# define libc_feupdateenv_53bit libc_feupdateenv
|
||||
#endif
|
||||
|
||||
/* Save and set the rounding mode. The use of fenv_t to store the old mode
|
||||
allows a target-specific version of this function to avoid converting the
|
||||
rounding mode from the fpu format. By default we have no choice but to
|
||||
manipulate the entire env. */
|
||||
|
||||
#ifndef libc_feholdsetround
|
||||
# define libc_feholdsetround libc_feholdexcept_setround
|
||||
#endif
|
||||
#ifndef libc_feholdsetroundf
|
||||
# define libc_feholdsetroundf libc_feholdexcept_setroundf
|
||||
#endif
|
||||
#ifndef libc_feholdsetroundl
|
||||
# define libc_feholdsetroundl libc_feholdexcept_setroundl
|
||||
#endif
|
||||
|
||||
/* ... and the reverse. */
|
||||
|
||||
#ifndef libc_feresetround
|
||||
# define libc_feresetround libc_feupdateenv
|
||||
#endif
|
||||
#ifndef libc_feresetroundf
|
||||
# define libc_feresetroundf libc_feupdateenvf
|
||||
#endif
|
||||
#ifndef libc_feresetroundl
|
||||
# define libc_feresetroundl libc_feupdateenvl
|
||||
#endif
|
||||
|
||||
/* ... and a version that may also discard exceptions. */
|
||||
|
||||
#ifndef libc_feresetround_noex
|
||||
# define libc_feresetround_noex libc_fesetenv
|
||||
#endif
|
||||
#ifndef libc_feresetround_noexf
|
||||
# define libc_feresetround_noexf libc_fesetenvf
|
||||
#endif
|
||||
#ifndef libc_feresetround_noexl
|
||||
# define libc_feresetround_noexl libc_fesetenvl
|
||||
#endif
|
||||
|
||||
/* Save and restore the rounding mode within a lexical block. */
|
||||
|
||||
#define SET_RESTORE_ROUND(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feresetround))); \
|
||||
libc_feholdsetround (&__libc_save_rm, (RM))
|
||||
#define SET_RESTORE_ROUNDF(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feresetroundf))); \
|
||||
libc_feholdsetroundf (&__libc_save_rm, (RM))
|
||||
#define SET_RESTORE_ROUNDL(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feresetroundl))); \
|
||||
libc_feholdsetroundl (&__libc_save_rm, (RM))
|
||||
|
||||
/* Save and restore the rounding mode within a lexical block, and also
|
||||
the set of exceptions raised within the block may be discarded. */
|
||||
|
||||
#define SET_RESTORE_ROUND_NOEX(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feresetround_noex))); \
|
||||
libc_feholdsetround (&__libc_save_rm, (RM))
|
||||
#define SET_RESTORE_ROUND_NOEXF(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feresetround_noexf))); \
|
||||
libc_feholdsetroundf (&__libc_save_rm, (RM))
|
||||
#define SET_RESTORE_ROUND_NOEXL(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feresetround_noexl))); \
|
||||
libc_feholdsetroundl (&__libc_save_rm, (RM))
|
||||
|
||||
/* Like SET_RESTORE_ROUND, but also set rounding precision to 53 bits. */
|
||||
#define SET_RESTORE_ROUND_53BIT(RM) \
|
||||
fenv_t __libc_save_rm __attribute__((cleanup(libc_feupdateenv_53bit))); \
|
||||
libc_feholdexcept_setround_53bit (&__libc_save_rm, (RM))
|
||||
|
||||
#define __nan(str) \
|
||||
(__builtin_constant_p (str) && str[0] == '\0' ? NAN : __nan (str))
|
||||
#define __nanf(str) \
|
||||
|
@ -59,10 +59,9 @@ __ieee754_exp(double x) {
|
||||
int4 k;
|
||||
#endif
|
||||
int4 i,j,m,n,ex;
|
||||
fenv_t env;
|
||||
double retval;
|
||||
|
||||
libc_feholdexcept_setround (&env, FE_TONEAREST);
|
||||
SET_RESTORE_ROUND (FE_TONEAREST);
|
||||
|
||||
junk1.x = x;
|
||||
m = junk1.i[HIGH_HALF];
|
||||
@ -157,7 +156,6 @@ __ieee754_exp(double x) {
|
||||
else { retval = __slowexp(x); goto ret; }
|
||||
}
|
||||
ret:
|
||||
libc_feupdateenv (&env);
|
||||
return retval;
|
||||
}
|
||||
#ifndef __ieee754_exp
|
||||
|
@ -61,57 +61,56 @@ __ieee754_exp2 (double x)
|
||||
int tval, unsafe;
|
||||
double rx, x22, result;
|
||||
union ieee754_double ex2_u, scale_u;
|
||||
fenv_t oldenv;
|
||||
|
||||
libc_feholdexcept_setround (&oldenv, FE_TONEAREST);
|
||||
{
|
||||
SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
|
||||
|
||||
/* 1. Argument reduction.
|
||||
Choose integers ex, -256 <= t < 256, and some real
|
||||
-1/1024 <= x1 <= 1024 so that
|
||||
x = ex + t/512 + x1.
|
||||
/* 1. Argument reduction.
|
||||
Choose integers ex, -256 <= t < 256, and some real
|
||||
-1/1024 <= x1 <= 1024 so that
|
||||
x = ex + t/512 + x1.
|
||||
|
||||
First, calculate rx = ex + t/512. */
|
||||
rx = x + THREEp42;
|
||||
rx -= THREEp42;
|
||||
x -= rx; /* Compute x=x1. */
|
||||
/* Compute tval = (ex*512 + t)+256.
|
||||
Now, t = (tval mod 512)-256 and ex=tval/512 [that's mod, NOT %; and
|
||||
/-round-to-nearest not the usual c integer /]. */
|
||||
tval = (int) (rx * 512.0 + 256.0);
|
||||
First, calculate rx = ex + t/512. */
|
||||
rx = x + THREEp42;
|
||||
rx -= THREEp42;
|
||||
x -= rx; /* Compute x=x1. */
|
||||
/* Compute tval = (ex*512 + t)+256.
|
||||
Now, t = (tval mod 512)-256 and ex=tval/512 [that's mod, NOT %;
|
||||
and /-round-to-nearest not the usual c integer /]. */
|
||||
tval = (int) (rx * 512.0 + 256.0);
|
||||
|
||||
/* 2. Adjust for accurate table entry.
|
||||
Find e so that
|
||||
x = ex + t/512 + e + x2
|
||||
where -1e6 < e < 1e6, and
|
||||
(double)(2^(t/512+e))
|
||||
is accurate to one part in 2^-64. */
|
||||
/* 2. Adjust for accurate table entry.
|
||||
Find e so that
|
||||
x = ex + t/512 + e + x2
|
||||
where -1e6 < e < 1e6, and
|
||||
(double)(2^(t/512+e))
|
||||
is accurate to one part in 2^-64. */
|
||||
|
||||
/* 'tval & 511' is the same as 'tval%512' except that it's always
|
||||
positive.
|
||||
Compute x = x2. */
|
||||
x -= exp2_deltatable[tval & 511];
|
||||
/* 'tval & 511' is the same as 'tval%512' except that it's always
|
||||
positive.
|
||||
Compute x = x2. */
|
||||
x -= exp2_deltatable[tval & 511];
|
||||
|
||||
/* 3. Compute ex2 = 2^(t/512+e+ex). */
|
||||
ex2_u.d = exp2_accuratetable[tval & 511];
|
||||
tval >>= 9;
|
||||
unsafe = abs(tval) >= -DBL_MIN_EXP - 1;
|
||||
ex2_u.ieee.exponent += tval >> unsafe;
|
||||
scale_u.d = 1.0;
|
||||
scale_u.ieee.exponent += tval - (tval >> unsafe);
|
||||
/* 3. Compute ex2 = 2^(t/512+e+ex). */
|
||||
ex2_u.d = exp2_accuratetable[tval & 511];
|
||||
tval >>= 9;
|
||||
unsafe = abs(tval) >= -DBL_MIN_EXP - 1;
|
||||
ex2_u.ieee.exponent += tval >> unsafe;
|
||||
scale_u.d = 1.0;
|
||||
scale_u.ieee.exponent += tval - (tval >> unsafe);
|
||||
|
||||
/* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
|
||||
with maximum error in [-2^-10-2^-30,2^-10+2^-30]
|
||||
less than 10^-19. */
|
||||
/* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
|
||||
with maximum error in [-2^-10-2^-30,2^-10+2^-30]
|
||||
less than 10^-19. */
|
||||
|
||||
x22 = (((.0096181293647031180
|
||||
* x + .055504110254308625)
|
||||
* x + .240226506959100583)
|
||||
* x + .69314718055994495) * ex2_u.d;
|
||||
math_opt_barrier (x22);
|
||||
x22 = (((.0096181293647031180
|
||||
* x + .055504110254308625)
|
||||
* x + .240226506959100583)
|
||||
* x + .69314718055994495) * ex2_u.d;
|
||||
math_opt_barrier (x22);
|
||||
}
|
||||
|
||||
/* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */
|
||||
libc_fesetenv (&oldenv);
|
||||
|
||||
result = x22 * x + ex2_u.d;
|
||||
|
||||
if (!unsafe)
|
||||
|
@ -85,10 +85,9 @@ __ieee754_pow(double x, double y) {
|
||||
(u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) &&
|
||||
/* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
|
||||
(v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */
|
||||
fenv_t env;
|
||||
double retval;
|
||||
|
||||
libc_feholdexcept_setround (&env, FE_TONEAREST);
|
||||
SET_RESTORE_ROUND (FE_TONEAREST);
|
||||
|
||||
z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */
|
||||
t = y*134217729.0;
|
||||
@ -105,7 +104,6 @@ __ieee754_pow(double x, double y) {
|
||||
t = __exp1(a1,a2,1.9e16*error); /* return -10 or 0 if wasn't computed exactly */
|
||||
retval = (t>0)?t:power1(x,y);
|
||||
|
||||
libc_feupdateenv (&env);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -108,10 +108,9 @@ __sin(double x){
|
||||
#if 0
|
||||
int4 nn;
|
||||
#endif
|
||||
fenv_t env;
|
||||
double retval = 0;
|
||||
|
||||
libc_feholdexcept_setround_53bit (&env, FE_TONEAREST);
|
||||
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
||||
|
||||
u.x = x;
|
||||
m = u.i[HIGH_HALF];
|
||||
@ -365,7 +364,6 @@ __sin(double x){
|
||||
}
|
||||
|
||||
ret:
|
||||
libc_feupdateenv_53bit (&env);
|
||||
return retval;
|
||||
}
|
||||
|
||||
@ -383,10 +381,9 @@ __cos(double x)
|
||||
mynumber u,v;
|
||||
int4 k,m,n;
|
||||
|
||||
fenv_t env;
|
||||
double retval = 0;
|
||||
|
||||
libc_feholdexcept_setround_53bit (&env, FE_TONEAREST);
|
||||
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
||||
|
||||
u.x = x;
|
||||
m = u.i[HIGH_HALF];
|
||||
@ -635,7 +632,6 @@ __cos(double x)
|
||||
}
|
||||
|
||||
ret:
|
||||
libc_feupdateenv_53bit (&env);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -68,13 +68,12 @@ tan(double x) {
|
||||
mp_no mpy;
|
||||
#endif
|
||||
|
||||
fenv_t env;
|
||||
double retval;
|
||||
|
||||
int __branred(double, double *, double *);
|
||||
int __mpranred(double, mp_no *, int);
|
||||
|
||||
libc_feholdexcept_setround_53bit (&env, FE_TONEAREST);
|
||||
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
||||
|
||||
/* x=+-INF, x=NaN */
|
||||
num.d = x; ux = num.i[HIGH_HALF];
|
||||
@ -503,7 +502,6 @@ tan(double x) {
|
||||
goto ret;
|
||||
|
||||
ret:
|
||||
libc_feupdateenv_53bit (&env);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -54,53 +54,52 @@ __ieee754_exp2f (float x)
|
||||
int tval, unsafe;
|
||||
float rx, x22, result;
|
||||
union ieee754_float ex2_u, scale_u;
|
||||
fenv_t oldenv;
|
||||
|
||||
libc_feholdexcept_setroundf (&oldenv, FE_TONEAREST);
|
||||
{
|
||||
SET_RESTORE_ROUND_NOEXF (FE_TONEAREST);
|
||||
|
||||
/* 1. Argument reduction.
|
||||
Choose integers ex, -128 <= t < 128, and some real
|
||||
-1/512 <= x1 <= 1/512 so that
|
||||
x = ex + t/512 + x1.
|
||||
/* 1. Argument reduction.
|
||||
Choose integers ex, -128 <= t < 128, and some real
|
||||
-1/512 <= x1 <= 1/512 so that
|
||||
x = ex + t/512 + x1.
|
||||
|
||||
First, calculate rx = ex + t/256. */
|
||||
rx = x + THREEp14;
|
||||
rx -= THREEp14;
|
||||
x -= rx; /* Compute x=x1. */
|
||||
/* Compute tval = (ex*256 + t)+128.
|
||||
Now, t = (tval mod 256)-128 and ex=tval/256 [that's mod, NOT %; and
|
||||
/-round-to-nearest not the usual c integer /]. */
|
||||
tval = (int) (rx * 256.0f + 128.0f);
|
||||
First, calculate rx = ex + t/256. */
|
||||
rx = x + THREEp14;
|
||||
rx -= THREEp14;
|
||||
x -= rx; /* Compute x=x1. */
|
||||
/* Compute tval = (ex*256 + t)+128.
|
||||
Now, t = (tval mod 256)-128 and ex=tval/256 [that's mod, NOT %;
|
||||
and /-round-to-nearest not the usual c integer /]. */
|
||||
tval = (int) (rx * 256.0f + 128.0f);
|
||||
|
||||
/* 2. Adjust for accurate table entry.
|
||||
Find e so that
|
||||
x = ex + t/256 + e + x2
|
||||
where -7e-4 < e < 7e-4, and
|
||||
(float)(2^(t/256+e))
|
||||
is accurate to one part in 2^-64. */
|
||||
/* 2. Adjust for accurate table entry.
|
||||
Find e so that
|
||||
x = ex + t/256 + e + x2
|
||||
where -7e-4 < e < 7e-4, and
|
||||
(float)(2^(t/256+e))
|
||||
is accurate to one part in 2^-64. */
|
||||
|
||||
/* 'tval & 255' is the same as 'tval%256' except that it's always
|
||||
positive.
|
||||
Compute x = x2. */
|
||||
x -= __exp2f_deltatable[tval & 255];
|
||||
/* 'tval & 255' is the same as 'tval%256' except that it's always
|
||||
positive.
|
||||
Compute x = x2. */
|
||||
x -= __exp2f_deltatable[tval & 255];
|
||||
|
||||
/* 3. Compute ex2 = 2^(t/255+e+ex). */
|
||||
ex2_u.f = __exp2f_atable[tval & 255];
|
||||
tval >>= 8;
|
||||
unsafe = abs(tval) >= -FLT_MIN_EXP - 1;
|
||||
ex2_u.ieee.exponent += tval >> unsafe;
|
||||
scale_u.f = 1.0;
|
||||
scale_u.ieee.exponent += tval - (tval >> unsafe);
|
||||
/* 3. Compute ex2 = 2^(t/255+e+ex). */
|
||||
ex2_u.f = __exp2f_atable[tval & 255];
|
||||
tval >>= 8;
|
||||
unsafe = abs(tval) >= -FLT_MIN_EXP - 1;
|
||||
ex2_u.ieee.exponent += tval >> unsafe;
|
||||
scale_u.f = 1.0;
|
||||
scale_u.ieee.exponent += tval - (tval >> unsafe);
|
||||
|
||||
/* 4. Approximate 2^x2 - 1, using a second-degree polynomial,
|
||||
with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14]
|
||||
less than 1.3e-10. */
|
||||
/* 4. Approximate 2^x2 - 1, using a second-degree polynomial,
|
||||
with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14]
|
||||
less than 1.3e-10. */
|
||||
|
||||
x22 = (.24022656679f * x + .69314736128f) * ex2_u.f;
|
||||
x22 = (.24022656679f * x + .69314736128f) * ex2_u.f;
|
||||
}
|
||||
|
||||
/* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */
|
||||
libc_fesetenv (&oldenv);
|
||||
|
||||
result = x22 * x + ex2_u.f;
|
||||
|
||||
if (!unsafe)
|
||||
|
@ -80,40 +80,39 @@ __ieee754_expf (float x)
|
||||
double x22, t, result, dx;
|
||||
float n, delta;
|
||||
union ieee754_double ex2_u;
|
||||
fenv_t oldenv;
|
||||
|
||||
libc_feholdexcept_setroundf (&oldenv, FE_TONEAREST);
|
||||
{
|
||||
SET_RESTORE_ROUND_NOEXF (FE_TONEAREST);
|
||||
|
||||
/* Calculate n. */
|
||||
n = x * M_1_LN2 + THREEp22;
|
||||
n -= THREEp22;
|
||||
dx = x - n*M_LN2;
|
||||
/* Calculate n. */
|
||||
n = x * M_1_LN2 + THREEp22;
|
||||
n -= THREEp22;
|
||||
dx = x - n*M_LN2;
|
||||
|
||||
/* Calculate t/512. */
|
||||
t = dx + THREEp42;
|
||||
t -= THREEp42;
|
||||
dx -= t;
|
||||
/* Calculate t/512. */
|
||||
t = dx + THREEp42;
|
||||
t -= THREEp42;
|
||||
dx -= t;
|
||||
|
||||
/* Compute tval = t. */
|
||||
tval = (int) (t * 512.0);
|
||||
/* Compute tval = t. */
|
||||
tval = (int) (t * 512.0);
|
||||
|
||||
if (t >= 0)
|
||||
delta = - __exp_deltatable[tval];
|
||||
else
|
||||
delta = __exp_deltatable[-tval];
|
||||
if (t >= 0)
|
||||
delta = - __exp_deltatable[tval];
|
||||
else
|
||||
delta = __exp_deltatable[-tval];
|
||||
|
||||
/* Compute ex2 = 2^n e^(t/512+delta[t]). */
|
||||
ex2_u.d = __exp_atable[tval+177];
|
||||
ex2_u.ieee.exponent += (int) n;
|
||||
/* Compute ex2 = 2^n e^(t/512+delta[t]). */
|
||||
ex2_u.d = __exp_atable[tval+177];
|
||||
ex2_u.ieee.exponent += (int) n;
|
||||
|
||||
/* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
|
||||
with maximum error in [-2^-10-2^-28,2^-10+2^-28]
|
||||
less than 5e-11. */
|
||||
x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
|
||||
/* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
|
||||
with maximum error in [-2^-10-2^-28,2^-10+2^-28]
|
||||
less than 5e-11. */
|
||||
x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
|
||||
}
|
||||
|
||||
/* Return result. */
|
||||
libc_fesetenvf (&oldenv);
|
||||
|
||||
result = x22 * ex2_u.d + ex2_u.d;
|
||||
return (float) result;
|
||||
}
|
||||
|
@ -119,6 +119,29 @@ libc_feupdateenv (fenv_t *e)
|
||||
#define libc_feupdateenv libc_feupdateenv
|
||||
#define libc_feupdateenvf libc_feupdateenv
|
||||
|
||||
static __always_inline void
|
||||
libc_feholdsetround (fenv_t *e, int r)
|
||||
{
|
||||
unsigned int mxcsr;
|
||||
asm (STMXCSR " %0" : "=m" (*&mxcsr));
|
||||
e->__mxcsr = mxcsr;
|
||||
mxcsr = (mxcsr & ~0x6000) | (r << 3);
|
||||
asm volatile (LDMXCSR " %0" : : "m" (*&mxcsr));
|
||||
}
|
||||
#define libc_feholdsetround libc_feholdsetround
|
||||
#define libc_feholdsetroundf libc_feholdsetround
|
||||
|
||||
static __always_inline void
|
||||
libc_feresetround (fenv_t *e)
|
||||
{
|
||||
unsigned int mxcsr;
|
||||
asm (STMXCSR " %0" : "=m" (*&mxcsr));
|
||||
mxcsr = (mxcsr & ~0x6000) | (e->__mxcsr & 0x6000);
|
||||
asm volatile (LDMXCSR " %0" : : "m" (*&mxcsr));
|
||||
}
|
||||
#define libc_feresetround libc_feresetround
|
||||
#define libc_feresetroundf libc_feresetround
|
||||
|
||||
#include_next <math_private.h>
|
||||
|
||||
extern __always_inline double
|
||||
|
Loading…
Reference in New Issue
Block a user