aarch64: Add vector implementations of tan routines

This includes some utility headers for evaluating polynomials using
various schemes.
This commit is contained in:
Joe Ramsay 2023-10-05 17:10:48 +01:00 committed by Szabolcs Nagy
parent 2aa0974d25
commit f554334c05
21 changed files with 1274 additions and 27 deletions

View File

@ -7655,7 +7655,7 @@ sqrt min
sqrt min_subnorm sqrt min_subnorm
tan 0 tan 0
tan -0 tan -0 no-mathvec
tan pi/4 tan pi/4
tan pi/2 tan pi/2
tan -pi/2 tan -pi/2

View File

@ -23,31 +23,31 @@ tan 0
= tan tonearest ibm128 0x0p+0 : 0x0p+0 : inexact-ok = tan tonearest ibm128 0x0p+0 : 0x0p+0 : inexact-ok
= tan towardzero ibm128 0x0p+0 : 0x0p+0 : inexact-ok = tan towardzero ibm128 0x0p+0 : 0x0p+0 : inexact-ok
= tan upward ibm128 0x0p+0 : 0x0p+0 : inexact-ok = tan upward ibm128 0x0p+0 : 0x0p+0 : inexact-ok
tan -0 tan -0 no-mathvec
= tan downward binary32 -0x0p+0 : -0x0p+0 : inexact-ok = tan downward binary32 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan tonearest binary32 -0x0p+0 : -0x0p+0 : inexact-ok = tan tonearest binary32 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan towardzero binary32 -0x0p+0 : -0x0p+0 : inexact-ok = tan towardzero binary32 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan upward binary32 -0x0p+0 : -0x0p+0 : inexact-ok = tan upward binary32 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan downward binary64 -0x0p+0 : -0x0p+0 : inexact-ok = tan downward binary64 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan tonearest binary64 -0x0p+0 : -0x0p+0 : inexact-ok = tan tonearest binary64 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan towardzero binary64 -0x0p+0 : -0x0p+0 : inexact-ok = tan towardzero binary64 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan upward binary64 -0x0p+0 : -0x0p+0 : inexact-ok = tan upward binary64 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan downward intel96 -0x0p+0 : -0x0p+0 : inexact-ok = tan downward intel96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan tonearest intel96 -0x0p+0 : -0x0p+0 : inexact-ok = tan tonearest intel96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan towardzero intel96 -0x0p+0 : -0x0p+0 : inexact-ok = tan towardzero intel96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan upward intel96 -0x0p+0 : -0x0p+0 : inexact-ok = tan upward intel96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan downward m68k96 -0x0p+0 : -0x0p+0 : inexact-ok = tan downward m68k96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan tonearest m68k96 -0x0p+0 : -0x0p+0 : inexact-ok = tan tonearest m68k96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan towardzero m68k96 -0x0p+0 : -0x0p+0 : inexact-ok = tan towardzero m68k96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan upward m68k96 -0x0p+0 : -0x0p+0 : inexact-ok = tan upward m68k96 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan downward binary128 -0x0p+0 : -0x0p+0 : inexact-ok = tan downward binary128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan tonearest binary128 -0x0p+0 : -0x0p+0 : inexact-ok = tan tonearest binary128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan towardzero binary128 -0x0p+0 : -0x0p+0 : inexact-ok = tan towardzero binary128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan upward binary128 -0x0p+0 : -0x0p+0 : inexact-ok = tan upward binary128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan downward ibm128 -0x0p+0 : -0x0p+0 : inexact-ok = tan downward ibm128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan tonearest ibm128 -0x0p+0 : -0x0p+0 : inexact-ok = tan tonearest ibm128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan towardzero ibm128 -0x0p+0 : -0x0p+0 : inexact-ok = tan towardzero ibm128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
= tan upward ibm128 -0x0p+0 : -0x0p+0 : inexact-ok = tan upward ibm128 -0x0p+0 : -0x0p+0 : no-mathvec inexact-ok
tan pi/4 tan pi/4
= tan downward binary32 0xc.90fdbp-4 : 0x1p+0 : inexact-ok = tan downward binary32 0xc.90fdbp-4 : 0x1p+0 : inexact-ok
= tan tonearest binary32 0xc.90fdbp-4 : 0x1p+0 : inexact-ok = tan tonearest binary32 0xc.90fdbp-4 : 0x1p+0 : inexact-ok

View File

@ -1,7 +1,8 @@
libmvec-supported-funcs = cos \ libmvec-supported-funcs = cos \
exp \ exp \
log \ log \
sin sin \
tan
float-advsimd-funcs = $(libmvec-supported-funcs) float-advsimd-funcs = $(libmvec-supported-funcs)
double-advsimd-funcs = $(libmvec-supported-funcs) double-advsimd-funcs = $(libmvec-supported-funcs)

View File

@ -17,4 +17,10 @@ libmvec {
_ZGVsMxv_sin; _ZGVsMxv_sin;
_ZGVsMxv_sinf; _ZGVsMxv_sinf;
} }
GLIBC_2.39 {
_ZGVnN4v_tanf;
_ZGVnN2v_tan;
_ZGVsMxv_tanf;
_ZGVsMxv_tan;
}
} }

View File

@ -53,11 +53,13 @@ __vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_expf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_expf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_logf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_logf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_sinf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_sinf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_tanf (__f32x4_t);
__vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_exp (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_exp (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_log (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_log (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_sin (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_sin (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_tan (__f64x2_t);
# undef __ADVSIMD_VEC_MATH_SUPPORTED # undef __ADVSIMD_VEC_MATH_SUPPORTED
#endif /* __ADVSIMD_VEC_MATH_SUPPORTED */ #endif /* __ADVSIMD_VEC_MATH_SUPPORTED */
@ -68,11 +70,13 @@ __sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_expf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_expf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_logf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_logf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_sinf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_sinf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_tanf (__sv_f32_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_exp (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_exp (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_log (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_log (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_sin (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_sin (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_tan (__sv_f64_t, __sv_bool_t);
# undef __SVE_VEC_MATH_SUPPORTED # undef __SVE_VEC_MATH_SUPPORTED
#endif /* __SVE_VEC_MATH_SUPPORTED */ #endif /* __SVE_VEC_MATH_SUPPORTED */

View File

@ -0,0 +1,36 @@
/* Helpers for evaluating polynomials on single-precision AdvSIMD input, using
various schemes.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef AARCH64_FPU_POLY_ADVSIMD_F32_H
#define AARCH64_FPU_POLY_ADVSIMD_F32_H
#include <arm_neon.h>
/* Wrap AdvSIMD f32 helpers: evaluation of some scheme/order has form:
v_[scheme]_[order]_f32. */
#define VTYPE float32x4_t
#define FMA(x, y, z) vfmaq_f32 (z, x, y)
#define VWRAP(f) v_##f##_f32
#include "poly_generic.h"
#undef VWRAP
#undef FMA
#undef VTYPE
#endif

View File

@ -0,0 +1,36 @@
/* Helpers for evaluating polynomials on double-precision AdvSIMD input, using
various schemes.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef AARCH64_FPU_POLY_ADVSIMD_F64_H
#define AARCH64_FPU_POLY_ADVSIMD_F64_H
#include <arm_neon.h>
/* Wrap AdvSIMD f64 helpers: evaluation of some scheme/order has form:
v_[scheme]_[order]_f64. */
#define VTYPE float64x2_t
#define FMA(x, y, z) vfmaq_f64 (z, x, y)
#define VWRAP(f) v_##f##_f64
#include "poly_generic.h"
#undef VWRAP
#undef FMA
#undef VTYPE
#endif

View File

@ -0,0 +1,285 @@
/* Generic helpers for evaluating polynomials with various schemes.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef VTYPE
# error Cannot use poly_generic without defining VTYPE
#endif
#ifndef VWRAP
# error Cannot use poly_generic without defining VWRAP
#endif
#ifndef FMA
# error Cannot use poly_generic without defining FMA
#endif
static inline VTYPE VWRAP (pairwise_poly_3) (VTYPE x, VTYPE x2,
const VTYPE *poly)
{
/* At order 3, Estrin and Pairwise Horner are identical. */
VTYPE p01 = FMA (poly[1], x, poly[0]);
VTYPE p23 = FMA (poly[3], x, poly[2]);
return FMA (p23, x2, p01);
}
static inline VTYPE VWRAP (estrin_4) (VTYPE x, VTYPE x2, VTYPE x4,
const VTYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (x, x2, poly);
return FMA (poly[4], x4, p03);
}
static inline VTYPE VWRAP (estrin_5) (VTYPE x, VTYPE x2, VTYPE x4,
const VTYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (x, x2, poly);
VTYPE p45 = FMA (poly[5], x, poly[4]);
return FMA (p45, x4, p03);
}
static inline VTYPE VWRAP (estrin_6) (VTYPE x, VTYPE x2, VTYPE x4,
const VTYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (x, x2, poly);
VTYPE p45 = FMA (poly[5], x, poly[4]);
VTYPE p46 = FMA (poly[6], x2, p45);
return FMA (p46, x4, p03);
}
static inline VTYPE VWRAP (estrin_7) (VTYPE x, VTYPE x2, VTYPE x4,
const VTYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (x, x2, poly);
VTYPE p47 = VWRAP (pairwise_poly_3) (x, x2, poly + 4);
return FMA (p47, x4, p03);
}
static inline VTYPE VWRAP (estrin_8) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
return FMA (poly[8], x8, VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_9) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
VTYPE p89 = FMA (poly[9], x, poly[8]);
return FMA (p89, x8, VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_10) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
VTYPE p89 = FMA (poly[9], x, poly[8]);
VTYPE p8_10 = FMA (poly[10], x2, p89);
return FMA (p8_10, x8, VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_11) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
VTYPE p8_11 = VWRAP (pairwise_poly_3) (x, x2, poly + 8);
return FMA (p8_11, x8, VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_12) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
return FMA (VWRAP (estrin_4) (x, x2, x4, poly + 8), x8,
VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_13) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
return FMA (VWRAP (estrin_5) (x, x2, x4, poly + 8), x8,
VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_14) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
return FMA (VWRAP (estrin_6) (x, x2, x4, poly + 8), x8,
VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_15) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
const VTYPE *poly)
{
return FMA (VWRAP (estrin_7) (x, x2, x4, poly + 8), x8,
VWRAP (estrin_7) (x, x2, x4, poly));
}
static inline VTYPE VWRAP (estrin_16) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
VTYPE x16, const VTYPE *poly)
{
return FMA (poly[16], x16, VWRAP (estrin_15) (x, x2, x4, x8, poly));
}
static inline VTYPE VWRAP (estrin_17) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
VTYPE x16, const VTYPE *poly)
{
VTYPE p16_17 = FMA (poly[17], x, poly[16]);
return FMA (p16_17, x16, VWRAP (estrin_15) (x, x2, x4, x8, poly));
}
static inline VTYPE VWRAP (estrin_18) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
VTYPE x16, const VTYPE *poly)
{
VTYPE p16_17 = FMA (poly[17], x, poly[16]);
VTYPE p16_18 = FMA (poly[18], x2, p16_17);
return FMA (p16_18, x16, VWRAP (estrin_15) (x, x2, x4, x8, poly));
}
static inline VTYPE VWRAP (estrin_19) (VTYPE x, VTYPE x2, VTYPE x4, VTYPE x8,
VTYPE x16, const VTYPE *poly)
{
VTYPE p16_19 = VWRAP (pairwise_poly_3) (x, x2, poly + 16);
return FMA (p16_19, x16, VWRAP (estrin_15) (x, x2, x4, x8, poly));
}
static inline VTYPE VWRAP (horner_3) (VTYPE x, const VTYPE *poly)
{
VTYPE p = FMA (poly[3], x, poly[2]);
p = FMA (x, p, poly[1]);
p = FMA (x, p, poly[0]);
return p;
}
static inline VTYPE VWRAP (horner_4) (VTYPE x, const VTYPE *poly)
{
VTYPE p = FMA (poly[4], x, poly[3]);
p = FMA (x, p, poly[2]);
p = FMA (x, p, poly[1]);
p = FMA (x, p, poly[0]);
return p;
}
static inline VTYPE VWRAP (horner_5) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_4) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_6) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_5) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_7) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_6) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_8) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_7) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_9) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_8) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_10) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_9) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_11) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_10) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_12) (VTYPE x, const VTYPE *poly)
{
return FMA (x, VWRAP (horner_11) (x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (pw_horner_4) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p01 = FMA (poly[1], x, poly[0]);
VTYPE p23 = FMA (poly[3], x, poly[2]);
VTYPE p;
p = FMA (x2, poly[4], p23);
p = FMA (x2, p, p01);
return p;
}
static inline VTYPE VWRAP (pw_horner_5) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p01 = FMA (poly[1], x, poly[0]);
VTYPE p23 = FMA (poly[3], x, poly[2]);
VTYPE p45 = FMA (poly[5], x, poly[4]);
VTYPE p;
p = FMA (x2, p45, p23);
p = FMA (x2, p, p01);
return p;
}
static inline VTYPE VWRAP (pw_horner_6) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p26 = VWRAP (pw_horner_4) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p26, p01);
}
static inline VTYPE VWRAP (pw_horner_7) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p27 = VWRAP (pw_horner_5) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p27, p01);
}
static inline VTYPE VWRAP (pw_horner_8) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p28 = VWRAP (pw_horner_6) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p28, p01);
}
static inline VTYPE VWRAP (pw_horner_9) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p29 = VWRAP (pw_horner_7) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p29, p01);
}
static inline VTYPE VWRAP (pw_horner_10) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_10 = VWRAP (pw_horner_8) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_10, p01);
}
static inline VTYPE VWRAP (pw_horner_11) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_11 = VWRAP (pw_horner_9) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_11, p01);
}
static inline VTYPE VWRAP (pw_horner_12) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_12 = VWRAP (pw_horner_10) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_12, p01);
}
static inline VTYPE VWRAP (pw_horner_13) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_13 = VWRAP (pw_horner_11) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_13, p01);
}
static inline VTYPE VWRAP (pw_horner_14) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_14 = VWRAP (pw_horner_12) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_14, p01);
}
static inline VTYPE VWRAP (pw_horner_15) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_15 = VWRAP (pw_horner_13) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_15, p01);
}
static inline VTYPE VWRAP (pw_horner_16) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_16 = VWRAP (pw_horner_14) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_16, p01);
}
static inline VTYPE VWRAP (pw_horner_17) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_17 = VWRAP (pw_horner_15) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_17, p01);
}
static inline VTYPE VWRAP (pw_horner_18) (VTYPE x, VTYPE x2, const VTYPE *poly)
{
VTYPE p2_18 = VWRAP (pw_horner_16) (x, x2, poly + 2);
VTYPE p01 = FMA (poly[1], x, poly[0]);
return FMA (x2, p2_18, p01);
}

View File

@ -0,0 +1,38 @@
/* Helpers for evaluating polynomials on single-precision SVE input, using
various schemes.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef AARCH64_FPU_POLY_SVE_F32_H
#define AARCH64_FPU_POLY_SVE_F32_H
#include <arm_sve.h>
/* Wrap SVE f32 helpers: evaluation of some scheme/order has form:
sv_[scheme]_[order]_f32_x. */
#define VTYPE svfloat32_t
#define STYPE float
#define VWRAP(f) sv_##f##_f32_x
#define DUP svdup_n_f32
#include "poly_sve_generic.h"
#undef DUP
#undef VWRAP
#undef STYPE
#undef VTYPE
#endif

View File

@ -0,0 +1,38 @@
/* Helpers for evaluating polynomials on double-precision SVE input, using
various schemes.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef AARCH64_FPU_POLY_SVE_F64_H
#define AARCH64_FPU_POLY_SVE_F64_H
#include <arm_sve.h>
/* Wrap SVE f64 helpers: evaluation of some scheme/order has form:
sv_[scheme]_[order]_f64_x. */
#define VTYPE svfloat64_t
#define STYPE double
#define VWRAP(f) sv_##f##_f64_x
#define DUP svdup_n_f64
#include "poly_sve_generic.h"
#undef DUP
#undef VWRAP
#undef STYPE
#undef VTYPE
#endif

View File

@ -0,0 +1,313 @@
/* Helpers for evaluating polynomials with various schemes - specific to SVE
but precision-agnostic.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef VTYPE
# error Cannot use poly_generic without defining VTYPE
#endif
#ifndef STYPE
# error Cannot use poly_generic without defining STYPE
#endif
#ifndef VWRAP
# error Cannot use poly_generic without defining VWRAP
#endif
#ifndef DUP
# error Cannot use poly_generic without defining DUP
#endif
static inline VTYPE VWRAP (pairwise_poly_3) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
/* At order 3, Estrin and Pairwise Horner are identical. */
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
VTYPE p23 = svmla_x (pg, DUP (poly[2]), x, poly[3]);
return svmla_x (pg, p01, p23, x2);
}
static inline VTYPE VWRAP (estrin_4) (svbool_t pg, VTYPE x, VTYPE x2, VTYPE x4,
const STYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (pg, x, x2, poly);
return svmla_x (pg, p03, x4, poly[4]);
}
static inline VTYPE VWRAP (estrin_5) (svbool_t pg, VTYPE x, VTYPE x2, VTYPE x4,
const STYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (pg, x, x2, poly);
VTYPE p45 = svmla_x (pg, DUP (poly[4]), x, poly[5]);
return svmla_x (pg, p03, p45, x4);
}
static inline VTYPE VWRAP (estrin_6) (svbool_t pg, VTYPE x, VTYPE x2, VTYPE x4,
const STYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (pg, x, x2, poly);
VTYPE p45 = svmla_x (pg, DUP (poly[4]), x, poly[5]);
VTYPE p46 = svmla_x (pg, p45, x, poly[6]);
return svmla_x (pg, p03, p46, x4);
}
static inline VTYPE VWRAP (estrin_7) (svbool_t pg, VTYPE x, VTYPE x2, VTYPE x4,
const STYPE *poly)
{
VTYPE p03 = VWRAP (pairwise_poly_3) (pg, x, x2, poly);
VTYPE p47 = VWRAP (pairwise_poly_3) (pg, x, x2, poly + 4);
return svmla_x (pg, p03, p47, x4);
}
static inline VTYPE VWRAP (estrin_8) (svbool_t pg, VTYPE x, VTYPE x2, VTYPE x4,
VTYPE x8, const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly), x8, poly[8]);
}
static inline VTYPE VWRAP (estrin_9) (svbool_t pg, VTYPE x, VTYPE x2, VTYPE x4,
VTYPE x8, const STYPE *poly)
{
VTYPE p89 = svmla_x (pg, DUP (poly[8]), x, poly[9]);
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly), p89, x8);
}
static inline VTYPE VWRAP (estrin_10) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, const STYPE *poly)
{
VTYPE p89 = svmla_x (pg, DUP (poly[8]), x, poly[9]);
VTYPE p8_10 = svmla_x (pg, p89, x2, poly[10]);
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly), p8_10, x8);
}
static inline VTYPE VWRAP (estrin_11) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, const STYPE *poly)
{
VTYPE p8_11 = VWRAP (pairwise_poly_3) (pg, x, x2, poly + 8);
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly), p8_11, x8);
}
static inline VTYPE VWRAP (estrin_12) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly),
VWRAP (estrin_4) (pg, x, x2, x4, poly + 8), x8);
}
static inline VTYPE VWRAP (estrin_13) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly),
VWRAP (estrin_5) (pg, x, x2, x4, poly + 8), x8);
}
static inline VTYPE VWRAP (estrin_14) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly),
VWRAP (estrin_6) (pg, x, x2, x4, poly + 8), x8);
}
static inline VTYPE VWRAP (estrin_15) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_7) (pg, x, x2, x4, poly),
VWRAP (estrin_7) (pg, x, x2, x4, poly + 8), x8);
}
static inline VTYPE VWRAP (estrin_16) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, VTYPE x16,
const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_15) (pg, x, x2, x4, x8, poly), x16,
poly[16]);
}
static inline VTYPE VWRAP (estrin_17) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, VTYPE x16,
const STYPE *poly)
{
VTYPE p16_17 = svmla_x (pg, DUP (poly[16]), x, poly[17]);
return svmla_x (pg, VWRAP (estrin_15) (pg, x, x2, x4, x8, poly), p16_17,
x16);
}
static inline VTYPE VWRAP (estrin_18) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, VTYPE x16,
const STYPE *poly)
{
VTYPE p16_17 = svmla_x (pg, DUP (poly[16]), x, poly[17]);
VTYPE p16_18 = svmla_x (pg, p16_17, x2, poly[18]);
return svmla_x (pg, VWRAP (estrin_15) (pg, x, x2, x4, x8, poly), p16_18,
x16);
}
static inline VTYPE VWRAP (estrin_19) (svbool_t pg, VTYPE x, VTYPE x2,
VTYPE x4, VTYPE x8, VTYPE x16,
const STYPE *poly)
{
return svmla_x (pg, VWRAP (estrin_15) (pg, x, x2, x4, x8, poly),
VWRAP (pairwise_poly_3) (pg, x, x2, poly + 16), x16);
}
static inline VTYPE VWRAP (horner_3) (svbool_t pg, VTYPE x, const STYPE *poly)
{
VTYPE p = svmla_x (pg, DUP (poly[2]), x, poly[3]);
p = svmad_x (pg, x, p, poly[1]);
p = svmad_x (pg, x, p, poly[0]);
return p;
}
static inline VTYPE VWRAP (horner_4) (svbool_t pg, VTYPE x, const STYPE *poly)
{
VTYPE p = svmla_x (pg, DUP (poly[3]), x, poly[4]);
p = svmad_x (pg, x, p, poly[2]);
p = svmad_x (pg, x, p, poly[1]);
p = svmad_x (pg, x, p, poly[0]);
return p;
}
static inline VTYPE VWRAP (horner_5) (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, VWRAP (horner_4) (pg, x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_6) (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, VWRAP (horner_5) (pg, x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_7) (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, VWRAP (horner_6) (pg, x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_8) (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, VWRAP (horner_7) (pg, x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (horner_9) (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, VWRAP (horner_8) (pg, x, poly + 1), poly[0]);
}
static inline VTYPE
sv_horner_10_f32_x (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, VWRAP (horner_9) (pg, x, poly + 1), poly[0]);
}
static inline VTYPE
sv_horner_11_f32_x (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, sv_horner_10_f32_x (pg, x, poly + 1), poly[0]);
}
static inline VTYPE
sv_horner_12_f32_x (svbool_t pg, VTYPE x, const STYPE *poly)
{
return svmad_x (pg, x, sv_horner_11_f32_x (pg, x, poly + 1), poly[0]);
}
static inline VTYPE VWRAP (pw_horner_4) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
VTYPE p23 = svmla_x (pg, DUP (poly[2]), x, poly[3]);
VTYPE p;
p = svmla_x (pg, p23, x2, poly[4]);
p = svmla_x (pg, p01, x2, p);
return p;
}
static inline VTYPE VWRAP (pw_horner_5) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
VTYPE p23 = svmla_x (pg, DUP (poly[2]), x, poly[3]);
VTYPE p45 = svmla_x (pg, DUP (poly[4]), x, poly[5]);
VTYPE p;
p = svmla_x (pg, p23, x2, p45);
p = svmla_x (pg, p01, x2, p);
return p;
}
static inline VTYPE VWRAP (pw_horner_6) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p26 = VWRAP (pw_horner_4) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p26);
}
static inline VTYPE VWRAP (pw_horner_7) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p27 = VWRAP (pw_horner_5) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p27);
}
static inline VTYPE VWRAP (pw_horner_8) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p28 = VWRAP (pw_horner_6) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p28);
}
static inline VTYPE VWRAP (pw_horner_9) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p29 = VWRAP (pw_horner_7) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p29);
}
static inline VTYPE VWRAP (pw_horner_10) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_10 = VWRAP (pw_horner_8) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_10);
}
static inline VTYPE VWRAP (pw_horner_11) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_11 = VWRAP (pw_horner_9) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_11);
}
static inline VTYPE VWRAP (pw_horner_12) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_12 = VWRAP (pw_horner_10) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_12);
}
static inline VTYPE VWRAP (pw_horner_13) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_13 = VWRAP (pw_horner_11) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_13);
}
static inline VTYPE VWRAP (pw_horner_14) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_14 = VWRAP (pw_horner_12) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_14);
}
static inline VTYPE VWRAP (pw_horner_15) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_15 = VWRAP (pw_horner_13) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_15);
}
static inline VTYPE VWRAP (pw_horner_16) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_16 = VWRAP (pw_horner_14) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_16);
}
static inline VTYPE VWRAP (pw_horner_17) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_17 = VWRAP (pw_horner_15) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_17);
}
static inline VTYPE VWRAP (pw_horner_18) (svbool_t pg, VTYPE x, VTYPE x2,
const STYPE *poly)
{
VTYPE p2_18 = VWRAP (pw_horner_16) (pg, x, x2, poly + 2);
VTYPE p01 = svmla_x (pg, DUP (poly[0]), x, poly[1]);
return svmla_x (pg, p01, x2, p2_18);
}

View File

@ -0,0 +1,123 @@
/* Double-precision vector (Advanced SIMD) tan function
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f64.h"
static const struct data
{
float64x2_t poly[9];
float64x2_t half_pi_hi, half_pi_lo, two_over_pi, shift;
#if !WANT_SIMD_EXCEPT
float64x2_t range_val;
#endif
} data = {
/* Coefficients generated using FPMinimax. */
.poly = { V2 (0x1.5555555555556p-2), V2 (0x1.1111111110a63p-3),
V2 (0x1.ba1ba1bb46414p-5), V2 (0x1.664f47e5b5445p-6),
V2 (0x1.226e5e5ecdfa3p-7), V2 (0x1.d6c7ddbf87047p-9),
V2 (0x1.7ea75d05b583ep-10), V2 (0x1.289f22964a03cp-11),
V2 (0x1.4e4fd14147622p-12) },
.half_pi_hi = V2 (0x1.921fb54442d18p0),
.half_pi_lo = V2 (0x1.1a62633145c07p-54),
.two_over_pi = V2 (0x1.45f306dc9c883p-1),
.shift = V2 (0x1.8p52),
#if !WANT_SIMD_EXCEPT
.range_val = V2 (0x1p23),
#endif
};
#define RangeVal 0x4160000000000000 /* asuint64(0x1p23). */
#define TinyBound 0x3e50000000000000 /* asuint64(2^-26). */
#define Thresh 0x310000000000000 /* RangeVal - TinyBound. */
/* Special cases (fall back to scalar calls). */
static float64x2_t VPCS_ATTR NOINLINE
special_case (float64x2_t x)
{
return v_call_f64 (tan, x, x, v_u64 (-1));
}
/* Vector approximation for double-precision tan.
Maximum measured error is 3.48 ULP:
__v_tan(0x1.4457047ef78d8p+20) got -0x1.f6ccd8ecf7dedp+37
want -0x1.f6ccd8ecf7deap+37. */
float64x2_t VPCS_ATTR V_NAME_D1 (tan) (float64x2_t x)
{
const struct data *dat = ptr_barrier (&data);
/* Our argument reduction cannot calculate q with sufficient accuracy for very
large inputs. Fall back to scalar routine for all lanes if any are too
large, or Inf/NaN. If fenv exceptions are expected, also fall back for tiny
input to avoid underflow. */
#if WANT_SIMD_EXCEPT
uint64x2_t iax = vreinterpretq_u64_f64 (vabsq_f64 (x));
/* iax - tiny_bound > range_val - tiny_bound. */
uint64x2_t special
= vcgtq_u64 (vsubq_u64 (iax, v_u64 (TinyBound)), v_u64 (Thresh));
if (__glibc_unlikely (v_any_u64 (special)))
return special_case (x);
#endif
/* q = nearest integer to 2 * x / pi. */
float64x2_t q
= vsubq_f64 (vfmaq_f64 (dat->shift, x, dat->two_over_pi), dat->shift);
int64x2_t qi = vcvtq_s64_f64 (q);
/* Use q to reduce x to r in [-pi/4, pi/4], by:
r = x - q * pi/2, in extended precision. */
float64x2_t r = x;
r = vfmsq_f64 (r, q, dat->half_pi_hi);
r = vfmsq_f64 (r, q, dat->half_pi_lo);
/* Further reduce r to [-pi/8, pi/8], to be reconstructed using double angle
formula. */
r = vmulq_n_f64 (r, 0.5);
/* Approximate tan(r) using order 8 polynomial.
tan(x) is odd, so polynomial has the form:
tan(x) ~= x + C0 * x^3 + C1 * x^5 + C3 * x^7 + ...
Hence we first approximate P(r) = C1 + C2 * r^2 + C3 * r^4 + ...
Then compute the approximation by:
tan(r) ~= r + r^3 * (C0 + r^2 * P(r)). */
float64x2_t r2 = vmulq_f64 (r, r), r4 = vmulq_f64 (r2, r2),
r8 = vmulq_f64 (r4, r4);
/* Offset coefficients to evaluate from C1 onwards. */
float64x2_t p = v_estrin_7_f64 (r2, r4, r8, dat->poly + 1);
p = vfmaq_f64 (dat->poly[0], p, r2);
p = vfmaq_f64 (r, r2, vmulq_f64 (p, r));
/* Recombination uses double-angle formula:
tan(2x) = 2 * tan(x) / (1 - (tan(x))^2)
and reciprocity around pi/2:
tan(x) = 1 / (tan(pi/2 - x))
to assemble result using change-of-sign and conditional selection of
numerator/denominator, dependent on odd/even-ness of q (hence quadrant). */
float64x2_t n = vfmaq_f64 (v_f64 (-1), p, p);
float64x2_t d = vaddq_f64 (p, p);
uint64x2_t no_recip = vtstq_u64 (vreinterpretq_u64_s64 (qi), v_u64 (1));
#if !WANT_SIMD_EXCEPT
uint64x2_t special = vceqzq_u64 (vcaleq_f64 (x, dat->range_val));
if (__glibc_unlikely (v_any_u64 (special)))
return special_case (x);
#endif
return vdivq_f64 (vbslq_f64 (no_recip, n, vnegq_f64 (d)),
vbslq_f64 (no_recip, d, n));
}

View File

@ -0,0 +1,104 @@
/* Double-precision vector (SVE) tan function
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
#include "poly_sve_f64.h"
static const struct data
{
double poly[9];
double half_pi_hi, half_pi_lo, inv_half_pi, range_val, shift;
} data = {
/* Polynomial generated with FPMinimax. */
.poly = { 0x1.5555555555556p-2, 0x1.1111111110a63p-3, 0x1.ba1ba1bb46414p-5,
0x1.664f47e5b5445p-6, 0x1.226e5e5ecdfa3p-7, 0x1.d6c7ddbf87047p-9,
0x1.7ea75d05b583ep-10, 0x1.289f22964a03cp-11,
0x1.4e4fd14147622p-12, },
.half_pi_hi = 0x1.921fb54442d18p0,
.half_pi_lo = 0x1.1a62633145c07p-54,
.inv_half_pi = 0x1.45f306dc9c883p-1,
.range_val = 0x1p23,
.shift = 0x1.8p52,
};
static svfloat64_t NOINLINE
special_case (svfloat64_t x, svfloat64_t y, svbool_t special)
{
return sv_call_f64 (tan, x, y, special);
}
/* Vector approximation for double-precision tan.
Maximum measured error is 3.48 ULP:
_ZGVsMxv_tan(0x1.4457047ef78d8p+20) got -0x1.f6ccd8ecf7dedp+37
want -0x1.f6ccd8ecf7deap+37. */
svfloat64_t SV_NAME_D1 (tan) (svfloat64_t x, svbool_t pg)
{
const struct data *dat = ptr_barrier (&data);
/* Invert condition to catch NaNs and Infs as well as large values. */
svbool_t special = svnot_z (pg, svaclt (pg, x, dat->range_val));
/* q = nearest integer to 2 * x / pi. */
svfloat64_t shift = sv_f64 (dat->shift);
svfloat64_t q = svmla_x (pg, shift, x, dat->inv_half_pi);
q = svsub_x (pg, q, shift);
svint64_t qi = svcvt_s64_x (pg, q);
/* Use q to reduce x to r in [-pi/4, pi/4], by:
r = x - q * pi/2, in extended precision. */
svfloat64_t r = x;
svfloat64_t half_pi = svld1rq (svptrue_b64 (), &dat->half_pi_hi);
r = svmls_lane (r, q, half_pi, 0);
r = svmls_lane (r, q, half_pi, 1);
/* Further reduce r to [-pi/8, pi/8], to be reconstructed using double angle
formula. */
r = svmul_x (pg, r, 0.5);
/* Approximate tan(r) using order 8 polynomial.
tan(x) is odd, so polynomial has the form:
tan(x) ~= x + C0 * x^3 + C1 * x^5 + C3 * x^7 + ...
Hence we first approximate P(r) = C1 + C2 * r^2 + C3 * r^4 + ...
Then compute the approximation by:
tan(r) ~= r + r^3 * (C0 + r^2 * P(r)). */
svfloat64_t r2 = svmul_x (pg, r, r);
svfloat64_t r4 = svmul_x (pg, r2, r2);
svfloat64_t r8 = svmul_x (pg, r4, r4);
/* Use offset version coeff array by 1 to evaluate from C1 onwards. */
svfloat64_t p = sv_estrin_7_f64_x (pg, r2, r4, r8, dat->poly + 1);
p = svmad_x (pg, p, r2, dat->poly[0]);
p = svmla_x (pg, r, r2, svmul_x (pg, p, r));
/* Recombination uses double-angle formula:
tan(2x) = 2 * tan(x) / (1 - (tan(x))^2)
and reciprocity around pi/2:
tan(x) = 1 / (tan(pi/2 - x))
to assemble result using change-of-sign and conditional selection of
numerator/denominator dependent on odd/even-ness of q (hence quadrant). */
svbool_t use_recip
= svcmpeq (pg, svand_x (pg, svreinterpret_u64 (qi), 1), 0);
svfloat64_t n = svmad_x (pg, p, p, -1);
svfloat64_t d = svmul_x (pg, p, 2);
svfloat64_t swap = n;
n = svneg_m (n, use_recip, d);
d = svsel (use_recip, swap, d);
if (__glibc_unlikely (svptest_any (pg, special)))
return special_case (x, svdiv_x (svnot_z (pg, special), n, d), special);
return svdiv_x (pg, n, d);
}

View File

@ -0,0 +1,129 @@
/* Single-precision vector (Advanced SIMD) tan function
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f32.h"
static const struct data
{
float32x4_t poly[6];
float32x4_t neg_half_pi_1, neg_half_pi_2, neg_half_pi_3, two_over_pi, shift;
#if !WANT_SIMD_EXCEPT
float32x4_t range_val;
#endif
} data = {
/* Coefficients generated using FPMinimax. */
.poly = { V4 (0x1.55555p-2f), V4 (0x1.11166p-3f), V4 (0x1.b88a78p-5f),
V4 (0x1.7b5756p-6f), V4 (0x1.4ef4cep-8f), V4 (0x1.0e1e74p-7f) },
.neg_half_pi_1 = V4 (-0x1.921fb6p+0f),
.neg_half_pi_2 = V4 (0x1.777a5cp-25f),
.neg_half_pi_3 = V4 (0x1.ee59dap-50f),
.two_over_pi = V4 (0x1.45f306p-1f),
.shift = V4 (0x1.8p+23f),
#if !WANT_SIMD_EXCEPT
.range_val = V4 (0x1p15f),
#endif
};
#define RangeVal v_u32 (0x47000000) /* asuint32(0x1p15f). */
#define TinyBound v_u32 (0x30000000) /* asuint32 (0x1p-31f). */
#define Thresh v_u32 (0x16000000) /* asuint32(RangeVal) - TinyBound. */
/* Special cases (fall back to scalar calls). */
static float32x4_t VPCS_ATTR NOINLINE
special_case (float32x4_t x, float32x4_t y, uint32x4_t cmp)
{
return v_call_f32 (tanf, x, y, cmp);
}
/* Use a full Estrin scheme to evaluate polynomial. */
static inline float32x4_t
eval_poly (float32x4_t z, const struct data *d)
{
float32x4_t z2 = vmulq_f32 (z, z);
#if WANT_SIMD_EXCEPT
/* Tiny z (<= 0x1p-31) will underflow when calculating z^4. If fp exceptions
are to be triggered correctly, sidestep this by fixing such lanes to 0. */
uint32x4_t will_uflow
= vcleq_u32 (vreinterpretq_u32_f32 (vabsq_f32 (z)), TinyBound);
if (__glibc_unlikely (v_any_u32 (will_uflow)))
z2 = vbslq_f32 (will_uflow, v_f32 (0), z2);
#endif
float32x4_t z4 = vmulq_f32 (z2, z2);
return v_estrin_5_f32 (z, z2, z4, d->poly);
}
/* Fast implementation of AdvSIMD tanf.
Maximum error is 3.45 ULP:
__v_tanf(-0x1.e5f0cap+13) got 0x1.ff9856p-1
want 0x1.ff9850p-1. */
float32x4_t VPCS_ATTR V_NAME_F1 (tan) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
float32x4_t special_arg = x;
/* iax >= RangeVal means x, if not inf or NaN, is too large to perform fast
regression. */
#if WANT_SIMD_EXCEPT
uint32x4_t iax = vreinterpretq_u32_f32 (vabsq_f32 (x));
/* If fp exceptions are to be triggered correctly, also special-case tiny
input, as this will load to overflow later. Fix any special lanes to 1 to
prevent any exceptions being triggered. */
uint32x4_t special = vcgeq_u32 (vsubq_u32 (iax, TinyBound), Thresh);
if (__glibc_unlikely (v_any_u32 (special)))
x = vbslq_f32 (special, v_f32 (1.0f), x);
#else
/* Otherwise, special-case large and special values. */
uint32x4_t special = vcageq_f32 (x, d->range_val);
#endif
/* n = rint(x/(pi/2)). */
float32x4_t q = vfmaq_f32 (d->shift, d->two_over_pi, x);
float32x4_t n = vsubq_f32 (q, d->shift);
/* Determine if x lives in an interval, where |tan(x)| grows to infinity. */
uint32x4_t pred_alt = vtstq_u32 (vreinterpretq_u32_f32 (q), v_u32 (1));
/* r = x - n * (pi/2) (range reduction into -pi./4 .. pi/4). */
float32x4_t r;
r = vfmaq_f32 (x, d->neg_half_pi_1, n);
r = vfmaq_f32 (r, d->neg_half_pi_2, n);
r = vfmaq_f32 (r, d->neg_half_pi_3, n);
/* If x lives in an interval, where |tan(x)|
- is finite, then use a polynomial approximation of the form
tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2).
- grows to infinity then use symmetries of tangent and the identity
tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use
the same polynomial approximation of tan as above. */
/* Invert sign of r if odd quadrant. */
float32x4_t z = vmulq_f32 (r, vbslq_f32 (pred_alt, v_f32 (-1), v_f32 (1)));
/* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */
float32x4_t z2 = vmulq_f32 (r, r);
float32x4_t p = eval_poly (z2, d);
float32x4_t y = vfmaq_f32 (z, vmulq_f32 (z, z2), p);
/* Compute reciprocal and apply if required. */
float32x4_t inv_y = vdivq_f32 (v_f32 (1.0f), y);
if (__glibc_unlikely (v_any_u32 (special)))
return special_case (special_arg, vbslq_f32 (pred_alt, inv_y, y), special);
return vbslq_f32 (pred_alt, inv_y, y);
}

View File

@ -0,0 +1,118 @@
/* Single-precision vector (SVE) tan function
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float pio2_1, pio2_2, pio2_3, invpio2;
float c1, c3, c5;
float c0, c2, c4, range_val, shift;
} data = {
/* Coefficients generated using:
poly = fpminimax((tan(sqrt(x))-sqrt(x))/x^(3/2),
deg,
[|single ...|],
[a*a;b*b]);
optimize relative error
final prec : 23 bits
deg : 5
a : 0x1p-126 ^ 2
b : ((pi) / 0x1p2) ^ 2
dirty rel error: 0x1.f7c2e4p-25
dirty abs error: 0x1.f7c2ecp-25. */
.c0 = 0x1.55555p-2, .c1 = 0x1.11166p-3,
.c2 = 0x1.b88a78p-5, .c3 = 0x1.7b5756p-6,
.c4 = 0x1.4ef4cep-8, .c5 = 0x1.0e1e74p-7,
.pio2_1 = 0x1.921fb6p+0f, .pio2_2 = -0x1.777a5cp-25f,
.pio2_3 = -0x1.ee59dap-50f, .invpio2 = 0x1.45f306p-1f,
.range_val = 0x1p15f, .shift = 0x1.8p+23f
};
static svfloat32_t NOINLINE
special_case (svfloat32_t x, svfloat32_t y, svbool_t cmp)
{
return sv_call_f32 (tanf, x, y, cmp);
}
/* Fast implementation of SVE tanf.
Maximum error is 3.45 ULP:
SV_NAME_F1 (tan)(-0x1.e5f0cap+13) got 0x1.ff9856p-1
want 0x1.ff9850p-1. */
svfloat32_t SV_NAME_F1 (tan) (svfloat32_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
/* Determine whether input is too large to perform fast regression. */
svbool_t cmp = svacge (pg, x, d->range_val);
svfloat32_t odd_coeffs = svld1rq (svptrue_b32 (), &d->c1);
svfloat32_t pi_vals = svld1rq (svptrue_b32 (), &d->pio2_1);
/* n = rint(x/(pi/2)). */
svfloat32_t q = svmla_lane (sv_f32 (d->shift), x, pi_vals, 3);
svfloat32_t n = svsub_x (pg, q, d->shift);
/* n is already a signed integer, simply convert it. */
svint32_t in = svcvt_s32_x (pg, n);
/* Determine if x lives in an interval, where |tan(x)| grows to infinity. */
svint32_t alt = svand_x (pg, in, 1);
svbool_t pred_alt = svcmpne (pg, alt, 0);
/* r = x - n * (pi/2) (range reduction into 0 .. pi/4). */
svfloat32_t r;
r = svmls_lane (x, n, pi_vals, 0);
r = svmls_lane (r, n, pi_vals, 1);
r = svmls_lane (r, n, pi_vals, 2);
/* If x lives in an interval, where |tan(x)|
- is finite, then use a polynomial approximation of the form
tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2).
- grows to infinity then use symmetries of tangent and the identity
tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use
the same polynomial approximation of tan as above. */
/* Perform additional reduction if required. */
svfloat32_t z = svneg_m (r, pred_alt, r);
/* Evaluate polynomial approximation of tangent on [-pi/4, pi/4],
using Estrin on z^2. */
svfloat32_t z2 = svmul_x (pg, z, z);
svfloat32_t p01 = svmla_lane (sv_f32 (d->c0), z2, odd_coeffs, 0);
svfloat32_t p23 = svmla_lane (sv_f32 (d->c2), z2, odd_coeffs, 1);
svfloat32_t p45 = svmla_lane (sv_f32 (d->c4), z2, odd_coeffs, 2);
svfloat32_t z4 = svmul_x (pg, z2, z2);
svfloat32_t p = svmla_x (pg, p01, z4, p23);
svfloat32_t z8 = svmul_x (pg, z4, z4);
p = svmla_x (pg, p, z8, p45);
svfloat32_t y = svmla_x (pg, z, p, svmul_x (pg, z, z2));
/* Transform result back, if necessary. */
svfloat32_t inv_y = svdivr_x (pg, y, 1.0f);
/* No need to pass pg to specialcase here since cmp is a strict subset,
guaranteed by the cmpge above. */
if (__glibc_unlikely (svptest_any (pg, cmp)))
return special_case (x, svsel (pred_alt, inv_y, y), cmp);
return svsel (pred_alt, inv_y, y);
}

View File

@ -27,3 +27,4 @@ VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos)
VPCS_VECTOR_WRAPPER (exp_advsimd, _ZGVnN2v_exp) VPCS_VECTOR_WRAPPER (exp_advsimd, _ZGVnN2v_exp)
VPCS_VECTOR_WRAPPER (log_advsimd, _ZGVnN2v_log) VPCS_VECTOR_WRAPPER (log_advsimd, _ZGVnN2v_log)
VPCS_VECTOR_WRAPPER (sin_advsimd, _ZGVnN2v_sin) VPCS_VECTOR_WRAPPER (sin_advsimd, _ZGVnN2v_sin)
VPCS_VECTOR_WRAPPER (tan_advsimd, _ZGVnN2v_tan)

View File

@ -36,3 +36,4 @@ SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos)
SVE_VECTOR_WRAPPER (exp_sve, _ZGVsMxv_exp) SVE_VECTOR_WRAPPER (exp_sve, _ZGVsMxv_exp)
SVE_VECTOR_WRAPPER (log_sve, _ZGVsMxv_log) SVE_VECTOR_WRAPPER (log_sve, _ZGVsMxv_log)
SVE_VECTOR_WRAPPER (sin_sve, _ZGVsMxv_sin) SVE_VECTOR_WRAPPER (sin_sve, _ZGVsMxv_sin)
SVE_VECTOR_WRAPPER (tan_sve, _ZGVsMxv_tan)

View File

@ -27,3 +27,4 @@ VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf)
VPCS_VECTOR_WRAPPER (expf_advsimd, _ZGVnN4v_expf) VPCS_VECTOR_WRAPPER (expf_advsimd, _ZGVnN4v_expf)
VPCS_VECTOR_WRAPPER (logf_advsimd, _ZGVnN4v_logf) VPCS_VECTOR_WRAPPER (logf_advsimd, _ZGVnN4v_logf)
VPCS_VECTOR_WRAPPER (sinf_advsimd, _ZGVnN4v_sinf) VPCS_VECTOR_WRAPPER (sinf_advsimd, _ZGVnN4v_sinf)
VPCS_VECTOR_WRAPPER (tanf_advsimd, _ZGVnN4v_tanf)

View File

@ -36,3 +36,4 @@ SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf)
SVE_VECTOR_WRAPPER (expf_sve, _ZGVsMxv_expf) SVE_VECTOR_WRAPPER (expf_sve, _ZGVsMxv_expf)
SVE_VECTOR_WRAPPER (logf_sve, _ZGVsMxv_logf) SVE_VECTOR_WRAPPER (logf_sve, _ZGVsMxv_logf)
SVE_VECTOR_WRAPPER (sinf_sve, _ZGVsMxv_sinf) SVE_VECTOR_WRAPPER (sinf_sve, _ZGVsMxv_sinf)
SVE_VECTOR_WRAPPER (tanf_sve, _ZGVsMxv_tanf)

View File

@ -1340,11 +1340,19 @@ Function: "tan":
float: 1 float: 1
ldouble: 1 ldouble: 1
Function: "tan_advsimd":
double: 2
float: 2
Function: "tan_downward": Function: "tan_downward":
double: 1 double: 1
float: 2 float: 2
ldouble: 1 ldouble: 1
Function: "tan_sve":
double: 2
float: 2
Function: "tan_towardzero": Function: "tan_towardzero":
double: 1 double: 1
float: 1 float: 1

View File

@ -14,3 +14,7 @@ GLIBC_2.38 _ZGVsMxv_log F
GLIBC_2.38 _ZGVsMxv_logf F GLIBC_2.38 _ZGVsMxv_logf F
GLIBC_2.38 _ZGVsMxv_sin F GLIBC_2.38 _ZGVsMxv_sin F
GLIBC_2.38 _ZGVsMxv_sinf F GLIBC_2.38 _ZGVsMxv_sinf F
GLIBC_2.39 _ZGVnN2v_tan F
GLIBC_2.39 _ZGVnN4v_tanf F
GLIBC_2.39 _ZGVsMxv_tan F
GLIBC_2.39 _ZGVsMxv_tanf F