arm: Implement armv6 optimized string routines

The strcpy and strchr (and related) functions are four times faster
than the byte-by-byte default versions.

The strlen function is twice as fast for long strings and 50% faster
for short strings over the armv4 version.
This commit is contained in:
Richard Henderson 2013-03-07 09:07:51 -08:00
parent 642e52808d
commit f5ad94e02a
8 changed files with 707 additions and 0 deletions

View File

@ -1,3 +1,13 @@
2013-03-06 Richard Henderson <rth@redhat.com>
* sysdeps/arm/armv6/rawmemchr.S: New file.
* sysdeps/arm/armv6/stpcpy.S: New file.
* sysdeps/arm/armv6/strchr.S: New file.
* sysdeps/arm/armv6/strcpy.S: New file.
* sysdeps/arm/armv6/strlen.S: New file.
* sysdeps/arm/armv6/strrchr.S: New file.
* sysdeps/arm/armv6t2/Implies: New file.
2013-03-06 Richard Henderson <rth@redhat.com>
* sysdeps/arm/add_n.S: New file.

View File

@ -0,0 +1,105 @@
/* rawmemchr -- find a byte within an unsized memory block.
Copyright (C) 2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
.syntax unified
.text
ENTRY (__rawmemchr)
@ r0 = start of string
@ r1 = character to match
@ returns a pointer to the match, which must be present.
ldrb r2, [r0] @ load first byte asap
@ To cater to long strings, we want to search through a few
@ characters until we reach an aligned pointer. To cater to
@ small strings, we don't want to start doing word operations
@ immediately. The compromise is a maximum of 16 bytes less
@ whatever is required to end with an aligned pointer.
@ r3 = number of characters to search in alignment loop
and r3, r0, #7
uxtb r1, r1
rsb r3, r3, #15 @ 16 - 1 peeled loop iteration
cmp r2, r1
it eq
bxeq lr
@ Loop until we find ...
1: ldrb r2, [r0, #1]!
subs r3, r3, #1 @ ... the alignment point
it ne
cmpne r2, r1 @ ... or C
bne 1b
@ Disambiguate the exit possibilites above
cmp r2, r1 @ Found C
it eq
bxeq lr
add r0, r0, #1
@ So now we're aligned.
ldrd r2, r3, [r0], #8
orr r1, r1, r1, lsl #8 @ Replicate C to all bytes
#ifdef ARCH_HAS_T2
movw ip, #0x0101
pld [r0, #64]
movt ip, #0x0101
#else
ldr ip, =0x01010101
pld [r0, #64]
#endif
orr r1, r1, r1, lsl #16
@ Loop searching for C, 8 bytes at a time.
@ Subtracting (unsigned saturating) from 1 means result of 1 for
@ any byte that was originally zero and 0 otherwise. Therefore
@ we consider the lsb of each byte the "found" bit.
2: eor r2, r2, r1 @ Convert C bytes to 0
eor r3, r3, r1
uqsub8 r2, ip, r2 @ Find C
uqsub8 r3, ip, r3
pld [r0, #128]
orrs r3, r3, r2 @ Test both words for found
it eq
ldrdeq r2, r3, [r0], #8
beq 2b
@ Found something. Disambiguate between first and second words.
@ Adjust r0 to point to the word containing the match.
@ Adjust r2 to the found bits for the word containing the match.
cmp r2, #0
sub r0, r0, #4
ite eq
moveq r2, r3
subne r0, r0, #4
@ Find the bit-offset of the match within the word. Note that the
@ bit result from clz will be 7 higher than "true", but we'll
@ immediately discard those bits converting to a byte offset.
#ifdef __ARMEL__
rev r2, r2 @ For LE, count from the little end
#endif
clz r2, r2
add r0, r0, r2, lsr #3 @ Adjust the pointer to the found byte
bx lr
END (__rawmemchr)
weak_alias (__rawmemchr, rawmemchr)
libc_hidden_def (__rawmemchr)

View File

@ -0,0 +1 @@
/* Defined in strcpy.S. */

View File

@ -0,0 +1,143 @@
/* strchr -- find the first instance of C in a nul-terminated string.
Copyright (C) 2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
.syntax unified
.text
ENTRY (strchr)
@ r0 = start of string
@ r1 = character to match
@ returns NULL for no match, or a pointer to the match
ldrb r2, [r0] @ load the first byte asap
uxtb r1, r1
@ To cater to long strings, we want to search through a few
@ characters until we reach an aligned pointer. To cater to
@ small strings, we don't want to start doing word operations
@ immediately. The compromise is a maximum of 16 bytes less
@ whatever is required to end with an aligned pointer.
@ r3 = number of characters to search in alignment loop
and r3, r0, #7
rsb r3, r3, #15 @ 16 - 1 peeled loop iteration
cmp r2, r1 @ Found C?
it ne
cmpne r2, #0 @ Found EOS?
beq 99f
@ Loop until we find ...
1: ldrb r2, [r0, #1]!
subs r3, r3, #1 @ ... the aligment point
it ne
cmpne r2, r1 @ ... or the character
it ne
cmpne r2, #0 @ ... or EOS
bne 1b
@ Disambiguate the exit possibilites above
cmp r2, r1 @ Found the character
it ne
cmpne r2, #0 @ Found EOS
beq 99f
add r0, r0, #1
@ So now we're aligned. Now we actually need a stack frame.
push { r4, r5, r6, r7 }
cfi_adjust_cfa_offset (16)
cfi_rel_offset (r4, 0)
cfi_rel_offset (r5, 4)
cfi_rel_offset (r6, 8)
cfi_rel_offset (r7, 12)
ldrd r2, r3, [r0], #8
orr r1, r1, r1, lsl #8 @ Replicate C to all bytes
#ifdef ARCH_HAS_T2
movw ip, #0x0101
pld [r0, #64]
movt ip, #0x0101
#else
ldr ip, =0x01010101
pld [r0, #64]
#endif
orr r1, r1, r1, lsl #16
@ Loop searching for EOS or C, 8 bytes at a time.
2:
@ Subtracting (unsigned saturating) from 1 means result of 1 for
@ any byte that was originally zero and 0 otherwise. Therefore
@ we consider the lsb of each byte the "found" bit.
uqsub8 r4, ip, r2 @ Find EOS
eor r6, r2, r1 @ Convert C bytes to 0
uqsub8 r5, ip, r3
eor r7, r3, r1
uqsub8 r6, ip, r6 @ Find C
pld [r0, #128] @ Prefetch 2 lines ahead
uqsub8 r7, ip, r7
orr r4, r4, r6 @ Combine found for EOS and C
orr r5, r5, r7
orrs r6, r4, r5 @ Combine the two words
it eq
ldrdeq r2, r3, [r0], #8
beq 2b
@ Found something. Disambiguate between first and second words.
@ Adjust r0 to point to the word containing the match.
@ Adjust r2 to the contents of the word containing the match.
@ Adjust r4 to the found bits for the word containing the match.
cmp r4, #0
sub r0, r0, #4
itte eq
moveq r4, r5
moveq r2, r3
subne r0, r0, #4
@ Find the bit-offset of the match within the word.
#if defined(__ARMEL__)
@ For LE, swap the found word so clz searches from the little end.
rev r4, r4
#else
@ For BE, byte swap the word to make it easier to extract the byte.
rev r2, r2
#endif
@ We're counting 0x01 (not 0x80), so the bit offset is 7 too high.
clz r3, r4
sub r3, r3, #7
lsr r2, r2, r3 @ Shift down found byte
uxtb r1, r1 @ Undo replication of C
uxtb r2, r2 @ Extract found byte
add r0, r0, r3, lsr #3 @ Adjust the pointer to the found byte
pop { r4, r5, r6, r7 }
cfi_adjust_cfa_offset (-16)
cfi_restore (r4)
cfi_restore (r5)
cfi_restore (r6)
cfi_restore (r7)
@ Disambiguate between EOS and C.
99:
cmp r2, r1
it ne
movne r0, #0 @ Found EOS, return NULL
bx lr
END (strchr)
weak_alias (strchr, index)
libc_hidden_builtin_def (strchr)

View File

@ -0,0 +1,218 @@
/* strcpy -- copy a nul-terminated string.
Copyright (C) 2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
/* Endian independent macros for shifting bytes within registers. */
#ifdef __ARMEB__
#define lsh_gt lsr
#define lsh_ls lsl
#else
#define lsh_gt lsl
#define lsh_ls lsr
#endif
.syntax unified
.text
ENTRY (__stpcpy)
@ Signal stpcpy with NULL in IP.
mov ip, #0
b 0f
END (__stpcpy)
weak_alias (__stpcpy, stpcpy)
libc_hidden_def (__stpcpy)
libc_hidden_builtin_def (stpcpy)
ENTRY (strcpy)
@ Signal strcpy with DEST in IP.
mov ip, r0
0:
pld [r0]
pld [r1]
@ To cater to long strings, we want 8 byte alignment in the source.
@ To cater to small strings, we don't want to start that right away.
@ Loop up to 16 times, less whatever it takes to reach alignment.
and r3, r1, #7
rsb r3, r3, #16
@ Loop until we find ...
1: ldrb r2, [r1], #1
subs r3, r3, #1 @ ... the alignment point
strb r2, [r0], #1
it ne
cmpne r2, #0 @ ... or EOS
bne 1b
@ Disambiguate the exit possibilites above
cmp r2, #0 @ Found EOS
beq .Lreturn
@ Load the next two words asap
ldrd r2, r3, [r1], #8
pld [r0, #64]
pld [r1, #64]
@ For longer strings, we actaully need a stack frame.
push { r4, r5, r6, r7 }
cfi_adjust_cfa_offset (16)
cfi_rel_offset (r4, 0)
cfi_rel_offset (r5, 4)
cfi_rel_offset (r6, 8)
cfi_rel_offset (r7, 12)
@ Subtracting (unsigned saturating) from 1 for any byte means result
@ of 1 for any byte that was originally zero and 0 otherwise.
@ Therefore we consider the lsb of each byte the "found" bit.
#ifdef ARCH_HAS_T2
movw r7, #0x0101
tst r0, #3 @ Test alignment of DEST
movt r7, #0x0101
#else
ldr ip, =0x01010101
tst r0, #3
#endif
bne .Lunaligned
@ So now source (r1) is aligned to 8, and dest (r0) is aligned to 4.
@ Loop, reading 8 bytes at a time, searching for EOS.
.balign 16
2: uqsub8 r4, r7, r2 @ Find EOS
uqsub8 r5, r7, r3
pld [r1, #128]
cmp r4, #0 @ EOS in first word?
pld [r0, #128]
bne 3f
str r2, [r0], #4
cmp r5, #0 @ EOS in second word?
bne 4f
str r3, [r0], #4
ldrd r2, r3, [r1], #8
b 2b
3: sub r1, r1, #4 @ backup to first word
4: sub r1, r1, #4 @ backup to second word
@ ... then finish up any tail a byte at a time.
@ Note that we generally back up and re-read source bytes,
@ but we'll not re-write dest bytes.
.Lbyte_loop:
ldrb r2, [r1], #1
cmp r2, #0
strb r2, [r0], #1
bne .Lbyte_loop
pop { r4, r5, r6, r7 }
cfi_remember_state
cfi_adjust_cfa_offset (-16)
cfi_restore (r4)
cfi_restore (r5)
cfi_restore (r6)
cfi_restore (r7)
.Lreturn:
cmp ip, #0 @ Was this strcpy or stpcpy?
ite eq
subeq r0, r0, #1 @ stpcpy: undo post-inc from store
movne r0, ip @ strcpy: return original dest
bx lr
.Lunaligned:
cfi_restore_state
@ Here, source is aligned to 8, but the destination is not word
@ aligned. Therefore we have to shift the data in order to be
@ able to perform aligned word stores.
@ Find out which misalignment we're dealing with.
tst r0, #1
beq .Lunaligned2
tst r0, #2
bne .Lunaligned3
@ Fallthru to .Lunaligned1.
.macro unaligned_copy unalign
@ Prologue to unaligned loop. Seed shifted non-zero bytes.
uqsub8 r4, r7, r2 @ Find EOS
uqsub8 r5, r7, r3
mvns r4, r4 @ EOS in first word?
it ne
subne r1, r1, #8
bne .Lbyte_loop
#ifdef __ARMEB__
rev r2, r2 @ Byte stores below need LE data
#endif
@ Store a few bytes from the first word.
@ At the same time we align r0 and shift out bytes from r2.
.rept 4-\unalign
strb r2, [r0], #1
lsr r2, r2, #8
.endr
#ifdef __ARMEB__
rev r2, r2 @ Undo previous rev
#endif
@ Rotated unaligned copy loop. The tail of the prologue is
@ shared with the loop itself.
.balign 8
1: mvns r5, r5 @ EOS in second word?
bne 4f
@ Combine first and second words
orr r2, r2, r3, lsh_gt #(\unalign*8)
@ Save leftover bytes from the two words
lsh_ls r6, r3, #((4-\unalign)*8)
str r2, [r0], #4
@ The "real" start of the unaligned copy loop.
ldrd r2, r3, [r1], #8 @ Load 8 more bytes
uqsub8 r4, r7, r2 @ Find EOS
pld [r1, #128]
uqsub8 r5, r7, r3
pld [r0, #128]
mvns r4, r4 @ EOS in first word?
bne 3f
@ Combine the leftover and the first word
orr r6, r6, r2, lsh_gt #(\unalign*8)
@ Discard used bytes from the first word.
lsh_ls r2, r2, #((4-\unalign)*8)
str r6, [r0], #4
b 1b
@ Found EOS in one of the words; adjust backward
3: sub r1, r1, #4
mov r2, r6
4: sub r1, r1, #4
@ And store the remaining bytes from the leftover
#ifdef __ARMEB__
rev r2, r2
#endif
.rept \unalign
strb r2, [r0], #1
lsr r2, r2, #8
.endr
b .Lbyte_loop
.endm
.Lunaligned1:
unaligned_copy 1
.Lunaligned2:
unaligned_copy 2
.Lunaligned3:
unaligned_copy 3
END (strcpy)
libc_hidden_builtin_def (strcpy)

View File

@ -0,0 +1,99 @@
/* strlen -- find the length of a nul-terminated string.
Copyright (C) 2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
.syntax unified
.text
ENTRY (strlen)
@ r0 = start of string
ldrb r2, [r0] @ load the first byte asap
@ To cater to long strings, we want to search through a few
@ characters until we reach an aligned pointer. To cater to
@ small strings, we don't want to start doing word operations
@ immediately. The compromise is a maximum of 16 bytes less
@ whatever is required to end with an aligned pointer.
@ r3 = number of characters to search in alignment loop
and r3, r0, #7
mov r1, r0 @ Save the input pointer
rsb r3, r3, #15 @ 16 - 1 peeled loop iteration
cmp r2, #0
beq 99f
@ Loop until we find ...
1: ldrb r2, [r0, #1]!
subs r3, r3, #1 @ ... the aligment point
it ne
cmpne r2, #0 @ ... or EOS
bne 1b
@ Disambiguate the exit possibilites above
cmp r2, #0 @ Found EOS
beq 99f
add r0, r0, #1
@ So now we're aligned.
ldrd r2, r3, [r0], #8
#ifdef ARCH_HAS_T2
movw ip, #0x0101
pld [r0, #64]
movt ip, #0x0101
#else
ldr ip, =0x01010101
pld [r0, #64]
#endif
@ Loop searching for EOS, 8 bytes at a time.
@ Subtracting (unsigned saturating) from 1 for any byte means that
@ we get 1 for any byte that was originally zero and 0 otherwise.
@ Therefore we consider the lsb of each byte the "found" bit.
.balign 16
2: uqsub8 r2, ip, r2 @ Find EOS
uqsub8 r3, ip, r3
pld [r0, #128] @ Prefetch 2 lines ahead
orrs r3, r3, r2 @ Combine the two words
it eq
ldrdeq r2, r3, [r0], #8
beq 2b
@ Found something. Disambiguate between first and second words.
@ Adjust r0 to point to the word containing the match.
@ Adjust r2 to the found bits for the word containing the match.
cmp r2, #0
sub r0, r0, #4
ite eq
moveq r2, r3
subne r0, r0, #4
@ Find the bit-offset of the match within the word. Note that the
@ bit result from clz will be 7 higher than "true", but we'll
@ immediately discard those bits converting to a byte offset.
#ifdef __ARMEL__
rev r2, r2 @ For LE, count from the little end
#endif
clz r2, r2
add r0, r0, r2, lsr #3 @ Adjust the pointer to the found byte
99:
sub r0, r0, r1 @ Subtract input to compute length
bx lr
END (strlen)
libc_hidden_builtin_def (strlen)

View File

@ -0,0 +1,129 @@
/* strrchr -- find the last occurence of C in a nul-terminated string
Copyright (C) 2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
.syntax unified
.text
ENTRY (strrchr)
@ r0 = start of string
@ r1 = character to match
@ returns NULL for no match, or a pointer to the match
mov r3, r0
mov r0, #0
uxtb r1, r1
@ Loop a few times until we're aligned.
tst r3, #7
beq 2f
1: ldrb r2, [r3], #1
cmp r2, r1 @ Find the character
it eq
subeq r0, r3, #1
cmp r2, #0 @ Find EOS
it eq
bxeq lr
tst r3, #7 @ Find the aligment point
bne 1b
@ So now we're aligned. Now we actually need a stack frame.
2: push { r4, r5, r6, r7 }
cfi_adjust_cfa_offset (16)
cfi_rel_offset (r4, 0)
cfi_rel_offset (r5, 4)
cfi_rel_offset (r6, 8)
cfi_rel_offset (r7, 12)
orr r1, r1, r1, lsl #8 @ Replicate C to all bytes
#ifdef ARCH_HAS_T2
movw ip, #0x0101
movt ip, #0x0101
#else
ldr ip, =0x01010101
#endif
orr r1, r1, r1, lsl #16
mov r2, #0 @ No found bits yet
@ Loop searching for EOS and C, 8 bytes at a time.
@ Any time we find a match in a word, we copy the address of
@ the word to r0, and the found bits to r2.
3: ldrd r4, r5, [r3], #8
@ Subtracting (unsigned saturating) from 1 means result of 1 for
@ any byte that was originally zero and 0 otherwise. Therefore
@ we consider the lsb of each byte the "found" bit.
uqsub8 r6, ip, r4 @ Find EOS
uqsub8 r7, ip, r5
eor r4, r4, r1 @ Convert C bytes to 0
eor r5, r5, r1
uqsub8 r4, ip, r4 @ Find C
uqsub8 r5, ip, r5
cmp r6, #0 @ Found EOS, first word
bne 4f
cmp r4, #0 @ Handle C, first word
itt ne
subne r0, r3, #8
movne r2, r4
cmp r7, #0 @ Found EOS, second word
bne 5f
cmp r5, #0 @ Handle C, second word
itt ne
subne r0, r3, #4
movne r2, r5
b 3b
@ Found EOS in second word; fold to first word.
5: add r3, r3, #4 @ Dec pointer to 2nd word, with below
mov r4, r5 @ Overwrite first word C found
mov r6, r7 @ Overwrite first word EOS found
@ Found EOS. Zap found C after EOS.
4: sub r3, r3, #8 @ Decrement pointer to first word
#ifdef __ARMEB__
@ Byte swap to be congruent with LE, which is easier from here on.
rev r6, r6 @ Byte swap found EOS,
rev r4, r4 @ ... this found C
rev r2, r2 @ ... prev found C
#endif
sub r7, r6, #1 @ Toggle EOS lsb and below
eor r6, r6, r7 @ All bits below and including lsb
ands r4, r4, r6 @ Zap C above EOS
itt ne
movne r2, r4 @ Copy to result, if still non-zero
movne r0, r3
pop { r4, r5, r6, r7 }
cfi_adjust_cfa_offset (-16)
cfi_restore (r4)
cfi_restore (r5)
cfi_restore (r6)
cfi_restore (r7)
@ Adjust the result pointer if we found a word containing C.
cmp r2, #0
clz r2, r2 @ Find the bit offset of the last C
itt ne
rsbne r2, r2, #32 @ Convert to a count from the right
addne r0, r0, r2, lsr #3 @ Convert to byte offset and add.
bx lr
END (strrchr)
weak_alias (strrchr, rindex)
libc_hidden_builtin_def (strrchr)

View File

@ -0,0 +1,2 @@
# We can do everything that 6 can
arm/armv6