j1 and jn can underflow for small arguments, but fail to set errno
when underflowing to 0. This patch fixes them to set errno in that
case.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18611]
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and
avoid excess range and precision on underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on
underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Do not allow missing errno setting for
tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
The implementations of nearbyint functions using x87 floating point
(i386 all versions, x86_64 long double only) use the fclex
instruction, which clears any exceptions that were raised before the
function was called. These functions must not clear exceptions that
were raised before they were called.
This patch fixes these functions to save and restore the whole
floating-point environment (fnstenv / fldenv) as the way of avoiding
raising "inexact" (recall that there isn't an x87 instruction for
loading just the status word, so the whole environment has to be saved
and loaded instead - the code already saved and loaded the control
word, which is now obtained from the saved environment after this
patch, to disable traps on "inexact"). In the case of the long double
functions, any "invalid" exception from frndint (applied to a
signaling NaN) needs merging into the saved state; this issue doesn't
apply to the float and double functions because that exception would
have been raised when the argument is loaded, before the environment
is saved.
[BZ #15491]
* sysdeps/i386/fpu/s_nearbyint.S (__nearbyint): Save and restore
floating-point environment instead of clearing all exceptions.
* sysdeps/i386/fpu/s_nearbyintf.S (__nearbyintf): Likewise.
* sysdeps/i386/fpu/s_nearbyintl.S (__nearbyintl): Likewise,
merging in "invalid" exceptions from frndint.
* sysdeps/x86_64/fpu/s_nearbyintl.S (__nearbyintl): Likewise.
* math/test-nearbyint-except.c: New file.
* math/Makefile (tests): Add test-nearbyint-except.
Wilco fixed this tilegx bug in commit fe8c2b33ae ("Since we
now inline isinf, isnan and isfinite in math.h, replace uses
of __isinf_ns(l/f) with isinf, and remove the unused inlines
__isinf_ns(l/f), __isnan(f) and __finite(f).")
I verified that reverting math/s_cprojf.c back to using the
sysdeps/ieee754/flt-32/math_private.h version of __isinf_nsf()
instead of isinf() brings back the bug on tilegx.
My recent addition of more tests for j0 showed up that the ldbl-128
implementation of j0l produces spurious underflow exceptions for
arguments close to 0 (when the result is very close to 1). This patch
fixes this by just returning the argument in that case.
Tested for mips64 (where it fixes the recently-added tests that were
previously failing).
[BZ #19156]
* sysdeps/ieee754/ldbl-128/e_j0l.c (__ieee754_j0l): Return 1 for
arguments very close to 0.
The previous code used to evaluate the preprocessor token is_lock_free to
a variable before starting a transaction. This behavior can cause an
error if another thread got the lock (without using a transaction)
between the evaluation of the token and the beginning of the transaction.
This bug can be triggered with the following order of events:
1. The lock accessed by is_lock_free is free.
2. Thread T1 evaluates is_lock_free and stores into register R1 that the
lock is free.
3. Thread T2 acquires the same lock used in is_lock_free.
4. T1 begins the transaction, creating a memory barrier where is_lock_free
is false, but R1 is true.
5. T1 reads R1 and doesn't abort the transaction.
6. T1 calls ELIDE_UNLOCK, which reads false from is_lock_free and decides
to unlock a lock acquired by T2, leading to undefined behavior.
This patch delays the evaluation of is_lock_free to inside a transaction
by moving this part of the code to the macro ELIDE_LOCK.
[BZ #18743]
* sysdeps/powerpc/nptl/elide.h (__elide_lock): Move most of this
code to...
(ELIDE_LOCK): ...here.
(__get_new_count): New function with part of the code from
__elide_lock that updates the value of adapt_count after a
transaction abort.
(__elided_trylock): Moved this code to...
(ELIDE_TRYLOCK): ...here.
The previous (11th) version of the Hungarian spelling rules (released
in 1984) said that the separator had to be a dot, e.g. 10.35 meaning
10 o'clock 35 minutes. glibc correctly implements this.
The brand new (12th) version, in effect since September 1, 2015 adopts
to the common use of colon (especially in the digital world) and
allows to use either separator, without even expressing a preference.
For computer systems, using colons is way more typical and probably
easier to recognize. Dot is typically used in printed materials.
It also avoids an almost ambiguous situation where a space makes a
difference, e.g. "10.15-ig" means "until 10 o'clock 15 minutes"
whereas "10. 15-ig" means "until 15th of October". So I believe using
the colon as the separator is not only more frequent in the computer
world, but is also easier and quicker to recognize for the brain that
it's about hour:minute rather than month and day. And luckily it's now
equally correct according to the official rules.
11th edition: http://helyesiras.mta.hu/helyesiras/default/akh11
12th edition: http://helyesiras.mta.hu/helyesiras/default/akh12
In both editions it's the very last (299th and 300th, respectively) rule.
Microsoft also uses and recommends a colon since at least May 2011:
http://download.microsoft.com/download/e/6/1/e61266b2-d8b4-4fe0-a553-f01dc3976675/hun-hun-StyleGuide.pdf
The time format is different in common language and in the language of
IT. In common texts we usually do not abbreviate, so the full forms are
used: “7 óra 10 perckor csörgött a telefon”. However, the short format,
consisting of numerals only, can also be used. In this case a period
must be used between the two numbers and there must not be a space
between them: “találkozzunk 10.45-kor”.
However, in software mostly the short format is used, and the numbers
are separated by a colon. An obvious example is the clock in the bottom
right corner of your screen, thus 18:31.
Only i386 implements epoll_pwait in assembly code withot cancellation
support. All other architectures implement epoll_pwait in epoll_pwait.c
with
int epoll_pwait (int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *set)
{
return SYSCALL_CANCEL (epoll_pwait, epfd, events, maxevents,
timeout, set, _NSIG / 8);
}
Although there is no test for epoll_pwait in glibc, since SYSCALL_CANCEL
works on i386 and epoll_pwait.c works for other architectures, it is
safe to assume that epoll_pwait.c with SYSCALL_CANCEL also works on
i386.
[BZ #19137]
* sysdeps/unix/sysv/linux/i386/Makefile (CFLAGS-epoll_pwait.c):
Add -fomit-frame-pointer.
* sysdeps/unix/sysv/linux/i386/epoll_pwait.S: Remove file.
Honoring the LD_POINTER_GUARD environment variable in AT_SECURE mode
has security implications. This commit enables pointer guard
unconditionally, and the environment variable is now ignored.
[BZ #18928]
* sysdeps/generic/ldsodefs.h (struct rtld_global_ro): Remove
_dl_pointer_guard member.
* elf/rtld.c (_rtld_global_ro): Remove _dl_pointer_guard
initializer.
(security_init): Always set up pointer guard.
(process_envvars): Do not process LD_POINTER_GUARD.
The powerpc32 implementation of lround and lroundf can produce
spurious exceptions from adding 0.5 then converting to integer. This
includes "inexact" from the conversion to integer (not allowed for
integer arguments to these functions), and, for larger integer
arguments, "inexact", and "overflow" when rounding upward, from the
addition. In addition, "inexact" is not allowed together with
"invalid" and so inexact addition must be avoided when the integer
will be out of range of 32-bit long, whether or not the argument is an
integer.
This patch fixes these problems. As in the powerpc64 llround
implementation, a check is added for too-large arguments; in the
powerpc64 case that means arguments at least 2^52 in magnitude (so
that 0.5 cannot be added exactly), while in this case it means
arguments for which the result would overflow "long". In those cases
a suitable overflowing value is used for the integer conversion
without adding 0.5, while for smaller arguments it's tested whether
the argument is an integer (by adding and subtracting 2^52 to the
absolute value and comparing with the original absolute value) to
avoid adding 0.5 to integers and generating spurious "inexact".
This code is not used when the power5+ sysdeps directories are used,
as there's a separate power5+ version of these functions..
Tested for powerpc. This gets test-float (for a default powerpc32
hard-float build without any --with-cpu) back to the point where it
should pass once powerpc ulps are regenerated; test-double still needs
another problem with exceptions fixed to get back to that point (and I
haven't looked lately at what default powerpc64 results are like).
[BZ #19134]
* sysdeps/powerpc/powerpc32/fpu/s_lround.S (.LC1): New object.
(.LC2): Likewise.
(.LC3): Likewise.
(__lround): Do not add 0.5 to integer or out-of-range arguments.
_dl_tlsdesc_resolve_hold calls into a C function that clobbers r0,
but it assumes the original argument is still in r0 after the call.
This can cause crash in case of concurrent TLS access when TLSDESC
is in use (-mtls-dialect=gnu2).
Run into this while fixing BZ 18572.
Both r0 and r1 are saved/restored so the stack remains 8 byte aligned.
[BZ #19129]
* sysdeps/arm/dl-tlsdesc.S (_dl_tlsdesc_resolve_hold): Save and restore
r0 and r1.
Linker in binutils 2.26 and newer generate GOT references instead
PLT references when -z now is passed to linker. We need to extend
scripts/localplt.awk to allow PLT or GOT references.
[BZ #19007]
* scripts/localplt.awk: Also allow GOT references.
* sysdeps/unix/sysv/linux/i386/localplt.data: Mark
_Unwind_Find_FDE, calloc, memalign, realloc and __libc_memalign
with "+ REL R_386_GLOB_DAT".
* sysdeps/x86_64/localplt.data: Mark calloc, memalign, realloc
and __libc_memalign with "+ RELA R_X86_64_GLOB_DAT".
The powerpc32 implementations of llroundf and llround produce spurious
and missing exceptions (some arising from such exceptions from
conversions to long long, some present even when fctidz is used).
This patch fixes those problems in a similar way to the llrint /
llrintf fixes. The spurious exceptions in the fctidz case for large
arguments arise from a converted value that saturated as LLONG_MAX
being converted back to float or double (the conversion back being
inexact, but "inexact" must not be raised together with "invalid"),
and from the subtraction x - xrf also being inexact for sufficiently
large arguments (whether the saturation was to LLONG_MAX or
LLONG_MIN); those are fixed by returning early if the argument is
large enough that no rounding is needed.
This code is not used for --with-cpu=power4 builds (I suspect the code
used in that case may also produce spurious "inexact" exceptions, but
that's something to investigate later).
Tested for powerpc.
[BZ #19125]
* sysdeps/powerpc/powerpc32/fpu/s_llround.c: Include <limits.h>,
<math_private.h> and <stdint.h>.
(__llround): Avoid conversions to and from long long int, and
subtractions, where those might raise spurious exceptions.
* sysdeps/powerpc/powerpc32/fpu/s_llroundf.c: Include
<math_private.h> and <stdint.h>.
(__llroundf): Avoid conversions to and from long long int, and
subtractions, where those might raise spurious exceptions.
When x86-64 assmebler doesn't support AVX512, we should make
_dl_runtime_resolve_avx512/_dl_runtime_profile_avx512 as aliases of
_dl_runtime_resolve_avx/_dl_runtime_profile_avx. Tested on x86-64
using GCC 5.2 with binutils 20151008 and GCC 4.8 with binutils 20130219.
There are no differences in ld.so with binutils 20151008. There are no
unexpected failures with binutils 20130219 and 20151008.
[BZ #19124]
* sysdeps/x86_64/dl-trampoline.S [!HAVE_AVX512_ASM_SUPPORT]
(_dl_runtime_resolve_avx512): Make it a hidden alias of
_dl_runtime_resolve_avx.
(_dl_runtime_profile_avx512): Make it a hidden alias of
_dl_runtime_profile_avx.
The versions of llrint and llrintf for older powerpc32 processors
convert the results of __rint / __rintf to long long int, resulting in
spurious exceptions from such casts in certain cases. This patch
makes glibc work around the problems with the libgcc conversions when
the compiler used to build glibc doesn't use the fctidz instruction
for them.
Tested for powerpc.
[BZ #16422]
* sysdeps/powerpc/powerpc32/fpu/configure.ac (libc_cv_ppc_fctidz):
New configure test.
* sysdeps/powerpc/powerpc32/fpu/configure: Regenerated.
* config.h.in [_LIBC] (HAVE_PPC_FCTIDZ): New macro.
* sysdeps/powerpc/powerpc32/fpu/s_llrint.c: Include <limits.h>,
<math_private.h> and <stdint.h>.
(__llrint): Avoid conversions to long long int where those might
raise spurious exceptions.
* sysdeps/powerpc/powerpc32/fpu/s_llrintf.c: Include
<math_private.h> and <stdint.h>.
(__llrintf): Avoid conversions to long long int where those might
raise spurious exceptions.
Similar to the recent fix for MIPS, ARM is also missing correct
exceptions on overflow from llrint and llround functions because casts
from floating-point types to long long do not result in correct
exceptions on overflow. This patch enables the fix for this for ARM.
Tested for ARM.
[BZ #15470]
* sysdeps/arm/fix-fp-int-convert-overflow.h: New file.
For 32-bit MIPS and some other systems, various of the lrint, llrint,
lround, llround functions can be missing exceptions on overflow
because casts do not (in current GCC) result in the proper
exceptions. In the MIPS case there are two problems here: MIPS I code
generation uses an assembler macro that doesn't raise exceptions,
while the libgcc conversions of floating-point values to long long
also do not raise "invalid" on all overflow cases (and can raise
spurious "inexact").
This patch adds support in the generic code (only the functions for
which this problem has actually been seen) for forcing the "invalid"
exception in the problem cases, and enables that support for the
affected MIPS cases.
Tested for MIPS; also tested for x86_64 and x86 that installed
stripped shared libraries are unchanged by this patch.
[BZ #16399]
* sysdeps/generic/fix-fp-int-convert-overflow.h: New file.
* sysdeps/ieee754/dbl-64/s_llrint.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_llround.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lrint.c: Include
<fix-fp-int-convert-overflow.h>.
(__lrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lround.c: Include
<fix-fp-int-convert-overflow.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llroundf.c: Include <fenv.h>,
<limits.h> and <fix-fp-int-convert-overflow.h>.
(__llroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lroundf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h: New file.
The dbl-64 implementation of lrint produces incorrect results for some
arguments with 64-bit long because a 32-bit (unsigned) low part of the
mantissa is shifted left, losing high bits in the process. This patch
fixes this by casting to long int before shifting, as in lround (as
this case only applies for 64-bit long, there are no issues with
sign-extension).
Tested for mips64 (n64).
[BZ #19095]
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Cast low part of
mantissa to long int before shifting left.
The dbl-64, ldbl-96 and ldbl-128 implementations of lrint and llrint
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist. It also obviously cannot arise in
FE_TOWARDZERO mode.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT, while raising FE_INEXACT explicitly in the cases where it
is needed; unlike lround and llround, FE_INEXACT is required, not
optional, for these functions for a within-range inexact result).
The fixes are conditional on FE_INVALID or FE_INEXACT being defined.
If any future architecture supports one but not both of those
exceptions, the code will fail to compile and need fixing to handle
that case (this seemed better than conditioning on both macros being
defined, resulting in code that would compile but quietly miss
exceptions on such a system).
Tested for x86_64, x86 and mips64. Tested the ldbl-96 changes (only
relevant for ia64, it appears) on x86_64 by removing the x86_64
versions of lrintl / llrintl.
[BZ #19094]
* sysdeps/ieee754/dbl-64/s_lrint.c: Include <fenv.h> and
<limits.h>.
(__lrint) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
The optimization introduced in commit
f13c2a8dff, causes regressions in
sorting for languages that have digraphs that change sort order, like
cs_CZ which sorts ch between h and i.
My analysis shows the fast-forwarding optimization in STRCOLL advances
through a digraph while possibly stopping in the middle which results
in a subsequent skipping of the digraph and incorrect sorting. The
optimization is incorrect as implemented and because of that I'm
removing it for 2.23, and I will also commit this fix for 2.22 where
it was originally introduced.
This patch reverts the optimization, introduces a new bug-strcoll2.c
regression test that tests both cs_CZ.UTF-8 and da_DK.ISO-8859-1 and
ensures they sort one digraph each correctly. The optimization can't be
applied without regressing this test.
Checked on x86_64, bug-strcoll2.c fails without this patch and passes
after. This will also get a fix on 2.22 which has the same bug.
The dbl-64, ldbl-96 and ldbl-128 implementations of lround and llround
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT).
Tested for x86_64, x86 and mips64.
[BZ #19088]
* sysdeps/ieee754/dbl-64/s_lround.c: Include <fenv.h> and
<limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Include <fenv.h>
and <limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* math/libm-test.inc (lround_test_data): Add more tests.
(llround_test_data): Likewise.
The ldbl-128 implementations of lrintl and lroundl miss "invalid"
exceptions on systems with 32-bit long for arguments that overflow
long but have exponent below 48. This patch fixes this by rearranging
the sequence of tests in the code so the exponent < 48 case is only
used for exponents that don't overflow long.
Tested for mips64 (n32 and n64).
[BZ #19085]
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Move test for
exponent below 48 inside case for non-overflowing exponent.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl): Likewise.
The implementation of lround in dbl-64/wordsize-64 as an alias or
wrapper for llround is always incorrect when long is not 64-bit,
because it misses required exceptions in overflow cases, as shown by
my recently added tests. This patch removes that alias / wrapper in
the non-LP64 case, together with the REGISTER_CAST_INT32_TO_INT64
macro, restoring the previous version of lround for dbl-64/wordsize-64
(newly conditioned on !_LP64).
Tested for x86_64, and for mips64 with use of dbl-64/wordsize-64
enabled.
[BZ #19079]
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Restore previous
file, conditioned on [!_LP64].
* sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c
[!_LP64] (__lround): Do not define as function or alias.
[!_LP64] (lround): Likewise.
[!_LP64] (__lroundl): Likewise.
[!_LP64] (lroundl): Likewise.
* sysdeps/tile/sysdep.h (REGISTER_CAST_INT32_TO_INT64): Remove
macro.
* sysdeps/x86_64/x32/sysdep.h (REGISTER_CAST_INT32_TO_INT64):
Likewise.
The ldbl-128ibm expl wrapper checks the argument to determine when to
call __kernel_standard_l, thereby overriding overflowing results from
__ieee754_expl that could otherwise (given appropriately patched
libgcc) be correct for the rounding mode. This patch changes it to
check the result of __ieee754_expl instead, as other versions of this
wrapper do.
Tested for powerpc.
[BZ #19078]
* sysdeps/ieee754/ldbl-128ibm/w_expl.c (o_thres): Remove variable.
(u_thres): Likewise.
(__expl): Determine whether to call __kernel_standard_l based on
value of result, not argument.
The ldbl-128ibm implementation of logl produces a zero with the wrong
sign for logl (1) in FE_DOWNWARD mode. This patch makes it explicitly
return 0.0L in that case, as in e.g. the ldbl-128 implementation.
Tested for powerpc.
[BZ #19077]
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Return
0.0L for argument 1.0L.
The ldbl-128ibm implementation of log1pl produces an infinity with the
wrong sign for log1pl (-1) in FE_DOWNWARD mode. This patch fixes this
by changing a division (-1.0L / (x - x)) (incorrect in FE_DOWNWARD
mode) to (-1.0L / 0.0L) (correct in all rounding modes).
Tested for powerpc.
[BZ #19076]
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Divide by
constant 0.0L when computing infinite result.
The ldbl-96 version of lroundl is incorrect for systems with 64-bit
long when the argument's absolute value is just below a power of 2,
2^32 or more, and rounds up to the next integer; in such cases, it
returns 0. The problem is incrementing the high part of the mantissa
loses the high bit of the value (which is not an issue for any other
floating-point format, and is handled specially in lround when the bit
corresponding to 0.5 was in the high part rather than the low part).
This patch fixes this in a similar way to that used in llroundl:
storing the high part in an unsigned long variable before incrementing
it, so problems cannot occur in the case when this code is reachable.
I improved test coverage for both lround and llround by making them
use the same test inputs (appropriately conditioned on the size of
long in the lround case) - complete with the same comments, to make
comparison as easy as possible. (This test coverage improvement was
how I found the lroundl bug.)
Tested for x86_64 and x86.
[BZ #19071]
* sysdeps/ieee754/ldbl-96/s_lroundl.c (__lroundl): Use unsigned
long int variable to store possibly incremented high part of
mantissa.
* math/libm-test.inc (lround_test_data): Add tests used for
llround. Use [LONG_MAX > 0x7fffffff] consistently as condition
for tests requiring 64-bit long. Do not condition tests on
[TEST_FLOAT] unnecessarily.
(llround_test_data): Add tests used for lround. Add another
expectation for the "inexact" exception. Do not condition tests
on [TEST_FLOAT] unnecessarily.
On powerpc32 hard-float, older processors (ones where fcfid is not
available for 32-bit code), GCC generates conversions from integers to
floating point that wrongly convert integer 0 to -0 instead of +0 in
FE_DOWNWARD mode. This in turn results in logb and a few other
functions wrongly returning -0 when they should return +0.
This patch works around this issue in glibc as I proposed in
<https://sourceware.org/ml/libc-alpha/2015-09/msg00728.html>, so that
the affected functions can be correct and the affected tests pass in
the absence of a GCC fix for this longstanding issue (GCC bug 67771 -
if fixed, of course we can put in GCC version conditionals, and
eventually phase out the workarounds). A new macro
FIX_INT_FP_CONVERT_ZERO is added in a new sysdeps header
fix-int-fp-convert-zero.h, and the powerpc32/fpu version of that
header defines the macro based on the results of a configure test for
whether such conversions use the fcfid instruction.
Tested for x86_64 (that installed stripped shared libraries are
unchanged by the patch) and powerpc (that HAVE_PPC_FCFID comes out to
0 as expected and that the relevant tests are fixed). Also tested a
build with GCC configured for -mcpu=power4 and verified that
HAVE_PPC_FCFID comes out to 1 in that case.
There are still some other issues to fix to get test-float and
test-double passing cleanly for older powerpc32 processors (apart from
the need for an ulps regeneration for powerpc). (test-ldouble will be
harder to get passing cleanly, but with a combination of selected
fixes to ldbl-128ibm code that don't involve significant performance
issues, allowing spurious underflow and inexact exceptions for that
format, and lots of XFAILing for the default case of unpatched libgcc,
it should be doable.)
[BZ #887]
[BZ #19049]
[BZ #19050]
* sysdeps/generic/fix-int-fp-convert-zero.h: New file.
* sysdeps/ieee754/dbl-64/e_log10.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/e_log2.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_erf.c: Include
<fix-int-fp-convert-zero.h>.
(__erfc): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_logb.c: Include
<fix-int-fp-convert-zero.h>.
(__logb): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log10f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log2f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_erff.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_logbf.c: Include
<fix-int-fp-convert-zero.h>.
(__logbf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_logbl.c: Include
<fix-int-fp-convert-zero.h>.
(__logbl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/powerpc/powerpc32/fpu/configure.ac: New file.
* sysdeps/powerpc/powerpc32/fpu/configure: New generated file.
* sysdeps/powerpc/powerpc32/fpu/fix-int-fp-convert-zero.h: New
file.
* config.h.in [_LIBC] (HAVE_PPC_FCFID): New macro.
ISO C requires overflowing results from nexttoward to be the
appropriate infinity independent of the rounding mode, but some
implementations use a rounding-mode-dependent result (this is the same
issue as was fixed for nextafter in bug 16677). This patch fixes the
problem by making the nexttoward implementations discard the result
from the floating-point computation that forced an overflow exception
and then return the infinity previously computed with integer
arithmetic.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #19059]
* math/s_nexttowardf.c (__nexttowardf): Do not return value from
overflowing computation.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
* math/libm-test.inc (nexttoward_test_data): Add more tests.
This prevents injection of ':' and '\n' into output functions which
use the NSS files database syntax. Critical fields (user/group names
and file system paths) are checked strictly. For backwards
compatibility, the GECOS field is rewritten instead.
The getent program is adjusted to use the put*ent functions in libc,
instead of local copies. This changes the behavior of getent if user
names start with '-' or '+'.
The ldbl-128 / ldbl-128ibm implementation of lgamma has problems with
its handling of large arguments. It has an overflow threshold that is
correct only for ldbl-128, despite being used for both types - with
diagnostic control macros as a temporary measure to disable warnings
about that constant overflowing for ldbl-128ibm - and it has a
calculation that's roughly x * log(x) - x, resulting in overflows for
arguments that are roughly at most a factor 1/log(threshold) below the
overflow threshold.
This patch fixes both issues, using an overflow threshold appropriate
for the type in question and adding another case for large arguments
that avoids the possible intermediate overflow.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16347]
[BZ #19046]
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c: Do not include
<libc-internal.h>.
(MAXLGM): Do not use diagnostic control macros.
[LDBL_MANT_DIG == 106] (MAXLGM): Change value to overflow
threshold for ldbl-128ibm.
(__ieee754_lgammal_r): For large arguments, multiply by log - 1
instead of multiplying by log then subtracting.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
The ldbl-128ibm implementation of exp10l uses a version of log(10)
split into high and low parts - but the low part is negative, so
causing spurious overflows from __ieee754_expl (exp_high) in cases
close to the overflow threshold (I added relevant tests close to the
overflow threshold to the testsuite earlier today). The same issue
applies close to the underflow threshold as well (except that spurious
underflows in IBM long double arithmetic are harder to fix than the
other deficiencies, so we might end up permitting those for IBM long
double in the libm testsuite, as permitted by ISO C).
This patch fixes it to use a low part rounded downward to 48 bits
instead. (The choice of 48 instead of 53 bits is to make it more
obviously safe even when the low part of the argument is negative.)
Tested for powerpc. (Note that because of libgcc bugs with
multiplication very close to LDBL_MAX, libgcc also needs patching for
all the problem cases to be fixed, but this patch is still safe and
correct in the absence of such libgcc fixes.)
[BZ #16620]
* sysdeps/ieee754/ldbl-128ibm/e_exp10l.c (log10_high): Use value
of log (10) rounded downward to 48 bits.
(log10_low): Use corresponding low part of log (10).
The i386 versions of acoshf and acosh raise a spurious "invalid"
exception for an argument that is a quiet NaN with the sign bit set.
The integer arithmetic to detect arguments < 1 also detects -NaN, and
then the computation 0 / 0 in that case raises the exception. This
patch fixes this by using (x - x) / (x - x) as the computation in that
case instead, which will always raise the exception for non-NaN
arguments reaching that code, but not for quiet NaN arguments.
Tested for x86_64 and x86.
[BZ #19032]
* sysdeps/i386/fpu/e_acosh.S (__ieee754_acosh): For arguments < 1,
compute result as (x - x) / (x - x) not as 0 / 0.
* sysdeps/i386/fpu/e_acoshf.S (__ieee754_acoshf): Likewise.
* math/libm-test.inc (acosh_test_data): Add another test of acosh.
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.
However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm. This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs. This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.
Tested for x86_64, x86, mips64 and powerpc. For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear. Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.
[BZ #19016]
* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
allow more cases with X^2 + Y^2 >= 0.5.
* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise. Add -1 as
normal element in sum instead of special-casing based on values of
arguments.
* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise. Add
-1 as normal element in sum instead of special-casing based on
values of arguments.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
(__x2y2m1): Update comment.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise. Add -1
as normal element in sum instead of special-casing based on values
of arguments.
* math/s_clog.c (__clog): Handle more cases using log1p without
hypot.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The flt-32 version of powf can be inaccurate because of bugs in the
extra-precision calculation of (x-1)/(x+1) or (x-1.5)/(x+1.5) as part
of calculating log(x) with extra precision: a constant used (as part
of adding 1 or 1.5 through integer arithmetic) is incorrect, and then
the code fails to mask a computed high part before using it in
arithmetic that relies on s_h*t_h being exactly representable. This
patch fixes these bugs.
Tested for x86_64 and x86. x86_64 ulps for powf removed and
regenerated to reflect reduced ulps from the increased accuracy for
existing tests.
[BZ #18956]
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Add 0x00400000
not 0x0040000 for high bit of mantissa. Mask with 0xfffff000 when
extracting high part.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, pow functions can fail to
raise the underflow exception when the result is tiny and inexact but
one or more low bits of the intermediate result that is scaled down
(or, in the i386 case, converted from a wider evaluation format) are
zero. This patch forces the exception in a similar way to previous
fixes, thereby concluding the fixes for known bugs with missing
underflow exceptions currently filed in Bugzilla.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18825]
* sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN):
New macro.
(DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise.
(LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise.
* sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN.
(__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of
DBL_NARROW_EVAL, reloading the PIC register as needed.
* sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN.
(__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of
FLT_NARROW_EVAL. Use separate return path for case when first
argument is NaN.
* sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the
PIC register.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force
underflow for subnormal result.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use
math_check_force_underflow_nonneg.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use
math_check_force_underflow.
* sysdeps/x86_64/fpu/x86_64-math-asm.h
(LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro.
* sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.
Fix a regression introduced with commit 0d23a5c1 [Static dlopen
correction fallout fixes] that caused the default library search path to
be ignored for modules loaded with dlopen from static executables.
[BZ #17250]
* elf/dl-support.c (_dl_main_map): Don't initialize l_flags_1
member.
Similar to various other bugs in this area, hypot functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down (or, in the i386 case, converted from a wider evaluation format)
are zero. This patch forces the exception in a similar way to
previous fixes.
Note that this issue cannot arise for implementations of hypotf using
double (or wider) for intermediate evaluation (if hypotf should
underflow, that means the double square root is being computed of some
number of the form N*2^-298, for 0 < N < 2^46, which is exactly
represented as a double, and whatever the rounding mode such a square
root cannot have a mantissa with all zeroes after the initial 23
bits). Thus no changes are made to hypotf implementations in this
patch, only to hypot and hypotl.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18803]
* sysdeps/i386/fpu/e_hypot.S: Use DEFINE_DBL_MIN.
(MO): New macro.
(__ieee754_hypot) [PIC]: Load PIC register.
(__ieee754_hypot): Use DBL_NARROW_EVAL_UFLOW_NONNEG instead of
DBL_NARROW_EVAL.
* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Use
math_check_force_underflow_nonneg in case where result might be
tiny.
* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
* sysdeps/powerpc/fpu/e_hypot.c (__ieee754_hypot): Likewise.
* math/auto-libm-test-in: Add more tests of hypot.
* math/auto-libm-test-out: Regenerated.
The x86_64 fma4 version of pow fails to disable contraction of
operations other than those explicitly intended to use fma
instructions, so resulting in large ulps errors on processors with
fma4 instructions, as in bug 18104 (165ulp for the test added for that
bug; error originally reported by "blaaa" on #glibc). This patch adds
$(config-cflags-nofma) for e_pow-fma4.c, corresponding to the use for
e_pow.c in sysdeps/ieee754/dbl-64/Makefile.
Tested for x86_64 on a processor with fma4.
[BZ #19003]
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma4.c): Add
$(config-cflags-nofma).
i386 exp, hypot and pow functions can return overflowing and
underflowing values with excess range and precision; ; Wilco
Dijkstra's patches to make isfinite etc. expand inline cause this
pre-existing issue to result in test failures.
This patch fixes those functions to avoid excess range and precision
in their return values. Appropriate macros are added for the repeated
code sequences; in future I'll add more such macros and refactor
existing code forcing underflow (with or without also eliminating
excess range and precision from the return value) to use such macros.
Tested for x86. If, after this patch, you still see x86 libm test
failures with excess range or precision, please file bugs in Bugzilla.
[BZ #18980]
* sysdeps/i386/fpu/i386-math-asm.h (DEFINE_FLT_MIN): New macro.
(DEFINE_DBL_MIN): Likewise.
(FLT_NARROW_EVAL_UFLOW_NONNEG_NAN): Likewise.
(DBL_NARROW_EVAL_UFLOW_NONNEG_NAN): Likewise.
(FLT_NARROW_EVAL_UFLOW_NONNEG): Likewise.
(DBL_NARROW_EVAL_UFLOW_NONNEG): Likewise.
* sysdeps/i386/fpu/e_exp.S: Include <i386-math-asm.h>.
(dbl_min): Replace with use of DEFINE_DBL_MIN.
(__ieee754_exp): Use DBL_NARROW_EVAL_UFLOW_NONNEG_NAN.
(__exp_finite): Use DBL_NARROW_EVAL_UFLOW_NONNEG.
* sysdeps/i386/fpu/e_exp10.S: Include <i386-math-asm.h>.
(dbl_min): Replace with use of DEFINE_DBL_MIN.
(__ieee754_exp10): Use DBL_NARROW_EVAL_UFLOW_NONNEG_NAN.
* sysdeps/i386/fpu/e_exp10f.S: Include <i386-math-asm.h>.
(flt_min): Replace with use of DEFINE_FLT_MIN.
(__ieee754_exp10f): Use FLT_NARROW_EVAL_UFLOW_NONNEG_NAN.
* sysdeps/i386/fpu/e_exp2.S: Include <i386-math-asm.h>.
(dbl_min): Replace with use of DEFINE_DBL_MIN.
(__ieee754_exp2): Use DBL_NARROW_EVAL_UFLOW_NONNEG_NAN.
* sysdeps/i386/fpu/e_exp2f.S: Include <i386-math-asm.h>.
(flt_min): Replace with use of DEFINE_FLT_MIN.
(__ieee754_exp2f): Use FLT_NARROW_EVAL_UFLOW_NONNEG_NAN.
* sysdeps/i386/fpu/e_expf.S: Include <i386-math-asm.h>.
(flt_min): Replace with use of DEFINE_FLT_MIN.
(__ieee754_expf): Use FLT_NARROW_EVAL_UFLOW_NONNEG_NAN.
(__expf_finite): Use FLT_NARROW_EVAL_UFLOW_NONNEG.
* sysdeps/i386/fpu/e_hypot.S: Include <i386-math-asm.h>.
(__ieee754_hypot): Use DBL_NARROW_EVAL.
* sysdeps/i386/fpu/e_hypotf.S: Include <i386-math-asm.h>.
(__ieee754_hypotf): Use FLT_NARROW_EVAL.
* sysdeps/i386/fpu/e_pow.S: Include <i386-math-asm.h>.
(__ieee754_pow): Use DBL_NARROW_EVAL.
* sysdeps/i386/fpu/e_powf.S: Include <i386-math-asm.h>.
(__ieee754_powf): Use FLT_NARROW_EVAL.
* sysdeps/i386/i686/fpu/multiarch/e_expf-sse2.S
(__ieee754_expf_sse2): Convert double-precision result to single
precision.
* sysdeps/i386/fpu/libm-test-ulps: Update.