The Linux version already target the current thread by using tgkill
along with getpid and gettid.
For arm, libpthread does not do a intra PLT since it will call the
raise from libc.
Checked on x86_64-linux-gnu.
The libc version is identical and built with same flags. The libc
version is set as the default version.
The libpthread compat symbol requires to mask it when building the
loader object otherwise ld might complain about a missing
versioned symbol (as for alpha).
Checked on x86_64-linux-gnu.
The libc version is identical and built with same flags. Both aarch64
and nios2 also requires to export __send and tt was done previously with
the HAVE_INTERNAL_SEND_SYMBOL (which forced the symbol creation).
All __send callers are internal to libc and the original issue that
required the symbol export was due a missing libc_hidden_def. So
a compat symbol is added for __send and the libc_hidden_def is
defined regardless.
Checked on x86_64-linux-gnu and i686-linux-gnu.
It turns out the startup code in csu/elf-init.c has a perfect pair of
ROP gadgets (see Marco-Gisbert and Ripoll-Ripoll, "return-to-csu: A
New Method to Bypass 64-bit Linux ASLR"). These functions are not
needed in dynamically-linked binaries because DT_INIT/DT_INIT_ARRAY
are already processed by the dynamic linker. However, the dynamic
linker skipped the main program for some reason. For maximum
backwards compatibility, this is not changed, and instead, the main
map is consulted from __libc_start_main if the init function argument
is a NULL pointer.
For statically linked binaries, the old approach based on linker
symbols is still used because there is nothing else available.
A new symbol version __libc_start_main@@GLIBC_2.34 is introduced because
new binaries running on an old libc would not run their ELF
constructors, leading to difficult-to-debug issues.
Linux 5.11 has one new syscall, epoll_pwait2. Update
syscall-names.list and regenerate the arch-syscall.h headers with
build-many-glibcs.py update-syscalls.
Tested with build-many-glibcs.py.
The __NR_statfs64 syscall is supported on all architectures but
aarch64, mips64, riscv64, and x86_64. And newer ABIs also uses
the new statfs64 interface (where the struct size is used as
second argument).
So the default implementation now uses:
1. __NR_statfs64 for non-LFS call and handle overflow directly
There is no need to handle __NR_statfs since all architectures
that only support are LFS only.
2. __NR_statfs if defined or __NR_statfs64 otherwise for LFS
call.
Alpha is the only outlier, since it is a 64-bit architecture which
provides non-LFS interface and only provides __NR_statfs64 on
newer kernels (v5.1+).
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The __NR_fstatfs64 syscall is supported on all architectures but
aarch64, mips64, riscv64, and x86_64. And newer ABIs also uses
the new fstatfs64 interface (where the struct size is used as
first argument).
So the default implementation now uses:
1. __NR_fstatfs64 for non-LFS call and handle overflow directly
There is no need to handle __NR_fstatfs since all architectures
that only support are LFS only.
2. __NR_fstatfs if defined or __NR_fstatfs64 otherwise for LFS
call.
Alpha is the only outlier, it is a 64-bit architecture which
provides non-LFS interface and only provides __NR_fstatfs64 on
newer kernels (5.1+).
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
GCC mainline shows the following error:
../sysdeps/unix/sysv/linux/mips/mips64/getdents64.c: In function '__getdents64':
../sysdeps/unix/sysv/linux/mips/mips64/getdents64.c:121:7: error: 'memcpy' forming offset [4, 7] is out of the bounds [0, 4] [-Werror=array-bounds]
121 | memcpy (((char *) dp + offsetof (struct dirent64, d_ino)),
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
122 | KDP_MEMBER (kdp, d_ino), sizeof ((struct dirent64){0}.d_ino));
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../sysdeps/unix/sysv/linux/mips/mips64/getdents64.c:123:7: error: 'memcpy' forming offset [4, 7] is out of the bounds [0, 4] [-Werror=array-bounds]
123 | memcpy (((char *) dp + offsetof (struct dirent64, d_off)),
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
124 | KDP_MEMBER (kdp, d_off), sizeof ((struct dirent64){0}.d_off));
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The issue is due both d_ino and d_off fields for mips64-n32
kernel_dirent are 32-bits, while this is using memcpy to copy 64 bits
from it into the glibc dirent64.
The fix is to use a temporary buffer to read the correct type
from kernel_dirent.
Checked with a build-many-glibcs.py for mips64el-linux-gnu and I
also checked the tst-getdents64 on mips64el 4.1.4 kernel with
and without fallback enabled (by manually setting the
getdents64_supported).
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Linux 5.10 has one new syscall, process_madvise. Update
syscall-names.list and regenerate the arch-syscall.h headers with
build-many-glibcs.py update-syscalls.
Tested with build-many-glibcs.py.
It removes all the arch-specific assembly implementation. The
outliers are alpha, where its kernel ABI explict return -ENOMEM
in case of failure; and i686, where it can't use
"call *%gs:SYSINFO_OFFSET" during statup in static PIE.
Also some ABIs exports an additional ___brk_addr symbol and to
handle it an internal HAVE_INTERNAL_BRK_ADDR_SYMBOL is added.
Checked on x86_64-linux-gnu, i686-linux-gnu, adn with builsd for
the affected ABIs.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This reverts commit 20b39d5946 to move
{f}xstat{at} back to default symbols. ABIs with default symbol version
of 2.33 or newer (such as riscv32) continue to just provide the stat
symbols.
The idea is to not force static libraries built against old glibc
to update against new glibcs (since they reference the old
{f}xstat{at} symbols).
Checked on x86_64-linux-gnu and i686-linux-gnu.
Linux 5.9 has one new syscall, close_range. Update syscall-names.list
and regenerate the arch-syscall.h headers with build-many-glibcs.py
update-syscalls.
Tested with build-many-glibcs.py.
Although not required by the standards, some code expects that a
successful stat call should not set errno. However since aa03f722f3
'linux: Add {f}stat{at} y2038 support', on 32-bit systems with 32-bit
time_t supporrt, stat implementation will first issues __NR_statx and
if it fails with ENOSYS issue the system stat syscall.
On architecture running on kernel without __NR_statx support the
first call will set the errno to ENOSYS, even when the following stat
syscall might not fail.
This patch fixes by using INTERNAL_SYSCALL and only setting the errno
value when function returns.
Checked on i686-linux-gnu, x86_64-linux-gnu, sparc64-linux-gnu,
sparcv9-linux-gnu, powerpc64-linux-gnu, powerpc64le-linux-gnu,
arm-linux-gnueabihf, and aarch64-linux-gnu.
A new struct __stat{64}_t64 type is added with the required
__timespec64 time definition. Only LFS is added, 64-bit time with
32-bit offsets is not supposed to be supported (no existing glibc
configuration supports such a combination). It is done with an extra
__NR_statx call plus a conversion to the new __stat{64}_t64 type.
The statx call is done only for 32-bit time_t ABIs.
Internally some extra routines to copy from/to struct stat{64}
to struct __stat{64} used on multiple implementations (stat, fstat,
lstat, and fstatat) are added on a extra implementation
(stat_t64_cp.c). Alse some extra routines to copy from statx to
__stat{64} is added on statx_cp.c.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
They are no interna uses anymore. The riscv32 ABI was added on 2.33,
so it is safe to remove the old __{f,l}stat{at} symbols and just
provide the newer {f,l}stat{at} ones.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
It implements all the required syscall for the all Linux kABIS on
fstatat{64} instead of calling fxstatat{64}.
On non-LFS implementation, it handles 3 cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, mips32, s390, sh, powerpc, and sparc32): it issues
__NR_fstatat64 and convert the result to struct stat.
3. 64-bit kABI outliers (mips64 and mips64-n32): it issues
__NR_newfstatat and convert the result to struct stat.
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issues __NR_newfstatat.
1.2. 64-bit kABI outlier (alpha): it issues __NR_fstatat64.
1.3. 64-bit kABI outlier where struct stat64 does not match kernel
one (sparc64): it issues __NR_fstatat64 and convert the result
to struct stat64.
1.4. 32-bit kABI with default 64-bit time_t (arc, riscv32): it
issues __NR_statx and convert the result to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0:
2.1. All kABIs with non-LFS support (arm, csky, i386, hppa, m68k,
microblaze, nios2, sh, powerpc32, and sparc32): it issues
__NR_fstatat64.
2.2. 64-bit kABI outliers (mips64 and mips64-n32): it issues
__NR_newfstatat and convert the result to struct stat64.
It allows to remove all the hidden definitions from the {f,l}xstat{64}
(some are still kept because Hurd requires it).
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
This patch removes the mknod and mknodat static wrapper and add the
symbols on the libc with the expected names.
Both the prototypes of the internal symbol linked by the static
wrappers and the inline redirectors are also removed from the installed
sys/stat.h header file. The wrapper implementation license LGPL
exception is also removed since it is no longer statically linked to
binaries.
Internally the _STAT_VER* definitions are moved to the arch-specific
xstatver.h file.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
This patch removes the stat, stat64, lstat, lstat64, fstat, fstat64,
fstatat, and fstatat64 static wrapper and add the symbol on the libc
with the expected names.
Both the prototypes of the internal symbol linked by the static
wrappers and the inline redirectors are also removed from the installed
sys/stat.h header file. The wrapper implementation license LGPL
exception is also removed since it is no longer statically linked to
binaries.
Internally the _STAT_VER* definitions are moved to a arch-specific
xstatver.h file. The internal defines that redirects internals
{f}stat{at} to their {f}xstat{at} counterparts are removed for Linux
(!NO_RTLD_HIDDEN). Hurd still requires them since {f}stat{at} pulls
extra objects that makes the loader build fail otherwise (I haven't
dig into why exactly).
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
This patch adds the ABI-related bits to reflect the new mallinfo2
function, and adds a test case to verify basic functionality.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The LFS support is implemented on fxstat64.c, instead of fxstat.c for
64-bit architectures. The fxstatat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstatat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k, mips32,
microblaze, s390, sh, powerpc, and sparc32). it issues
__NR_fstatat64 and convert to non-LFS stat struct based on the
version.
Also non-LFS mips64 is an outlier and it has its own implementation
since _STAT_VER_LINUX requires a different conversion function (it
uses the kernel_stat as the sysissues argument since its exported ABI
is different than the kernel one for both non-LFS and LFS
implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issues __NR_newfstatat for _STAT_VER_KERNEL or
_STAT_VER_LINUX.
1.2. 64-bit kABI outlier (sparc64): it issuess fstatat64 with a
temporary stat64 and convert to output stat64 based on the
input version (and using a sparc64 specific __xstat32_conv).
1.3. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0 (arm, csky, i386, hppa, m68k,
microblaze, mips32, nios2, sh, powerpc32, and sparc32): it issues
__NR_fstat64.
Also, two special cases requires specific implementations:
1. alpha: it uses the __NR_fstatat64 syscall instead.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires an specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on fxstat64.c, instead of fxstat.c for
64-bit architectures. The fxstat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issuess __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_fstat, otherwise it calls __NR_fstat64 and convert
to non-LFS stat struct and handle possible overflows on st_ino,
st_size, or st_blocks.
Also non-LFS mips is an outlier and it has its own implementation since
_STAT_VER_LINUX requires a different conversion function (it uses the
kernel_stat as the sysissues argument since its exported ABI is
different than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issuess __NR_fstat for _STAT_VER_KERNEL or
_STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_fstat64 instead of __NR_fstat
(sparc64): it issues __NR_fstat for _STAT_VER_KERNEL or
__NR_fstat64 and convert to struct stat64.
1.3. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issuess __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0 (arm, csky, i386, hppa,
m68k, microblaze, mips32, nios2, sh, powerpc32, and sparc32): it
issues __NR_fstat64.
Also, two special cases requires specific implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to issues
__NR_fstat64 and use the kernel_stat with __NR_fstat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires an specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on lxstat64.c, instead of lxstat.c for
64-bit architectures. The xstat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstat64 with AT_SYMLINK_NOFOLLOW plus handles
the possible overflow off st_ino, st_size, or st_blocks. It only
handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_lstat, otherwise it isseus __NR_lstat64 and convert
to non-LFS stat struct and handle possible overflows on st_ino,
st_size, or st_blocks.
Also non-LFS mips is an outlier and it has its own implementation since
_STAT_VER_LINUX requires a different conversion function (it uses the
kernel_stat as the syscall argument since its exported ABI is different
than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. Old 64-bit kABI (ia64, powerpc64*, s390x, sparc64, x86_64): it
issues __NR_lstat for _STAT_VER_KERNEL or _STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_lstat64 instead of __NR_lstat
(sparc64): it issues __NR_lstat for _STAT_VER_KERNEL or
__NR_lstat64 and convert to struct stat64.
1.3. New kABIs which uses generic 64-bit Linux ABI (aarch64 and
riscv64): it issues __NR_newfstatat with AT_SYMLINK_NOFOLLOW
and only for _STAT_VER_KERNEL.
1.4. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0:
2.1. New kABIs which uses generic pre 64-bit time Linux ABI (csky
and nios2): it issues __NR_fstatat64 for _STAT_VER_KERNEL.
2.2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, mips32, powerpc32, and sparc32): it
issues __NR_lstat64.
Also, two special cases requires specific LFS implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to issue
__NR_lstat64 and use the kernel_stat with __NR_lstat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires a specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on xstat64.c, instead of xstat.c for
64-bit architectures. The xstat.c implements the non-LFS it is
no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handle two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_stat, otherwise it issues __NR_stat64 and convert
to non-LFS stat struct handling possible overflows on st_ino,
st_size, or st_blocks.
Also the non-LFS mips is an outlier and it has its own implementation
since _STAT_VER_LINUX requires a different conversion function (it uses
the kernel_stat as the syscall argument since its exported ABI is
different than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. Old 64-bit kABI (ia64, powerpc64*, s390x, x86_64): it
issues __NR_stat for _STAT_VER_KERNEL or _STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_stat64 instead of __NR_stat
(sparc64): it issues __NR_stat for _STAT_VER_KERNEL or
__NR_stat64 and convert to struct stat64.
1.3. New kABIs which uses generic 64-bit Linux ABI (aarch64 and
riscv64): it issues __NR_newfstatat and only for
_STAT_VER_KERNEL.
1.4. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0:
2.1. New kABIs which uses generic pre 64-bit time Linux ABI (csky
and nios2): it issues __NR_fstatat64 for _STAT_VER_KERNEL.
2.2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, mips32, powerpc32, and sparc32): it
issues __NR_stat64.
Also, two special cases requires specific LFS implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to call __NR_stat64
or use the kernel_stat with __NR_stat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from glibc
exported one, which requires an specific conversion function to
handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Linux 5.8 has one new syscall, faccessat2. Update syscall-names.list
and regenerate the arch-syscall.h headers with build-many-glibcs.py
update-syscalls.
Tested with build-many-glibcs.py.
The kernel ABI is not finalized, and there are now various proposals
to change the size of struct rseq, which would make the glibc ABI
dependent on the version of the kernels used for building glibc.
This is of course not acceptable.
This reverts commit 48699da1c4 ("elf:
Support at least 32-byte alignment in static dlopen"), commit
8f4632deb3 ("Linux: rseq registration
tests"), commit 6e29cb3f61 ("Linux: Use
rseq in sched_getcpu if available"), and commit
0c76fc3c2b ("Linux: Perform rseq
registration at C startup and thread creation"), resolving the conflicts
introduced by the ARC port and the TLS static surplus changes.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>