The minimum GCC version has been raised to 6.2 for building
glibc. Therefore, follow the advice inside the implementation
and remove the GCC < 6 codepath.
Likewise, remove the hidden_proto as all internal usages should
inline now.
GCC 7.5.0 (PR94200) will refuse to compile if both -mabi=% and
-mlong-double-128 are passed on the command line. Surprisingly,
it will work happily if the latter is not. For the sake of
maintaining status quo, test for and blacklist such compilers.
Tested with a GCC 8.3.1 and GCC 7.5.0 compiler for ppc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Improve the commentary to aid future developers who will stumble
upon this novel, yet not always perfect, mechanism to support
alternative formats for long double.
Likewise, rename __LONG_DOUBLE_USES_FLOAT128 to
__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI now that development work
has settled down. The command used was
git grep -l __LONG_DOUBLE_USES_FLOAT128 ':!./ChangeLog*' | \
xargs sed -i 's/__LONG_DOUBLE_USES_FLOAT128/__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI/g'
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The test for enabling _Float128 or IEEE 128 long double can be
greatly simplified knowing that there is no ibm128, thus we require
no special cases, and everything is canonical.
This reverts the changes to ldbl-128ibm iscanonical.h from commit
8dbfea3a20 and extends the check
for __NO_LONG_DOUBLE_MATH to include a check for float128 redirects
to long double.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This better resembles the default linking process with the gnulibs,
and also resolves the increasingly difficult to maintain
f128-loader-link usage on powerpc64le as some libgcc symbols are
dependent on those found in the loader (ld).
Tweak the PLT bypass magic when building glibc with long double
redirects. This is made more difficult by the fact we only get
one chance to redirect functions. This happens via the public
headers.
There are roughly three classes of redirect we need to attend to
today:
1. Simple redirects, redirected via cdef macro overrides and
and new libc_hidden_ldbl_proto macro.
2. Internal usage of internal API, e.g __snprintf, which has
no direct analogue. This is bypassed directly on case-by-
case basis.
3. Double redirects, e.g sscanf and related. These require
a heavier handed approach of macro renaming to existing
symbols.
Most simple redirects are handled via 1. Ideally, the libc_*
macro would live in libc-symbols.h, but in practice the macros
needed for it to do anything useful live in cdefs.h, so they
are defined in the local override.
Notably, the internal name of the asprintf generated for ieee ldbl
redirects is renamed to work with internal prefixed usage.
This resolves the local plt usage introduced when building glibc
with ldbl == ieee128 on ppc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
With mathinline removal there is no need to keep building and testing
inline math tests.
The gen-libm-tests.py support to generate ULP_I_* is removed and all
libm-test-ulps files are updated to longer have the
i{float,double,ldouble} entries. The support for no-test-inline is
also removed from both gen-auto-libm-tests and the
auto-libm-test-out-* were regenerated.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Soon, powerpc64le will need to provide extra compiler flags to the long
double files in order to continue to build using the IBM 128-bit
extended floating point type as long double.
This patch creates test-ibm128* tests from the long double function tests.
In order to explicitly test IBM long double functions -mabi=ibmlongdouble is
added to CFLAGS.
Likewise, update the test headers to correct choose ULPs when redirects
are enabled.
Co-authored-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Co-authored-by: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
For lack of a more comprehensive solution, tack on the ibm128 ABI
compiler options for the totalorder{,mag}l compat tests which exist
prior to enabling this feature.
The functions in the nexttoward family are special, in the sense that
they always have a long double argument, regardless of their suffix
(i.e.: nexttowardf and nexttoward have a long double argument, besides
the float and double arguments).
On top of that, they are also special because nexttoward functions are
not part of the _FloatN API, hence __nexttowardf128 do not exist.
This patch adds 4 new function implementations for the new long double
format:
__nexttoward_to_ieee128
__nexttowardf_to_ieee128
__nexttowardieee128 (as an alias to __nextafterieee128)
Likewise, rename "long double" "_Float128" in shared ldbl-128
files to ensure correct type is used irrespective of ABI
switches.
Thank you to those who helped out with this patch:
Co-Authored-By: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Modify the headers to redirect long double functions to global __*f128
symbols or to __*ieee128 otherwise.
Most of the functions in math.h benefit from the infrastructure already
available for __LDBL_COMPAT. The only exceptions are nexttowardf and
nexttoward that need especial treatment.
Both math/bits/mathcalls-helper-functions.h and math/bits/mathcalls.h
were modified in order to provide alternative redirection destinations
that are essential to support functions that should not be redirected to
the same name pattern of the rest of the functions, i.e.: __fpclassify,
__signbit, __iseqsig, __issignaling, isinf, finite and isnan, which will
be redirected to __*f128 instead of __*ieee128 used for the rest.
Instead of attempting something more creative, just copy
the small struct from ldbl-128 and enable it when IEEE
long double is present, and update the ibm long double
variant if supported.
Likewise, provide a shadow copy of math_ldbl.h to prevent
the ibm128 specific long double header from poisoning
unrelated files due to it's usage in math_private.h.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
We want to ensure that if a second file is built to support
ieee128 long double, we built its companion implementation
with ibm128 long double. The shared object versions of these
files build correctly because the aliasing is sufficiently
complex to prevent the redirects from applying when defining
them.
However, this does not prevent the static object variants
from becoming quietly broken due to redirects. This is
intentionally avoided by marking such objects to be built
with -mabi=ibmlongdouble.
Shuffle the misplaced routines to build against the subdir
which defines the needed symbols.
A number of utility files and helper objects should also be
explicitly configured to build with the ibm128 ABI to prevent
gremlins when enabling IEEE long double.
Move the narrow math aliasing macros into a new sysdep header file
math-narrow-alias-float128.h. Then, provide an override header
to supply the necessary changes to supply the *ieee128 aliases of
these symbols.
This adds ieee128 aliases for faddl, fdivl, fmull, fsubl, daddl, ddivl,
dmull, dsubl.
After defining the long double redirections to double, __MATHDECL_1 has
to be redefined to its previous state in order to avoid redirecting all
subsequent types.
Reuse the template in order to provide the redirect for
scalbl to __scalbieee128, but avoid any extra aliasing
as this is intended to support long double redirects only.
This is a preparatory patch to enable building a _Float128
variant to ease reuse when building a _Float128 variant to
alias this long double only symbol.
Notably, stubs are added where missing to the native _Float128
sysdep dir to prevent building these newly templated variants
created inside the build directories.
Also noteworthy are the changes around LIBM_SVID_COMPAT. These
changes are not intuitive. The templated version is only
enabled when !LIBM_SVID_COMPAT, and the compat version is
predicated entirely on LIBM_SVID_COMPAT. Thus, exactly one is
stubbed out entirely when building. The nldbl scalb compat
files are updated to account for this.
Likewise, fixup the reuse of m68k's e_scalb{f,l}.c to include
it's override of e_scalb.c. Otherwise, the search path finds
the templated copy in the build directory. This could be
futher simplified by providing an overridden template, but I
lack the hardware to verify.
A recent discussion in bug 14469 notes that a threshold in float
Bessel function implementations, used to determine when to use a
simpler implementation approach, results in substantially inaccurate
results.
As I discussed in
<https://sourceware.org/ml/libc-alpha/2013-03/msg00345.html>, a
heuristic argument suggests 2^(S+P) as the right order of magnitude
for a suitable threshold, where S is the number of significand bits in
the floating-point type and P is the number of significant bits in the
representation of the floating-point type, and the float and ldbl-96
implementations use thresholds that are too small. Some threshold
does need using, there or elsewhere in the implementation, to avoid
spurious underflow and overflow for large arguments.
This patch sets the thresholds in the affected implementations to more
heuristically justifiable values. Results will still be inaccurate
close to zeroes of the functions (thus this patch does *not* fix any
of the bugs for Bessel function inaccuracy); fixing that would require
a different implementation approach, likely along the lines described
in <http://www.cl.cam.ac.uk/~jrh13/papers/bessel.ps.gz>.
So the justification for a change such as this would be statistical
rather than based on particular tests that had excessive errors and no
longer do so (no doubt such tests could be found, but would probably
be too fragile to add to the testsuite, as liable to give large errors
again from very small implementation changes or even from compiler
changes). See
<https://sourceware.org/ml/libc-alpha/2020-02/msg00638.html> for such
statistics of the resulting improvements for float functions.
Tested (glibc testsuite) for x86_64.
Bug 25487 reports stack corruption in ldbl-96 sinl on a pseudo-zero
argument (an representation where all the significand bits, including
the explicit high bit, are zero, but the exponent is not zero, which
is not a valid representation for the long double type).
Although this is not a valid long double representation, existing
practice in this area (see bug 4586, originally marked invalid but
subsequently fixed) is that we still seek to avoid invalid memory
accesses as a result, in case of programs that treat arbitrary binary
data as long double representations, although the invalid
representations of the ldbl-96 format do not need to be consistently
handled the same as any particular valid representation.
This patch makes the range reduction detect pseudo-zero and unnormal
representations that would otherwise go to __kernel_rem_pio2, and
returns a NaN for them instead of continuing with the range reduction
process. (Pseudo-zero and unnormal representations whose unbiased
exponent is less than -1 have already been safely returned from the
function before this point without going through the rest of range
reduction.) Pseudo-zero representations would previously result in
the value passed to __kernel_rem_pio2 being all-zero, which is
definitely unsafe; unnormal representations would previously result in
a value passed whose high bit is zero, which might well be unsafe
since that is not a form of input expected by __kernel_rem_pio2.
Tested for x86_64.
This should be unconditionally set to match the common implementation,
and fixes multiple test failures related to sprintf.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The build has been failing on powerpc64le-linux-gnu with GCC 10
due to a maybe-uninitialized error:
../sysdeps/ieee754/dbl-64/mpa.c:875:6: error: ‘w.e’ may be used
uninitialized in this function [-Werror=maybe-uninitialized]
875 | EY -= EX;
| ^~
The warning is thrown because when __inv is called by __dvd *y is not
initialized and if t == 0 before calling __dbl_mp, EY will stay
uninitialized, as the function does not touch it in this case.
However, since t will be set to 1/t before calling __dbl_mp, t == 0 will
never happen, so we can instruct the compiler to ignore this case, which
suppresses the warning.
Tested on powerpc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol. It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).
The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.
Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).
Passes buildmanyglibc.
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Some compiler versions, e.g. GCC 7, complain when -mlong-double-128 is
used together with -mabi=ibmlongdouble or -mabi=ieeelongdouble,
producing the following error message:
cc1: error: ‘-mabi=ibmlongdouble’ requires ‘-mlong-double-128’
This patch removes -mlong-double-128 from the compilation lines that
explicitly request -mabi=*longdouble.
Tested for powerpc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Some of the files that provide stdio.h and wchar.h functions have a
filename prefixed with 'io', such as 'iovsprintf.c'. On platforms that
imply ldbl-128ibm-compat, these files must be compiled with the flag
-mabi=ibmlongdouble. This patch adds this flag to their compilation.
Notice that this is not required for the other files that provide
similar functions, because filenames that are not prefixed with 'io'
have ldbl-128ibm-compat counterparts in the Makefile, which already adds
-mabi=ibmlongdouble to them.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
On platforms where long double has IEEE binary128 format as a third
option (initially, only powerpc64le), many exported functions are
redirected to their __*ieee128 equivalents. This redirection is
provided by installed headers such as stdio-ldbl.h, and is supposed to
work correctly with user code.
However, during the build of glibc, similar redirections are employed,
in internal headers, such as include/stdio.h, in order to avoid extra
PLT entries. These redirections conflict with the redirections to
__*ieee128, and must be avoided during the build. This patch protects
the second redirections with a test for __LONG_DOUBLE_USES_FLOAT128, a
new macro that is defined to 1 when functions that deal with long double
typed values reuses the _Float128 implementation (this is currently only
true for powerpc64le).
Tested for powerpc64le, x86_64, and with build-many-glibcs.py.
Co-authored-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Reviewed-by: Florian Weimer <fweimer@redhat.com>
On powerpc64le, the libm_alias_float128_other_r_ldbl macro is
used to create an alias between totalorderf128 and __totalorderlieee128,
as well as between the totalordermagf128 and __totalordermaglieee128.
However, the totalorder* and totalordermag* functions changed their
parameter type since commit ID 42760d7646 and got compat symbols for
their old versions. With this change, the aforementioned macro would
create two conflicting aliases for __totalorderlieee128 and
__totalordermaglieee128.
This patch avoids the creation of the alias between the IEEE long double
symbols (__totalorderl*ieee128) and the compat symbols, because the IEEE
long double functions have never been exported thus don't need such
compat symbol.
Tested for powerpc64le.
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
This patch adds IEEE long double versions of q*cvt* functions for
powerpc64le. Unlike all other long double to/from string conversion
functions, these do not rely on internal functions that can take
floating-point numbers with different formats and act on them
accordingly, instead, the related files are rebuilt with the
-mabi=ieeelongdouble compiler flag set.
Having -mabi=ieeelongdouble passed to the compiler causes the object
files to be marked with a .gnu_attribute that is incompatible with the
.gnu_attribute in files built with -mabi=ibmlongdouble (the default).
The difference causes error messages similar to the following:
ld: libc_pic.a(s_isinfl.os) uses IBM long double,
libc_pic.a(ieee128-qefgcvt_r.os) uses IEEE long double.
collect2: error: ld returned 1 exit status
make[2]: *** [../Makerules:649: libc_pic.os] Error 1
Although this warning is useful in other situations, the library
actually needs to have functions with different long double formats, so
.gnu_attribute generation is explicitly disabled for these files with
the use of -mno-gnu-attribute.
Tested for powerpc64le on the branch that actually enables the
sysdeps/ieee754/ldbl-128ibm-compat for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
In the format string for *scanf functions, the '%as', '%aS', and '%a[]'
modifiers behave differently depending on ISO C99 compatibility. When
_GNU_SOURCE is defined and -std=c89 is passed to the compiler, these
functions behave like ascanf, and the modifiers allocate memory for the
output. Otherwise, the ISO C99 compliant version of these functions is
used, and the modifiers consume a floating-point argument. This patch
adds the IEEE binary128 variant of ISO C99 compliant functions for the
third long double format on powerpc64le.
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Since commit
commit 03992356e6
Author: Zack Weinberg <zackw@panix.com>
Date: Sat Feb 10 11:58:35 2018 -0500
Use C99-compliant scanf under _GNU_SOURCE with modern compilers.
the selection of the GNU versions of scanf functions requires both
_GNU_SOURCE and -std=c89. This patch changes the tests in
ldbl-128ibm-compat so that they actually test the GNU versions (without
this change, the redirection to the ISO C99 version always happens, so
GNU versions of the new implementation (e.g. __scanfieee128) were left
untested).
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is always using the corresponding GCC builtin for copysignf, copysign,
and is using the builtin for copysignl, copysignf128 if the USE_FUNCTION_BUILTIN
macros are defined to one in math-use-builtins.h.
Altough the long double version is enabled by default we still need
the macro and the alternative implementation as the _Float128 version
of the builtin is not available with all supported GCC versions.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for roundf, round,
roundl and roundf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for truncf, trunc,
truncl and truncf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for ceilf, ceil,
ceill and ceilf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for floorf, floor,
floorl and floorf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for rintf, rint,
rintl and rintf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for nearbyintf, nearbyint,
nearbintl and nearbyintf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_round.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_trunc.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>