When new symbol versions were introduced without SVID compatible
error handling the exp2f, log2f and powf symbols were accidentally
removed from the ia64 lim.a. The regression was introduced by
the commits
f5f0f52651
New expf and exp2f version without SVID compat wrapper
72d3d28108
New symbol version for logf, log2f and powf without SVID compat
With WEAK_LIBM_ENTRY(foo), there is a hidden __foo and weak foo
symbol definition in both SHARED and !SHARED build.
[BZ #23822]
* sysdeps/ia64/fpu/e_exp2f.S (exp2f): Use WEAK_LIBM_ENTRY.
* sysdeps/ia64/fpu/e_log2f.S (log2f): Likewise.
* sysdeps/ia64/fpu/e_exp2f.S (powf): Likewise.
This patch adds the IN_MASK_CREATE macro from Linux 4.19 to
sys/inotify.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/sys/inotify.h (IN_MASK_CREATE): New
macro.
This patch adds NT_MIPS_DSP and NT_MIPS_FP_MODE from Linux 4.19 to
elf.h.
Tested for x86_64.
* elf/elf.h (NT_MIPS_DSP): New macro.
(NT_MIPS_FP_MODE): Likewise.
This patch extends gen-libm-test.py to generate the ulps table for the
manual, so meaning there is only a single ulps file parser needed and
another Perl script is eliminated. As with the introduction of
gen-libm-test.py, this is designed to generate exactly the same
libm-err.texi as libm-err-tab.pl did. (gen-libm-test.py is still
shorter in lines than the old gen-libm-test.pl even after this patch.)
Note that this introduces a Python dependency for building the manual,
which is thus noted in install.texi and NEWS.
Tested building html / info / pdf versions of the manual.
* math/gen-libm-test.py: Import os.
(ALL_FLOATS_MANUAL): New constant.
(ALL_FLOATS_SUFFIX): Likewise.
(Ulps.all_functions): New function.
(real_all_ulps): Likewise.
(generate_err_table_sub): Likewise.
(generate_err_table): Likewise.
(main): Handle -s and -m options.
* manual/libm-err-tab.pl: Remove.
* manual/Makefile ($(objpfx)stamp-libm-err): Use gen-libm-test.py
instead of libm-err-tab.pl.
[$(PERL) != no]: Change condition to [$(if $(PYTHON),$(PERL),no)
!= no].
* manual/install.texi (Tools for Compilation): Document
requirement for Python to build manual.
* INSTALL: Regenerated.
glibc support for 64-bit time_t on 32-bit architectures
will involve:
- Using 64-bit times inside glibc, with conversions
to and from 32-bit times taking place as necessary
for interfaces using such times.
- Adding 64-bit-time support in the glibc public API.
This support should be dynamic, i.e. glibc should
provide both 32-bit and 64-bit implementations and
let user code choose at compile time whether to use
the 32-bit or 64-bit interfaces.
This requires a glibc-internal name for a type for times
that are always 64-bit.
Based on __TIMESIZE, a new macro is defined, __TIME64_T_TYPE,
which is always the right __*_T_TYPE to hold a 64-bit-time.
__TIME64_T_TYPE equals __TIME_T_TYPE if __TIMESIZE equals 64
and equals __SQUAD_T_TYPE otherwise.
__time64_t can then replace uses of internal_time_t.
This patch was tested by running 'make check' on branch
master then applying this patch and its predecessor and
running 'make check' again, and checking that both 'make
check' yield identical results. This was done on
x86_64-linux-gnu and i686-linux-gnu.
* bits/time64.h: New file.
* include/time.h: Replace internal_time_t with __time64_t.
* posix/bits/types (__time64_t): Add.
* stdlib/Makefile: Add bits/time64.h to includes.
* time/tzfile.c: Replace internal_time_t with __time64_t.
To determine whether the default time_t interfaces are 32-bit
and so need conversions, or are 64-bit and so are compatible
with the internal 64-bit type without conversions, a macro
giving the size of the default time_t is also required.
This macro is called __TIMESIZE.
This macro can then be used instead of __WORDSIZE in msq-pad.h
and shm-pad.h files, which in turn allows removing their x86
variants, and in sem-pad.h files but keeping the x86 variant.
This patch was tested by running 'make check' on branch master
then applying this patch and running 'make check' again, and
checking that both 'make check' yield identical results.
This was done on x86_64-linux-gnu and i686-linux-gnu.
* bits/timesize.h: New file.
* stdlib/Makefile (headers): Add bits/timesize.h.
* sysdeps/unix/sysv/linux/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME): Use __TIMESIZE instead of __WORDSIZE.
* sysdeps/unix/sysv/linux/bits/sem-pad.h
(__SEM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h
(__SHM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME, __MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Delete file.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/timesize.h: New file.
RDTSCP waits until all previous instructions have executed and all
previous loads are globally visible before reading the counter. RDTSC
doesn't wait until all previous instructions have been executed before
reading the counter. All x86 processors since 2010 support RDTSCP
instruction. This patch adds RDTSCP support to benchtests.
* benchtests/Makefile (CPPFLAGS-nonlib): Add -DUSE_RDTSCP if
USE_RDTSCP is defined.
* sysdeps/x86/hp-timing.h (HP_TIMING_NOW): Use RDTSCP if
USE_RDTSCP is defined.
Commit 7a16bdbb9f uses IOV_MAX, which is not defined on hurd.
Checked on a build for i686-gnu.
* misc/tst-preadvwritev2-common.c (IOV_MAX): Define if not
defined.
Th commit 'Disable TSX on some Haswell processors.' (2702856bf4) changed the
default flags for Haswell models. Previously, new models were handled by the
default switch path, which assumed a Core i3/i5/i7 if AVX is available. After
the patch, Haswell models (0x3f, 0x3c, 0x45, 0x46) do not set the flags
Fast_Rep_String, Fast_Unaligned_Load, Fast_Unaligned_Copy, and
Prefer_PMINUB_for_stringop (only the TSX one).
This patch fixes it by disentangle the TSX flag handling from the memory
optimization ones. The strstr case cited on patch now selects the
__strstr_sse2_unaligned as expected for the Haswell cpu.
Checked on x86_64-linux-gnu.
[BZ #23709]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set TSX bits
independently of other flags.
Linux 4.19 does not add any new syscalls (some existing ones are added
to more architectures); this patch updates the version number in
syscall-names.list to reflect that it's still current for 4.19.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.19.
glibc does:
/* There should be no difference between the UTF-32 handling required
by c32rtomb and the wchar_t handling which has long since been
implemented in wcrtomb. */
weak_alias (__wcrtomb, c32rtomb)
/* There should be no difference between the UTF-32 handling required
by mbrtoc32 and the wchar_t handling which has long since been
implemented in mbrtowc. */
weak_alias (__mbrtowc, mbrtoc32)
The reasoning in those comments to justify those aliases is incorrect:
ISO C requires that, for the case of a NULL mbstate_t* being passed,
each function has its *own* internal static mbstate_t. Thus a program
must be able to use both wcrtomb and c32rtomb at the same time with
each keeping its own separate state, and likewise for mbrtowc and
mbrtoc32.
This patch duly sets up separarate char32_t function that wrap the
wchar_t ones. Note that the included test only covers the mbrtoc32 /
mbrtowc pair. While I think the change made is logically correct for
c32rtomb / wcrtomb as well, I'm not sure we have a locale with a
suitable state-dependent multibyte encoding for testing that part of
the change.
Tested for x86_64.
[BZ #23793]
* wcsmbs/c32rtomb.c: New file.
* wcsmbs/mbrtoc32.c: Likewise.
* wcsmbs/tst-c32-state.c: Likewise.
* wcsmbs/mbrtowc.c (mbrtoc32): Do not define as alias.
* wcsmbs/wcrtomb.c (c32rtomb): Likewise.
* wcsmbs/Makefile (routines): Add mbrtoc32 and c32rtomb.
(tests): Add tst-c32-state.
[$(run-built-tests) = yes] ($(objpfx)tst-c32-state.out): Depend on
$(gen-locales).
Use __builtin_ia32_rdtsc directly since including <x86intrin.h> makes
building glibc very slow. On Intel Core i5-6260U, this patch reduces
x86-64 build time from 8 minutes 33 seconds to 3 minutes 48 seconds
with "make -j4" and GCC 8.2.1.
* sysdeps/x86/hp-timing.h: Don't include <x86intrin.h>.
(HP_TIMING_NOW): Replace _rdtsc with __builtin_ia32_rdtsc.
The c16rtomb implementation has:
// XXX The ISO C 11 spec I have does not say anything about handling
// XXX surrogates in this interface.
The DR#488 resolution, as applied to C2X, requires surrogate pairs to
be handled here (so the first call returns 0 and stores the high
surrogate in the mbstate_t, while the second call combines the
surrogates, produces a multibyte character and returns the number of
bytes written). This patch implements that. (mbrtoc16 already
handled producing surrogates as output.)
Tested for x86_64.
[BZ #23794]
* wcsmbs/c16rtomb.c (c16rtomb): Save first character of surrogate
pair and return 0 in that case, and use saved character to
interpret following character.
* wcsmbs/tst-c16-surrogate.c: New file.
* wcsmbs/Makefile (tests): Add tst-c16-surrogate.c.
[$(run-built-tests) = yes] ($(objpfx)tst-c16-surrogate.out):
Depend on $(gen-locales)
Since _rdtsc intrinsic is supported in GCC 4.9, we can use it for
HP_TIMING_NOW. This patch
1. Create x86 hp-timing.h to replace i686 and x86_64 hp-timing.h.
2. Move MINIMUM_ISA from init-arch.h to isa.h so that x86 hp-timing.h
can check minimum x86 ISA to decide if _rdtsc can be used.
NB: Checking if __i686__ isn't sufficient since __i686__ may not be
defined when building for i686 class processors.
* sysdeps/i386/init-arch.h: Removed.
* sysdeps/i386/i586/init-arch.h: Likewise.
* sysdeps/i386/i686/init-arch.h: Likewise.
* sysdeps/i386/i686/hp-timing.h: Likewise.
* sysdeps/x86_64/hp-timing.h: Likewise.
* sysdeps/i386/isa.h: New file.
* sysdeps/i386/i586/isa.h: Likewise.
* sysdeps/i386/i686/isa.h: Likewise.
* sysdeps/x86_64/isa.h: Likewise.
* sysdeps/x86/hp-timing.h: New file.
* sysdeps/x86/init-arch.h: Include <isa.h>.
C99 wrongly specified a divide-by-zero exception for pow(+/- 0, -Inf);
C11 made it optional after this was pointed out, and the permission
for this exception has been removed in the current C2x draft. This
patch makes the glibc pow tests reflect the stricter requirement
(which follows the normal IEEE rules that a divide-by-zero exception
is for the case of exact infinite results from *finite* operands, not
for such results when any operand is infinite).
Tested for x86_64 and x86. (If any other pow implementation in glibc,
not exercised on those architectures, turns out to fail the stricter
test, it should be fixed to avoid the exception in this case.)
* math/libm-test-pow.inc (pow_test_data): Do not allow
divide-by-zero exception for pow(+/- 0, -Inf).
Job control was made mandatory in POSIX.1-2001: compare
<http://pubs.opengroup.org/onlinepubs/7990989775/xsh/unistd.h.html> with
<http://pubs.opengroup.org/onlinepubs/009695399/basedefs/unistd.h.html>.
Seventeen years later, we need not devote an entire manual @node to
warning people that this was once an optional POSIX feature.
* manual/job.texi (Job Control is Optional): Remove node, as
job control has not been optional in quite some time.
(Job Control): Mention briefly that systems older than
POSIX.1-2001 might not support job control.
* manual/conf.texi (_POSIX_JOB_CONTROL): Will always be
defined on systems conforming to POSIX.1-2001.
In iconv/gconv_conf.c, __gconv_get_path unnecessarily obtains a lock when
populating the array pointed to by __gconv_path_elem. The locking is not
necessary because all calls to __gconv_read_conf (which in turn calls
__gconv_get_path) are serialized using __libc_once.
This patch:
- removes all locking in __gconv_get_path;
- replaces all explicitly serialized __gconv_read_conf calls with calls to
__gconv_load_conf, a new wrapper that is serialized internally;
- adds a new test, iconv/tst-iconv_mt.c, to exercise iconv initialization,
usage, and cleanup in a multi-threaded program;
- indents __gconv_get_path correctly, removing tab characters (which makes
the patch look a little bigger than it really is).
After removing the unnecessary locking, it was confirmed that the test case
fails if the relevant __libc_once is removed. Additionally, four localedata
and iconvdata tests also fail. This gives confidence that the testsuite
sufficiently guards against some regressions relating to multi-threading
with iconv.
Tested on x86_64 and i686.
After my patch to move SHMLBA to its own header, the bits/shm.h
headers for architectures using the Linux kernel still vary in a few
ways: the use of __syscall_ulong_t; whether padding for 32-bit systems
is present before or after time fields, or missing altogether (mips,
x32); whether shm_segsz is before or after the time fields; whether,
if after time fields, there is extra padding before shm_segsz.
This patch arranges for a single header to be used. __syscall_ulong_t
is safe to use everywhere, while bits/shm-pad.h is added with new
macros __SHM_PAD_AFTER_TIME, __SHM_PAD_BEFORE_TIME,
__SHM_SEGSZ_AFTER_TIME and __SHM_PAD_BETWEEN_TIME_AND_SEGSZ to
describe the differences.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shm-pad.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shm-pad.h>.
(shmatt_t): Define as __syscall_ulong_t.
(__SHM_PAD_TIME): New macro, depending on [__SHM_PAD_BEFORE_TIME]
and [__SHM_PAD_AFTER_TIME].
(struct shmid_ds): Define time fields using __SHM_PAD_TIME.
Define shm_segsz and associated padding based on
[__SHM_SEGSZ_AFTER_TIME] and [__SHM_PAD_BETWEEN_TIME_AND_SEGSZ].
Use __syscall_ulong_t instead of unsigned long int.
[__USE_MISC] (struct shminfo): Use __syscall_ulong_t instead of
unsigned long int.
[__USE_MISC] (struct shm_info): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Likewise.
One difference between bits/shm.h headers for architectures using the
Linux kernel is the definition of SHMLBA. This was noted in
<https://sourceware.org/ml/libc-alpha/2018-09/msg00175.html> as a
reason why even a new architecture (C-SKY) might need its own
bits/shm.h; thus, splitting it out of bits/shm.h can allow less
duplication of headers for new architectures.
This patch moves that definition to its own header, bits/shmlba.h, to
allow more sharing of headers between architectures. That move allows
the arm, ia64 and sh variants of bits/shm.h to be removed, as they had
no other significant differences from the generic bits/shm.h; powerpc
and x86 have their own bits/shm.h but do not need to get their own
bits/shmlba.h because they use the same SHMLBA as the generic header.
Other architectures with their own bits/shm.h get their own
bits/shmlba.h without being able to remove their own bits/shm.h until
the generic one has been adapted to be able to handle more
architectures (where, in addition to the differences seen for
bits/msq.h and bits/sem.h, the position of shm_segsz in struct
shmid_ds also depends on the architecture).
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shmlba.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getshmlba): Remove function declaration.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/arm/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/ia64/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/bits/shmlba.h: New file.
* sysdeps/unix/sysv/linux/arm/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shmlba.h: Likewise.
The race leads either to pthread_mutex_destroy returning EBUSY
or triggering an assertion (See description in bugzilla).
This patch is fixing the race by ensuring that the elision path is
used in all cases if elision is enabled by the GLIBC_TUNABLES framework.
The __kind variable in struct __pthread_mutex_s is accessed concurrently.
Therefore we are now using the atomic macros.
The new testcase tst-mutex10 is triggering the race on s390x and intel.
Presumably also on power, but I don't have access to a power machine
with lock-elision. At least the code for power is the same as on the other
two architectures.
ChangeLog:
[BZ #23275]
* nptl/tst-mutex10.c: New File.
* nptl/Makefile (tests): Add tst-mutex10.
(tst-mutex10-ENV): New variable.
* sysdeps/unix/sysv/linux/s390/force-elision.h: (FORCE_ELISION):
Ensure that elision path is used if elision is available.
* sysdeps/unix/sysv/linux/powerpc/force-elision.h (FORCE_ELISION):
Likewise.
* sysdeps/unix/sysv/linux/x86/force-elision.h: (FORCE_ELISION):
Likewise.
* nptl/pthreadP.h (PTHREAD_MUTEX_TYPE, PTHREAD_MUTEX_TYPE_ELISION)
(PTHREAD_MUTEX_PSHARED): Use atomic_load_relaxed.
* nptl/pthread_mutex_consistent.c (pthread_mutex_consistent): Likewise.
* nptl/pthread_mutex_getprioceiling.c (pthread_mutex_getprioceiling):
Likewise.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full)
(__pthread_mutex_cond_lock_adjust): Likewise.
* nptl/pthread_mutex_setprioceiling.c (pthread_mutex_setprioceiling):
Likewise.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock): Likewise.
* nptl/pthread_mutex_trylock.c (__pthread_mutex_trylock): Likewise.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
* sysdeps/nptl/bits/thread-shared-types.h (struct __pthread_mutex_s):
Add comments.
* nptl/pthread_mutex_destroy.c (__pthread_mutex_destroy):
Use atomic_load_relaxed and atomic_store_relaxed.
* nptl/pthread_mutex_init.c (__pthread_mutex_init):
Use atomic_store_relaxed.
Since aligned loads and stores are huge performance
advantage the implementation always tries to do aligned
access. Among the cases when src and dst addresses are
aligned or unaligned evenly there are cases of not evenly
unaligned src and dst. For such cases (if the length is
big enough) ext instruction is used to merge-and-shift
two memory chunks loaded from two adjacent aligned
locations and then the adjusted chunk gets stored to
aligned address.
Performance gain against the current T2 implementation:
memcpy-large: 65K-32M: +40% - +10%
memcpy-walk: 128-32M: +20% - +2%
The bits/sem.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* The x86 header uses padding after time fields unconditionally
(including for both x86_64 ABIs), not just for 32-bit time (unlike
in msqid_ds where there is only padding for 32-bit time). Because
this padding is present for x32, and is __syscall_ulong_t there, it
does have to be __syscall_ulong_t, not unsigned long int.
* The MIPS header never uses padding around time fields, even when
32-bit (unlike in msqid_ds where it has endian-dependent padding for
32-bit time).
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other differences, this patch adds macros __SEM_PAD_BEFORE_TIME and
__SEM_PAD_AFTER_TIME in a new bits/sem-pad.h header, so that header is
the only one needing to be provided on architectures with differences
in this area, and everything else can go in a single common bits/sem.h
header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/sem-pad.h.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/sem-pad.h>
instead of <bits/wordsize.h>.
(__SEM_PAD_TIME): New macro, depending on [__SEM_PAD_BEFORE_TIME]
and [__SEM_PAD_AFTER_TIME].
(struct semid_ds): Define time fields using __SEM_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/sem-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem.h: Likewise.
[BZ#23744]
This refactoring was prompted by a problem when the regex code is
used as part of Gnulib and when the builder’s compiler does not grok
__builtin_expect. Problem reported for Gawk by Nelson H.F. Beebe in:
https://lists.gnu.org/r/bug-gnulib/2018-09/msg00137.html
Although this refactoring does not fix the problem directly,
we might as well have Gawk use the now-preferred glibc style for when
__builtin_expect is unavailable.
* posix/regex_internal.h (BE): Remove.
All uses replaced by __glibc_unlikely or __glibc_likely.
The bits/msq.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* x32 has 64-bit time_t, so no padding around time fields despite
__WORDSIZE == 32.
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other two differences, this patch adds macros __MSQ_PAD_BEFORE_TIME
and __MSQ_PAD_AFTER_TIME in a new bits/msq-pad.h header, so that
header is the only one needing to be provided on architectures with
differences in this area, and everything else can go in a single
common bits/msq.h header. Once we have __TIMESIZE, the generic
bits/msq-pad.h can change to use that instead of __WORDSIZE, at which
point the x86 version of bits/msq-pad.h won't be needed either.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/msq-pad.h.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/msq-pad.h>
instead of <bits/wordsize.h>.
(msgqnum_t): Define as __syscall_ulong_t.
(msglen_t): Likewise.
(__MSQ_PAD_TIME): New macro, depending on [__MSQ_PAD_BEFORE_TIME]
and [__MSQ_PAD_AFTER_TIME].
(struct msqid_ds): Define time fields using __MSQ_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/msq-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq.h: Likewise.
sysdeps/unix/sysv/linux/bits/shm.h has padding after time fields in
struct shmid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/shm.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/shm.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha and s390
versions which are also no longer needed. The other
architecture-specific versions have different padding, layout, types
or SHMLBA definitions and so are still needed after this change.
This is essentially the same change for bits/shm.h as the bits/msq.h
patch and the bits/sem.h patch. However, the details of the padding
variations for the architectures that aren't changed are not all the
same between msqid_ds, shmid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/wordsize.h>.
(struct shmid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/shm.h: Likewise.
sysdeps/unix/sysv/linux/bits/sem.h has padding after time fields in
struct semid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/sem.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/sem.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
This is essentially the same change for bits/sem.h as the bits/msq.h
patch. However, the details of the padding variations for the
architectures that aren't changed are not all the same between
msqid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/wordsize.h>.
(struct semid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/sem.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/sem.h: Likewise.
sysdeps/unix/sysv/linux/bits/msq.h has padding after time fields in
struct msqid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/msq.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/msq.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/wordsize.h>.
(struct msqid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/msq.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/msq.h: Likewise.
Increase timeout from the default 20s to 40s. This test makes close to
2 million syscalls with distribution:
1180249 connect
297952 getsockname
144040 lseek
143734 read
14466 close
...
connect can be slow, so the default timeout was not enough on slow
systems.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* nss/tst-nss-files-hosts-multi.c (TIMEOUT): Define.
Increase timeout from the default 20s to 100s. This test makes close to
20 million syscalls with distribution:
12327675 read
4143204 lseek
929475 close
929471 openat
92817 fstat
1431 write
...
The default timeout assumes each can finish in 1us on average which
is not true on slow machines.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* libio/tst-readline.c (TIMEOUT): Define.
[BZ#23745]
This fix affects only Gnulib. Problem discovered when
mktime.c was used as part of Gnulib in bleeding-edge Coreutils.
* time/mktime.c:
(my_tzset) [!_LIBC && !NEED_MKTIME_WORKING && !NEED_MKTIME_WINDOWS]:
Do not define since it is not used. Defining an unused static
function prompts a warning from GCC when Coreutils is configured
with --enable-gcc-warnings.
Otherwise, we see the following runtime error when using the parameter:
File "./glibc/benchtests/scripts/compare_bench.py", line 46, in do_compare
if d > threshold:
TypeError: '>' not supported between instances of 'float' and 'str'
* benchtests/scripts/compare_bench.py (main): set float type on
threshold argument.
Month names as provided by Oqaasileriffik, the official Greenlandic
language regulator. They have recently reached the consensus regarding
the orthography of the month names.
Date formats updated to match the correct Greenlandic order which is MDY.
[BZ #23740]
* localedata/locales/kl_GL (mon): Update, the relative case.
(alt_mon): Add, fill with month names in the nominative case.
(d_t_fmt): Set to "%a %b %d %Y %T %Z".
(d_fmt): Set to "%b %d %Y".
hppa currently has a bits/mman.h that does not include
bits/mman-linux.h, unlike all other architectures using the Linux
kernel. This sort of variation between architectures is generally
unhelpful when making global changes for new constants added to new
Linux kernel releases.
This patch changes hppa to use bits/mman-linux.h, overriding constants
with different values as necessary (including with #undef after
bits/mman.h inclusion when needed, as already done for alpha). While
there could possibly be further improvements through e.g. splitting
more sets of definitions into separate bits/ headers, I think this is
still an improvement on the current state. diffstat shows 27 lines
added, 51 deleted (and some of that is actually existing lines moving
to a different place in the file).
Tested with build-many-glibcs.py for hppa-linux-gnu.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h: Include
<bits/mman-linux.h>.
(PROT_READ): Don't define here.
(PROT_WRITE): Likewise.
(PROT_EXEC): Likewise.
(PROT_NONE): Likewise.
(PROT_GROWSDOWN): Likewise.
(PROT_GROWSUP): Likewise.
(MAP_SHARED): Likewise.
(MAP_PRIVATE): Likewise.
[__USE_MISC] (MAP_SHARED_VALIDATE): Likewise.
[__USE_MISC] (MAP_FILE): Likewise.
[__USE_MISC] (MAP_ANONYMOUS): Likewise.
[__USE_MISC] (MAP_ANON): Likewise.
[__USE_MISC] (MAP_HUGE_SHIFT): Likewise.
[__USE_MISC] (MAP_HUGE_MASK): Likewise.
(MCL_CURRENT): Likewise.
(MCL_FUTURE): Likewise.
(MCL_ONFAULT): Likewise.
[__USE_MISC] (MADV_NORMAL): Likewise.
[__USE_MISC] (MADV_RANDOM): Likewise.
[__USE_MISC] (MADV_SEQUENTIAL): Likewise.
[__USE_MISC] (MADV_WILLNEED): Likewise.
[__USE_MISC] (MADV_DONTNEED): Likewise.
[__USE_MISC] (MADV_FREE): Likewise.
[__USE_MISC] (MADV_REMOVE): Likewise.
[__USE_MISC] (MADV_DONTFORK): Likewise.
[__USE_MISC] (MADV_DOFORK): Likewise.
[__USE_MISC] (MADV_HWPOISON): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_NORMAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_RANDOM): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_SEQUENTIAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_WILLNEED): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_DONTNEED): Likewise.
(__MAP_ANONYMOUS): New macro.
[__USE_MISC] (MAP_TYPE): Undefine and redefine after
<bits/mman-linux.h> inclusion.
(MAP_FIXED): Likewise.
(MS_SYNC): Likewise.
(MS_ASYNC): Likewise.
(MS_INVALIDATE): Likewise.
[__USE_MISC] (MADV_MERGEABLE): Likewise.
[__USE_MISC] (MADV_UNMERGEABLE): Likewise.
[__USE_MISC] (MADV_HUGEPAGE): Likewise.
[__USE_MISC] (MADV_NOHUGEPAGE): Likewise.
[__USE_MISC] (MADV_DONTDUMP): Likewise.
[__USE_MISC] (MADV_DODUMP): Likewise.
[__USE_MISC] (MADV_WIPEONFORK): Likewise.
[__USE_MISC] (MADV_KEEPONFORK): Likewise.
The redirection of built-in functions such as sqrt in include/math.h
applies when the wrappers for those functions in libnldbl_nonshared.a
are built, resulting in references to internal names such as
__ieee754_sqrt that aren't actually exported from the shared libm.
(This applies for sqrt in 2.28, also for the round-to-integer
functions in current master because of my changes there.) This patch
arranges for NO_MATH_REDIRECT to be used for all the affected
functions, and adds a test for those functions in
libnldbl_nonshared.a.
(We could of course choose to obsolete libnldbl_nonshared.a and
require that people building with -mlong-double-64 either include the
relevant headers and have a compiler supporting asm redirection, or
have some other means of achieving that redirection at compile time if
not including those headers. But while we have libnldbl_nonshared.a,
it seems appropriate to fix such bugs in it.)
Tested for powerpc, and with build-many-glibcs.py.
[BZ #23735]
* sysdeps/ieee754/ldbl-opt/nldbl-compat.h (NO_MATH_REDIRECT):
Define.
* sysdeps/ieee754/ldbl-opt/test-nldbl-redirect.c: New file.
* sysdeps/ieee754/ldbl-opt/Makefile [$(subdir) = math] (tests):
Add test-nldbl-redirect.
[$(subdir) = math] (CFLAGS-test-nldbl-redirect.c): New variable.
[$(subdir) = math] ($(objpfx)test-nldbl-redirect): Depend on
$(objpfx)libnldbl_nonshared.a.
The test-container.c file assumes that ld.so is always named
something like /elf/ld-linux-*.
But e.g. on s390x it is named ld64.so.1 or ld.so.1 on s390.
There are other architectures like power or mips with similar names.
This patch introduces the new global variable support_objdir_elf_ldso
which contains the absolute path to the runtime linker used by the
testsuite, e.g. OBJDIR_PATH/elf/ld-linux-x86-64.so.2.
The check in test-container.c is now comparing against this path.
Without this patch, test-container.c is searching invalid files / directories
and fails to find glibc/nss/tst-nss-test3.root/tst-nss-test3.script.
Then the test tst-nss-test3 fails!
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
ChangeLog:
* support/support.h (support_objdir_elf_ldso): New variable.
* support/support_paths.c (support_objdir_elf_ldso): Likewise.
* support/Makefile (CFLAGS-support_paths.c): Add definition
for OBJDIR_ELF_LDSO_PATH.
* support/test-container.c (main): Search for the ld.so
which is also used by the testsuite.
Although CLDR says otherwise, it is confirmed by Oqaasileriffik, the
official Greenlandic language regulator, that this change is correct.
[BZ #20209]
* localedata/locales/kl_GL: (abday): Fix spelling of Sun (Sunday),
should be "sap" rather than "sab".
(day): Fix spelling of Sunday, should be "sapaat" rather than
"sabaat".
In my review
<https://sourceware.org/ml/libc-alpha/2018-06/msg00375.html> of a
patch for bug 23584, I expressed concern that the proposed changes
didn't deal with certain cases similar to the ones in the bug but
where test coverage was missing.
This patch adds such tests of fma (Inf, finite, finite) and fma
(finite, Inf, finite) to libm-test-fma.inc. It does *not* do anything
to fix the bug, simply adds test coverage to provide stronger evidence
of whether any proposed revised fix does address the cases I was
concerned with.
Tested for x86_64 and x86.
* math/libm-test-fma.inc (fma_test_data): Add more tests.
* with -O, -O1, -Os it fails with:
In file included from ../soft-fp/soft-fp.h:318,
from ../sysdeps/ieee754/soft-fp/s_fdiv.c:28:
../sysdeps/ieee754/soft-fp/s_fdiv.c: In function '__fdiv':
../soft-fp/op-2.h:98:25: error: 'R_f1' may be used uninitialized in this function [-Werror=maybe-uninitialized]
X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f1' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:36: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
../soft-fp/op-2.h:101:17: error: 'R_f0' may be used uninitialized in this function [-Werror=maybe-uninitialized]
: (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f0' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:14: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os.
[BZ #19444]
* sysdeps/ieee754/soft-fp/s_fdiv.c: Include <libc-diag.h> and use
DIAG_PUSH_NEEDS_COMMENT, DIAG_IGNORE_NEEDS_COMMENT and
DIAG_POP_NEEDS_COMMENT to disable -Wmaybe-uninitialized.
Since RTM intrinsics are supported in GCC 4.9, we can use them in
pthread mutex lock elision.
* sysdeps/unix/sysv/linux/x86/Makefile (CFLAGS-elision-lock.c):
Add -mrtm.
(CFLAGS-elision-unlock.c): Likewise.
(CFLAGS-elision-timed.c): Likewise.
(CFLAGS-elision-trylock.c): Likewise.
* sysdeps/unix/sysv/linux/x86/hle.h: Rewritten.
As POSIX states [1] a freopen call should first flush the stream as if by a
call fflush. C99 (n1256) and C11 (n1570) only states the function should
first close any file associated with the specific stream. Although current
implementation only follow C specification, current BSD and other libc
implementation (musl) are in sync with POSIX and fflush the stream.
This patch change freopen{64} to fflush the stream before actually reopening
it (or returning if the stream does not support reopen). It also changes the
Linux implementation to avoid a dynamic allocation on 'fd_to_filename'.
Checked on x86_64-linux-gnu.
[BZ #21037]
* libio/Makefile (tests): Add tst-memstream4 and tst-wmemstream4.
* libio/freopen.c (freopen): Sync stream before reopen and adjust to
new fd_to_filename interface.
* libio/freopen64.c (freopen64): Likewise.
* libio/tst-memstream.h: New file.
* libio/tst-memstream4.c: Likewise.
* libio/tst-wmemstream4.c: Likewise.
* sysdeps/generic/fd_to_filename.h (fd_to_filename): Change signature.
* sysdeps/unix/sysv/linux/fd_to_filename.h (fd_to_filename): Likewise
and remove internal dynamic allocation.
[1] http://pubs.opengroup.org/onlinepubs/9699919799/
The MREMAP_* flags are identical between bits/mman-linux.h and the
hppa bits/mman.h; thus, they should be in bits/mman-shared.h instead
to avoid unnecessary duplication. This patch moves them there.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-linux.h [__USE_GNU]
(MREMAP_MAYMOVE): Do not define here.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/bits/mman-shared.h [__USE_GNU]
(MREMAP_MAYMOVE): Define here instead.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_GNU]
(MREMAP_MAYMOVE): Remove.
[__USE_GNU] (MREMAP_FIXED): Likewise.
After my changes to move various macros, inlines and other content
from math_private.h to more specific headers, many files including
math_private.h no longer need to do so. Furthermore, since the
optimized inlines of various functions have been moved to
include/fenv.h or replaced by use of function names GCC inlines
automatically, a missing math_private.h include where one is
appropriate will reliably cause a build failure rather than possibly
causing code to be less well optimized while still building
successfully. Thus, this patch removes includes of math_private.h
that are now unnecessary. In the case of two RISC-V files, the
include is replaced by one of stdbool.h because the files in question
were relying on math_private.h to get a definition of bool.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/fromfp.h: Do not include <math_private.h>.
* math/s_cacosh_template.c: Likewise.
* math/s_casin_template.c: Likewise.
* math/s_casinh_template.c: Likewise.
* math/s_ccos_template.c: Likewise.
* math/s_cproj_template.c: Likewise.
* math/s_fdim_template.c: Likewise.
* math/s_fmaxmag_template.c: Likewise.
* math/s_fminmag_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/s_ldexp_template.c: Likewise.
* math/s_nextdown_template.c: Likewise.
* math/w_log1p_template.c: Likewise.
* math/w_scalbln_template.c: Likewise.
* sysdeps/aarch64/fpu/feholdexcpt.c: Likewise.
* sysdeps/aarch64/fpu/fesetround.c: Likewise.
* sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise.
* sysdeps/aarch64/fpu/ftestexcept.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_atanl.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/i386/fpu/s_logbl.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/i386/fpu/s_significandl.c: Likewise.
* sysdeps/ia64/fpu/s_matherrf.c: Likewise.
* sysdeps/ia64/fpu/s_matherrl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c: Likewise.
* sysdeps/ieee754/dbl-64/s_cbrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/flt-32/s_cbrtf.c: Likewise.
* sysdeps/ieee754/k_standardf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_copysignl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_finitel.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_fpclassifyl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isinfl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isnanl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_signbitl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_cbrtl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/s_signgam.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c: Likewise.
* sysdeps/powerpc/power7/fpu/s_logbf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise.
* sysdeps/riscv/rvd/s_finite.c: Likewise.
* sysdeps/riscv/rvd/s_fmax.c: Likewise.
* sysdeps/riscv/rvd/s_fmin.c: Likewise.
* sysdeps/riscv/rvd/s_fpclassify.c: Likewise.
* sysdeps/riscv/rvd/s_isinf.c: Likewise.
* sysdeps/riscv/rvd/s_isnan.c: Likewise.
* sysdeps/riscv/rvd/s_issignaling.c: Likewise.
* sysdeps/riscv/rvf/fegetround.c: Likewise.
* sysdeps/riscv/rvf/feholdexcpt.c: Likewise.
* sysdeps/riscv/rvf/fesetenv.c: Likewise.
* sysdeps/riscv/rvf/fesetround.c: Likewise.
* sysdeps/riscv/rvf/feupdateenv.c: Likewise.
* sysdeps/riscv/rvf/fgetexcptflg.c: Likewise.
* sysdeps/riscv/rvf/ftestexcept.c: Likewise.
* sysdeps/riscv/rvf/s_ceilf.c: Likewise.
* sysdeps/riscv/rvf/s_finitef.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/riscv/rvf/s_fmaxf.c: Likewise.
* sysdeps/riscv/rvf/s_fminf.c: Likewise.
* sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise.
* sysdeps/riscv/rvf/s_isinff.c: Likewise.
* sysdeps/riscv/rvf/s_isnanf.c: Likewise.
* sysdeps/riscv/rvf/s_issignalingf.c: Likewise.
* sysdeps/riscv/rvf/s_nearbyintf.c: Likewise.
* sysdeps/riscv/rvf/s_roundevenf.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/riscv/rvf/s_truncf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Include <stdbool.h> instead of
<math_private.h>.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
When elf_machine_runtime_setup is called to set up resolver, it should
use _dl_runtime_resolve_shstk or _dl_runtime_profile_shstk if SHSTK is
enabled by kernel.
Tested on i686 with and without --enable-cet as well as on CET emulator
with --enable-cet.
[BZ #23716]
* sysdeps/i386/dl-cet.c: Removed.
* sysdeps/i386/dl-machine.h (_dl_runtime_resolve_shstk): New
prototype.
(_dl_runtime_profile_shstk): Likewise.
(elf_machine_runtime_setup): Use _dl_runtime_profile_shstk or
_dl_runtime_resolve_shstk if SHSTK is enabled by kernel.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
The fallback code of Linux wrapper for preadv2/pwritev2 executes
regardless of the errno code for preadv2, instead of the case where
the syscall is not supported.
This fixes it by calling the fallback code iff errno is ENOSYS. The
patch also adds tests for both invalid file descriptor and invalid
iov_len and vector count.
The only discrepancy between preadv2 and fallback code regarding
error reporting is when an invalid flags are used. The fallback code
bails out earlier with ENOTSUP instead of EINVAL/EBADF when the syscall
is used.
Checked on x86_64-linux-gnu on a 4.4.0 and 4.15.0 kernel.
[BZ #23579]
* misc/tst-preadvwritev2-common.c (do_test_with_invalid_fd): New
test.
* misc/tst-preadvwritev2.c, misc/tst-preadvwritev64v2.c (do_test):
Call do_test_with_invalid_fd.
* sysdeps/unix/sysv/linux/preadv2.c (preadv2): Use fallback code iff
errno is ENOSYS.
* sysdeps/unix/sysv/linux/preadv64v2.c (preadv64v2): Likewise.
* sysdeps/unix/sysv/linux/pwritev2.c (pwritev2): Likewise.
* sysdeps/unix/sysv/linux/pwritev64v2.c (pwritev64v2): Likewise.
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __round functions to call the
corresponding round names instead, with asm redirection to __round
when the calls are not inlined.
An additional complication arises in
sysdeps/ieee754/ldbl-128ibm/e_expl.c, where a call to roundl, with the
result converted to int, gets converted by the compiler to call
lroundl in the case of 32-bit long, so resulting in localplt test
failures. It's logically correct to let the compiler make such an
optimization; an appropriate asm redirection of lroundl to __lroundl
is thus added to that file (it's not needed anywhere else).
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (round): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_round.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_roundf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_round.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c: Likewise.
* sysdeps/ieee754/float128/s_roundf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_roundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_roundl.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c: Likewise.
(round): Redirect to __round.
(__roundl): Call round instead of __round.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__round):
Remove macro.
[_ARCH_PWR5X] (__roundf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Use round
functions instead of __round variants.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_expl.c (lroundl): Redirect to
__lroundl.
(__ieee754_expl): Call roundl instead of __roundl.
The function f1a, executed on a stack of size 32k, allocates an object of
size 32k on the stack. Make the stack variables static to reduce
excessive stack usage.
Continuing bits/mman.h unification between architectures using the
Linux kernel, this patch arranges for the common set of MAP_* flags to
be used by two more architectures. That common set is moved to
bits/mman-map-flags-generic.h, which is included by bits/mman.h, to
allow architectures to use that common set even if they also have
architecture-specific additions to it. As well as the generic
bits/mman.h, the versions for x86 and ia64 are also then made to
include bits/mman-map-flags-generic.h, so while they still need
architecture-specific bits/mman.h (for MAP_32BIT and MAP_GROWSUP
respectively), they do not need to duplicate the generic flag
definitions in there.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-map-flags-generic.h: New
file. Most contents moved from ....
* sysdeps/unix/sysv/linux/bits/mman.h: ... here. Move contents to
and include <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/mman-map-flags-generic.h.
* sysdeps/unix/sysv/linux/ia64/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_GROWSUP): Only define this macro, not other
macros defined in <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/x86/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_32BIT): Only define this macro, not other macros
defined in <bits/mman-map-flags-generic.h>.
Currently, DT_TEXTREL is incompatible with IFUNC. When DT_TEXTREL or
DF_TEXTREL is seen, the dynamic linker calls __mprotect on the segments
with PROT_READ|PROT_WRITE before applying dynamic relocations. It leads
to segfault when performing IFUNC resolution (which requires PROT_EXEC
as well for the IFUNC resolver).
This patch makes it call __mprotect with extra PROT_WRITE bit, which
will keep the PROT_EXEC bit if exists, and thus fixes the segfault.
FreeBSD rtld libexec/rtld-elf/rtld.c (reloc_textrel_prot) does the same.
Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
sparc64-linux-gnu, sparcv9-linux-gnu, and armv8-linux-gnueabihf.
Adam J. Richte <adam_richter2004@yahoo.com>
Adhemerval Zanella <adhemerval.zanella@linaro.org>
Fangrui Song <maskray@google.com>
[BZ #20480]
* config.h.in (CAN_TEXTREL_IFUNC): New define.
* configure.ac: Add check if linker supports textrel relocation with
ifunc.
* elf/dl-reloc.c (_dl_relocate_object): Use all required flags on
DT_TEXTREL segments, not only PROT_READ and PROT_WRITE.
* elf/Makefile (ifunc-pie-tests): Add tst-ifunc-textrel.
(CFLAGS-tst-ifunc-textrel.c): New rule.
* elf/tst-ifunc-textrel.c: New file.
This patch completes the process of unifying sys/procfs.h headers for
architectures using the Linux kernel by making alpha use the generic
version.
That was previously deferred because alpha has different definitions
of prgregset_t and prfpregset_t from other architectures, so changing
to the common definitions would change C++ name mangling. To avoid
such a change, a header bits/procfs-prregset.h is added, and alpha
gets its own version of that header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-prregset.h>.
(prgregset_t): Define using __prgregset_t.
(prfpregset_t): Define using __prfpregset_t.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-prregset.h.
* sysdeps/unix/sysv/linux/bits/procfs-prregset.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/procfs-prregset.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/sys/procfs.h: Remove file.
This patch continues the process of unifying sys/procfs.h headers for
architectures using the Linux kernel.
A bits/procfs-id.h header is added to define __pr_uid_t and __pr_gid_t
for the types of pr_uid and pr_gid; the default version of this header
uses unsigned int. On some architectures, sys/procfs.h has copies of
32-bit structures for 64-bit builds; those move into a
bits/procfs-extra.h header (they can't go in bits/procfs.h because
they have to come *after* other declarations from sys/procfs.h).
Given appropriate versions of these headers, six more architectures
can then move to providing only bits/procfs*.h without duplicating the
rest of the contents of sys/procfs.h. Only alpha needs a further
bits/ header to be added before it can stop having its own
sys/procfs.h.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-id.h> and <bits/procfs-extra.h>.
(struct elf_prpsinfo): Use __pr_uid_t and __pr_gid_t as types of
pr_uid and pr_gid.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-id.h and bits/procfs-extra.h.
* sysdeps/unix/sysv/linux/bits/procfs-extra.h: New file.
* sysdeps/unix/sysv/linux/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/arm/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/arm/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs-extra.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs-extra.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/arm/sys/procfs.h: Remove file.
* sysdeps/unix/sysv/linux/m68k/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sh/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/x86/sys/procfs.h: Likewise.
As per recent discussions, this patch unifies some of the sys/procfs.h
headers for architectures using the Linux kernel, producing a generic
version that can hopefully be used by all new architectures as well.
The new generic version is based on the AArch64 one. The register
definitions, the only part that generally needs to vary by
architecture, go in a new bits/procfs.h header (which each
architecture using the generic version needs to provide); that header
also has any #includes that were in the architecture-specific
sys/procfs.h, where those includes went beyond the generic set.
The generic version is used for eight architectures where the generic
definitions were the same as the architecture-specific ones. (Some of
those architectures had #if 0 fields, now removed; some defined types
or fields using different type names which were typedefs for the same
underlying types.)
Six of the remaining architectures with their own sys/procfs.h use
unsigned short for pr_uid / pr_gid in some cases; moving those to the
generic header will require a bits/ header to define a typedef for the
type of those fields. In the case of alpha, the generic sys/procfs.h
uses elf_gregset_t (= unsigned long int[33]) to define prgregset_t and
elf_fpregset_t (= double[32]) to define prfpregset_t, but the alpha
version uses gregset_t (= long int[33]) and fpregset_t (= long
int[32]), so avoiding unnecessarily changing the underlying types (and
thus C++ name mangling) again means a bits/ header will need to be
able to define a different choice for those typedefs.
bits/procfs.h is included outside the __BEGIN_DECLS / __END_DECLS pair
(whereas the definitions it contains were previously inside that pair
in various sys/procfs.h headers), because it sometimes includes other
headers and putting those other #includes inside that pair seems
risky. Because none of the declarations in bits/procfs.h are of
functions or variables or involve function types, I don't think it
makes any difference whether they are inside or outside an extern "C"
context.
Tested with build-many-glibcs.py (again, that does not provide much
validation for the correctness of this patch).
* sysdeps/unix/sysv/linux/sys/procfs.h: Replace with file based on
AArch64 version. Include <bits/procfs.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs.h.
* sysdeps/unix/sysv/linux/bits/procfs.h: New file.
* sysdeps/unix/sysv/linux/aarch64/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/aarch64/sys/procfs.h: Remove file.
* sysdeps/unix/sysv/linux/hppa/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/mips/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/sys/procfs.h: Likewise.
The variables __gconv_path_elem, __gconv_max_path_elem_len and function
__gconv_get_path declared in, as well as the type path_elem and macro
GCONV_NCHAR_GOAL defined in gconv_int.h are all used in only one iconv
compilation unit each. In addition, the extern declaration of the variable
__gconv_nmodules refers to a variable that does not exist any more.
Considering this, these symbols do not need to be exposed via a header file.
This patch removes the extern declarations from the header file and moves
the definitions to the compilation units where they are used.
For architectures and ABIs that are added in version 2.29 or later the
option --enable-obsolete-nsl is no longer available, and no libnsl
compatibility library is built.
Linux from 3.9 through 4.2 does not abort HTM transaction on syscalls,
instead it suspend and resume it when leaving the kernel. The
side-effects of the syscall will always remain visible, even if the
transaction is aborted. This is an issue when transaction is used along
with futex syscall, on pthread_cond_wait for instance, where the futex
call might succeed but the transaction is rolled back leading the
pthread_cond object in an inconsistent state.
Glibc used to prevent it by always aborting a transaction before issuing
a syscall. Linux 4.2 also decided to abort active transaction in
syscalls which makes the glibc workaround superfluous. Worse, glibc
transaction abortion leads to a performance issue on recent kernels
where the HTM state is saved/restore lazily (v4.9). By aborting a
transaction on every syscalls, regardless whether a transaction has being
initiated before, GLIBS makes the kernel always save/restore HTM state
(it can not even lazily disable it after a certain number of syscall
iterations).
Because of this shortcoming, Transactional Lock Elision is just enabled
when it has been explicitly set (either by tunables of by a configure
switch) and if kernel aborts HTM transactions on syscalls
(PPC_FEATURE2_HTM_NOSC). It is reported that using simple benchmark [1],
the context-switch is about 5% faster by not issuing a tabort in every
syscall in newer kernels.
Checked on powerpc64le-linux-gnu with 4.4.0 kernel (Ubuntu 16.04).
* NEWS: Add note about new TLE support on powerpc64le.
* sysdeps/powerpc/nptl/tcb-offsets.sym (TM_CAPABLE): Remove.
* sysdeps/powerpc/nptl/tls.h (tcbhead_t): Rename tm_capable to
__ununsed1.
(TLS_INIT_TP, TLS_DEFINE_INIT_TP): Remove tm_capable setup.
(THREAD_GET_TM_CAPABLE, THREAD_SET_TM_CAPABLE): Remove macros.
* sysdeps/powerpc/powerpc32/sysdep.h,
sysdeps/powerpc/powerpc64/sysdep.h (ABORT_TRANSACTION_IMPL,
ABORT_TRANSACTION): Remove macros.
* sysdeps/powerpc/sysdep.h (ABORT_TRANSACTION): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-conf.c (elision_init): Set
__pthread_force_elision iff PPC_FEATURE2_HTM_NOSC is set.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/sysdep.h,
sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h
sysdeps/unix/sysv/linux/powerpc/syscall.S (ABORT_TRANSACTION): Remove
usage.
* sysdeps/unix/sysv/linux/powerpc/not-errno.h: Remove file.
Reported-by: Breno Leitão <leitao@debian.org>
Synchronize some values with CLDR and apply some suggestions from Bugzilla.
[BZ #10425]
* localedata/locales/it_IT (d_t_fmt): Use "%a %-d %b %Y, %T".
(date_fmt): Use "%a %-d %b %Y, %T, %Z".
* localedata/locales/it_CH (d_t_fmt): Use "%a %-d %b %Y, %T"
which is the same as in it_IT.
(d_fmt): Use "%d.%m.%Y" which is the same as in de_CH.
(date_fmt): Use "%a %-d %b %Y, %T, %Z" which is the same as in it_IT.
I noticed that sysdeps/x86/cpu-features.h had conditionals on whether
to define HAS_CPUID, HAS_I586 and HAS_I686 with a long list of
preprocessor macros for i686-and-later processors which however was
out of date. This patch avoids the problem of the list getting out of
date by instead having conditionals on all the (few, old) pre-i686
processors for which GCC has preprocessor macros, rather than the
(many, expanding list) i686-and-later processors. It seems HAS_I586
and HAS_I686 are unused so the only effect of these macros being
missing is that 32-bit glibc built for one of these processors would
end up doing runtime detection of CPUID availability.
i386 builds are prevented by a configure test so there is no need to
allow for them here. __geode__ (no long nops?) and __k6__ (no CMOV,
at least according to GCC) are conservatively handled as i586, not
i686, here (as noted above, this is a theoretical distinction at
present in that only HAS_CPUID appears to be used).
Tested for x86.
* sysdeps/x86/cpu-features.h [__geode__ || __k6__]: Handle like
[__i586__ || __pentium__].
[__i486__]: Handle explicitly.
(HAS_CPUID): Define to 1 if above macros are undefined.
(HAS_I586): Likewise.
(HAS_I686): Likewise.
If the compiler reduces the stack usage in function f1 before calling
into function f2, then when we swapcontext back to f1 and continue
execution we may overwrite registers that were spilled to the stack
while f2 was executing. Later when we return to f2 the corrupt
registers will be reloaded from the stack and the test will crash. This
was most commonly observed on i686 with __x86.get_pc_thunk.dx and
needing to save and restore $edx. Overall i686 has few registers and
the spilling to the stack is bound to happen, therefore the solution to
making this test robust is to split function f1 into two parts f1a and
f1b, and allocate f1b it's own stack such that subsequent execution does
not overwrite the stack in use by function f2.
Tested on i686 and x86_64.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
[BZ #23603]
* include/time.h (__mktime_internal): The localtime offset is now
of type long int instead of time_t. This is the longstanding type
in glibc, and it is more than enough to represent difference
between localtime and gmtime even if it is 32 bits and time_t is
64. Changing it now will let us avoid an unnecessary change when
time_t is widened to 64 bits on 32-bit platforms.
* time/mktime-internal.h (mktime_offset_t): Now long int.
[BZ #23603][BZ #16346]
This fixes some obscure problems with integer overflow.
Although it looks scary, it is almost all a byte-for-byte copy
from Gnulib, and the Gnulib code has been tested reasonably well.
* include/intprops.h: New file, copied from Gnulib.
* include/verify.h, time/mktime-internal.h:
New tiny files, simplified from Gnulib.
* time/mktime.c: Copy from Gnulib. This has the following changes:
Do not include config.h if DEBUG_MKTIME is nonzero.
Include stdbool.h, intprops.h, verify.h.
Include string.h only if needed.
Include stdlib.h on MS-Windows.
Include mktime-internal.h.
(DEBUG_MKTIME): Default to 0, and simplify later uses.
(NEED_MKTIME_INTERNAL, NEED_MKTIME_WINDOWS)
(NEED_MKTIME_WORKING): Give default values to pacify -Wundef,
which glibc uses. Default NEED_MKTIME_WORKING to DEBUG_MKTIME, to
simplify later conditionals; default the others to zero. Use
these conditionals to express only the code needed on the current
platform. In uses of these conditionals, explicitly spell out how
_LIBC affects things, so it’s easier to review from a glibc
viewpoint.
(WRAPV): Remove; no longer needed now that we have
systematic overflow checking.
(my_tzset, __tzset) [!_LIBC]: New function and macro, to better
compartmentalize tzset issues. Move system-dependent tzsettish
code here from mktime.
(verify): Remove; now done by verify.h. All uses changed.
(long_int): Use a more-conservative definition, to avoid
integer overflow.
(SHR): Remove, replacing with ...
(shr): New function, which means we needn’t worry about side
effects in args, and conversion analysis is simpler.
(TYPE_IS_INTEGER, TYPE_TWOS_COMPLEMENT, TYPE_SIGNED, TYPE_MINIMUM)
(TYPE_MAXIMUM, TIME_T_MIN, TIME_T_MAX, TIME_T_MIDPOINT)
(time_t_avg, time_t_add_ok): Remove.
(mktime_min, mktime_max): New constants.
(leapyear, isdst_differ): Use bool for booleans.
(ydhms_diff, guess_time_tm, ranged_convert, __mktime_internal):
Use long_int, not time_t, for mktime differences.
(long_int_avg): New function, replacing time_t_avg.
INT_ADD_WRAPV replaces time_t_add_ok.
(guess_time_tm): 6th arg is now long_int, not time_t const *.
All uses changed.
(convert_time): New function.
(ranged_convert): Use it.
(__mktime_internal): Last arg now points to mktime_offset_t, not
time_t. All uses changed. This is a no-op on glibc, where
mktime_offset_t is always time_t. Use int, not time_t, for UTC
offset guess. Directly check for integer overflow instead of
using a heuristic that works only 99.9...% of the time.
Access *OFFSET only once, to avoid an unlikely race if the
compiler delays a load and if this cascades into a signed integer
overflow.
(mktime): Move tzsettish code to my_tzset, and move
localtime_offset to within mktime so that it doesn’t
need a separate ifdef.
(main) [DEBUG_MKTIME]: Speed up by using localtime_r
instead of localtime.
* time/timegm.c: Copy from Gnulib. This has the following changes:
Include mktime-internal.h.
[!_LIBC]: Include config.h and time.h. Do not include
timegm.h or time_r.h. Make __mktime_internal a macro,
and include mktime-internal.h to get its declaration.
(timegm): Temporary is now mktime_offset_t, not time_t.
This affects only Gnulib.
The generic strstr in GLIBC 2.28 fails to match huge needles. The optimized
AVAILABLE macro reads ahead a large fixed amount to reduce the overhead of
repeatedly checking for the end of the string. However if the needle length
is larger than this, two_way_long_needle may confuse this as meaning the end
of the string and return NULL. This is fixed by adding the needle length to
the amount to read ahead.
[BZ #23637]
* string/test-strstr.c (pr23637): New function.
(test_main): Add tests with longer needles.
* string/strcasestr.c (AVAILABLE): Fix readahead distance.
* string/strstr.c (AVAILABLE): Likewise.
The algorithm is exp(y * log(x)), where log(x) is computed with about
1.3*2^-68 relative error (1.5*2^-68 without fma), returning the result
in two doubles, and the exp part uses the same algorithm (and lookup
tables) as exp, but takes the input as two doubles and a sign (to handle
negative bases with odd integer exponent). The __exp1 internal symbol
is no longer necessary.
There is separate code path when fma is not available but the worst case
error is about 0.54 ULP in both cases. The lookup table and consts for
log are 4168 bytes. The .rodata+.text is decreased by 37908 bytes on
aarch64. The non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
pow thruput: 2.40x in [0.01 11.1]x[0.01 11.1]
pow latency: 1.84x in [0.01 11.1]x[0.01 11.1]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA, TOINT_INTRINSICS) and
arm-linux-gnueabihf (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
x86_64-linux-gnu (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
powerpc64le-linux-gnu (defined __FP_FAST_FMA, !TOINT_INTRINSICS) targets.
* NEWS: Mention pow improvements.
* math/Makefile (type-double-routines): Add e_pow_log_data.
* sysdeps/generic/math_private.h (__exp1): Remove.
* sysdeps/i386/fpu/e_pow_log_data.c: New file.
* sysdeps/ia64/fpu/e_pow_log_data.c: New file.
* sysdeps/ieee754/dbl-64/Makefile (CFLAGS-e_pow.c): Allow fma
contraction.
* sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove.
(exp_inline): Remove.
(__ieee754_exp): Only single double input is handled.
* sysdeps/ieee754/dbl-64/e_pow.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_pow_log_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (issignaling_inline): Define.
(__pow_log_data): Define.
* sysdeps/ieee754/dbl-64/upow.h: Remove.
* sysdeps/ieee754/dbl-64/upow.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_pow_log_data.c: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma.c): Allow fma
contraction.
(CFLAGS-e_pow-fma4.c): Likewise.
Many bits/mman.h headers for Linux architectures have exactly the same
contents, up to whitespace, comments and the number of leading 0s on
constants. Specifically, this applies to architectures that, in the
Linux kernel, either have no uapi/asm/mman.h, or have one that
includes asm-generic/mman.h without any changes or additions relevant
to glibc (this last case is the one that applies to Arm).
It's not useful to have to duplicate the set of MAP_* constants in
glibc for all such architectures and any new architectures with that
property. Thus, this patch creates a generic
sysdeps/unix/sysv/linux/bits/mman.h and removes all the
architecture-specific versions that become unnecessary.
Further unification remains possible after this patch. For example,
the new bits/mman.h could become bits/mman-map-flags-generic.h so that
it could also be used by architecture-specific bits/mman.h headers on
architectures that use the generic flags but add architecture-specific
ones to them. That would allow this common set of MAP_* definitions
to be used on ia64 and x86 as well (architectures that include
asm-generic/mman.h from their own uapi/asm/mman.h but define
additional MAP_* values of their own).
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman.h: New file.
* sysdeps/unix/sysv/linux/aarch64/bits/mman.h: Remove.
* sysdeps/unix/sysv/linux/arm/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/mman.h: Likewise.
The ldbl-128ibm implementations of ceill and floorl call the
corresponding double functions. This patch fixes those
implementations to call those functions as ceil and floor rather than
as __ceil and __floor, so that the proper inlining takes place when
possible, while including local asm redirections for when the
functions are not inlined since NO_MATH_REDIRECT applies to the double
functions as well as to the long double ones.
Tested with build-many-glibcs.py for all its powerpc configurations.
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c (ceil): Redirect to
__ceil.
(__ceill): Call ceil instead of __ceil.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c (floor): Redirect to
__floor.
(__floorl): Call floor instead of __floor.
As of Linux 4.17, siginfo headers in the Linux kernel have been
largely unified across architectures (so various constants are defined
with common values in include/uapi/asm-generic/siginfo.h even if not
all architectures can generate those particular constants).
This patch makes glibc reflect that unification and the current set of
constants in that header as of Linux 4.18. Various constants are
added to bits/siginfo-consts.h (under the same feature test macro
conditions as the other constants with the same prefix), and removed
from the ia64 bits/siginfo-consts-arch.h where they were previously
there - this is not limited to constants added by the unification.
Nothing is done about macros that are defined in
include/uapi/asm-generic/siginfo.h with names with leading '__' (some
of those are ia64-specific ones that remain in the ia64
bits/siginfo-consts-arch.h without the leading '__' there).
A consequence of these changes is that TRAP_HWBKPT becomes available
on AArch64 and all other architectures as requested in bug 21286.
Tested for x86_64; tested with build-many-glibcs.py for ia64.
[BZ #21286]
* sysdeps/unix/sysv/linux/bits/siginfo-consts.h (SI_DETHREAD): New
constant.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (ILL_BADIADDR): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (FPE_FLTUNK): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (FPE_CONDTRAP): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (SEGV_ACCADI): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (SEGV_ADIDERR): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (SEGV_ADIPERR): Likewise.
[__USE_XOPEN_EXTENDED] (TRAP_BRANCH): Likewise.
[__USE_XOPEN_EXTENDED] (TRAP_HWBKPT): Likewise.
[__USE_XOPEN_EXTENDED] (TRAP_UNK): Likweise.
* sysdeps/unix/sysv/linux/ia64/bits/siginfo-consts-arch.h
(ILL_BADIADDR): Remove constant.
(TRAP_BRANCH): Likewise.
(TRAP_HWBKPT): Likewise.
As discussed at
<https://sourceware.org/ml/libc-alpha/2018-09/msg00191.html> and
followup discussions, the MIPS n32 definitions of pr_sigpend and
pr_sighold in struct elf_prstatus, and pr_flag in struct elf_prpsinfo,
are wrong to use unsigned long long int; actual n32 core dumps use a
32-bit type there, so userspace unsigned long int is correct for all
MIPS ABIs. This patch removes the conditionals (also thereby aligning
the structures with other architectures and so facilitating future
unification of different versions of this header).
Tested with build-many-glibcs.py for its MIPS configurations.
[BZ #23656]
* sysdeps/unix/sysv/linux/mips/sys/procfs.h (struct elf_prstatus):
Remove [_MIPS_SIM = _ABIN32] conditional case.
(struct elf_prpsinfo): Likewise.
As noted in
<https://sourceware.org/ml/libc-alpha/2018-09/msg00178.html>, glibc's
sys/procfs.h headers for microblaze, mips (n64), nios2 and riscv have
incorrect types for the pr_uid and pr_gid members of struct
elf_prpsinfo (as does the generic Linux version, but nothing uses
that).
This patch fixes those headers to use unsigned int. The generic Linux
version is also fixed, but I do *not* recommend making new
architectures use it yet. Rather, I think it should be reworked to
look more like a copy of the AArch64 version, but with a new
<bits/procfs.h> header included to provide register set definitions;
<bits/procfs.h> would then be architecture-specific while many
architectures could use the generic <sys/procfs.h>. This fix is
deliberately separate from any reworking to use a generic header more,
since it's possible there could be uses for backporting this fix but
not for backporting a subsequent cleanup.
Tested with build-many-glibcs.py. This of course doesn't provide much
validation of the structure layout; if the Linux kernel is fixed so
that "#include <linux/elfcore.h>" actually compiles with the headers
from "make headers_install" (and if the layout in both headers is
meant to be the same, whatever ABI we are building for), I have a test
that can be added to glibc to check the layout against that from the
Linux kernel.
[BZ #23649]
* sysdeps/unix/sysv/linux/microblaze/sys/procfs.h (struct
elf_prpsinfo): Use unsigned int for pr_uid and pr_gid.
* sysdeps/unix/sysv/linux/mips/sys/procfs.h (struct elf_prpsinfo):
Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/procfs.h (struct
elf_prpsinfo): Likewise.
* sysdeps/unix/sysv/linux/riscv/sys/procfs.h (struct
elf_prpsinfo): Likewise.
* sysdeps/unix/sysv/linux/sys/procfs.h (struct elf_prpsinfo):
Likewise.
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __rint functions to call the
corresponding rint names instead, with asm redirection to __rint when
the calls are not inlined. The x86_64 math_private.h is removed as no
longer useful after this patch.
This patch is relative to a tree with my floor patch
<https://sourceware.org/ml/libc-alpha/2018-09/msg00148.html> applied,
and much the same considerations arise regarding possibly replacing an
IFUNC call with a direct inline expansion.
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (rint): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_rint.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_rintf.c: Likewise.
* sysdeps/alpha/fpu/s_rint.c: Likewise.
* sysdeps/alpha/fpu/s_rintf.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_rint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_rint.c: Likewise.
* sysdeps/ieee754/float128/s_rintf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_rintf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/m68k/coldfire/fpu/s_rint.c: Likewise.
* sysdeps/m68k/coldfire/fpu/s_rintf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rint.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rintf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rintl.c: Likewise.
* sysdeps/powerpc/fpu/s_rint.c: Likewise.
* sysdeps/powerpc/fpu/s_rintf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Likewise.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/x86_64/fpu/math_private.h: Remove file.
* math/e_scalb.c (invalid_fn): Use rint functions instead of
__rint variants.
* math/e_scalbf.c (invalid_fn): Likewise.
* math/e_scalbl.c (invalid_fn): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r):
Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/k_standard.c (__kernel_standard): Likewise.
* sysdeps/ieee754/k_standardl.c (__kernel_standard_l): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_llrint.c (__llrint): Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_llrintf.c (__llrintf): Likewise.
Similar to the changes that were made to call sqrt functions directly
in glibc, instead of __ieee754_sqrt variants, so that the compiler
could inline them automatically without needing special inline
definitions in lots of math_private.h headers, this patch makes libm
code call floor functions directly instead of __floor variants,
removing the inlines / macros for x86_64 (SSE4.1) and powerpc
(POWER5).
The redirection used to ensure that __ieee754_sqrt does still get
called when the compiler doesn't inline a built-in function expansion
is refactored so it can be applied to other functions; the refactoring
is arranged so it's not limited to unary functions either (it would be
reasonable to use this mechanism for copysign - removing the inline in
math_private_calls.h but also eliminating unnecessary local PLT entry
use in the cases (powerpc soft-float and e500v1, for IBM long double)
where copysign calls don't get inlined).
The point of this change is that more architectures can get floor
calls inlined where they weren't previously (AArch64, for example),
without needing special inline definitions in their math_private.h,
and existing such definitions in math_private.h headers can be
removed.
Note that it's possible that in some cases an inline may be used where
an IFUNC call was previously used - this is the case on x86_64, for
example. I think the direct calls to floor are still appropriate; if
there's any significant performance cost from inline SSE2 floor
instead of an IFUNC call ending up with SSE4.1 floor, that indicates
that either the function should be doing something else that's faster
than using floor at all, or it should itself have IFUNC variants, or
that the compiler choice of inlining for generic tuning should change
to allow for the possibility that, by not inlining, an SSE4.1 IFUNC
might be called at runtime - but not that glibc should avoid calling
floor internally. (After all, all the same considerations would apply
to any user program calling floor, where it might either be inlined or
left as an out-of-line call allowing for a possible IFUNC.)
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT):
New macro.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (floor): Likewise.
* sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_floorf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
* sysdeps/ieee754/float128/s_floorf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor):
Remove macro.
[_ARCH_PWR5X] (__floorf): Likewise.
* sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove
inline function.
[__SSE4_1__] (__floorf): Likewise.
* math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions
instead of __floor variants.
* math/w_lgamma_r_compat.c (__lgamma_r): Likewise.
* math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise.
* math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise.
* math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise.
* math/w_lgammal_r_compat.c (__lgammal_r): Likewise.
* math/w_tgamma_compat.c (__tgamma): Likewise.
* math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise.
* math/w_tgammaf_compat.c (__tgammaf): Likewise.
* math/w_tgammal_compat.c (__tgammal): Likewise.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl):
Likewise.
* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
I'm testing a patch to let the compiler expand calls to floor in libm
as built-in function calls as much as possible, instead of calling
__floor, so that no architecture-specific __floor inlines are needed,
and then to arrange for non-inlined calls to end up calling __floor,
as done with sqrt and __ieee754_sqrt.
This shows up elf/tst-relsort1mod2.c calling floor, which must not be
converted to a call to __floor. Now, while an IS_IN (libm)
conditional could be added to the existing conditionals on such
redirections in include/math.h, the _ISOMAC conditional ought to
suffice (code in other glibc libraries shouldn't be calling floor or
sqrt anyway, as they aren't provided in libc and the other libraries
don't link with libm). But while tests are mostly now built with
_ISOMAC defined, test modules in modules-names aren't unless also
listed in modules-names-tests.
As far as I can see, all the modules in modules-names in elf/ are in
fact parts of tests and so listing them in modules-names-tests is
appropriate, so they get built with something closer to the headers
used for user code, except in a few cases that actually rely on
something from internal headers. This patch duly sets
modules-names-tests there accordingly (filtering out those tests that
fail to build without internal headers).
Tested for x86_64, and with build-many-glibcs.py.
* elf/Makefile (modules-names-tests): New variable.
Similar algorithm is used as in log: log2(2^k x) = k + log2(c) + log2(x/c)
where the last term is approximated by a polynomial of x/c - 1, the first
order coefficient is about 1/ln2 in this case.
There is separate code path when fma instruction is not available for
computing x/c - 1 precisely, for which the table size is doubled.
The worst case error is 0.547 ULP (0.55 without fma), the read only
global data size is 1168 bytes (2192 without fma) on aarch64. The
non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
log2 thruput: 2.00x in [0.01 11.1]
log2 latency: 2.04x in [0.01 11.1]
log2 thruput: 2.17x in [0.999 1.001]
log2 latency: 2.88x in [0.999 1.001]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA)
arm-linux-gnueabihf (!defined __FP_FAST_FMA)
x86_64-linux-gnu (!defined __FP_FAST_FMA)
powerpc64le-linxu-gnu (defined __FP_FAST_FMA)
targets.
* NEWS: Mention log2 improvements.
* math/Makefile (type-double-routines): Add e_log2_data.
* sysdeps/i386/fpu/e_log2_data.c: New file.
* sysdeps/ia64/fpu/e_log2_data.c: New file.
* sysdeps/ieee754/dbl-64/e_log2.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_log2_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (__log2_data): Add.
* sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c: Remove.
* sysdeps/m68k/m680x0/fpu/e_log2_data.c: New file.
Optimized log using carefully generated lookup table with 1/c and log(c)
values for small intervalls around 1. The log(c) is very near a double
precision value, it has about 62 bits precision. The algorithm is
log(2^k x) = k log(2) + log(c) + log(x/c), where the last term is
approximated by a polynomial of x/c - 1. Near 1 a single polynomial of
x - 1 is used.
There is separate code path when fma instruction is not available for
computing x/c - 1 precisely, in which case the table size is doubled.
The code uses __builtin_fma under __FP_FAST_FMA to ensure it is inlined
as an instruction.
With the default configuration settings the worst case error is 0.519 ULP
(and 0.520 without fma), the rodata size is 2192 bytes (4240 without fma).
The non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
log thruput: 3.28x in [0.01 11.1]
log latency: 2.23x in [0.01 11.1]
log thruput: 1.56x in [0.999 1.001]
log latency: 1.57x in [0.999 1.001]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA)
arm-linux-gnueabihf (!defined __FP_FAST_FMA)
x86_64-linux-gnu (!defined __FP_FAST_FMA)
powerpc64le-linux-gnu (defined __FP_FAST_FMA)
targets.
* NEWS: Mention log improvement.
* math/Makefile (type-double-routines): Add e_log_data.
* sysdeps/i386/fpu/e_log_data.c: New file.
* sysdeps/ia64/fpu/e_log_data.c: New file.
* sysdeps/ieee754/dbl-64/e_log.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_log_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (__log_data): Add.
* sysdeps/ieee754/dbl-64/ulog.h: Remove.
* sysdeps/ieee754/dbl-64/ulog.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_log_data.c: New file.
Wrapping the _start function with ENTRY and END to insert ENDBR32 at
function entry when CET is enabled. Since _start now includes CFI,
without "cfi_undefined (eip)", unwinder may not terminate at _start
and we will get
Program received signal SIGSEGV, Segmentation fault.
0xf7dc661e in ?? () from /lib/libgcc_s.so.1
Missing separate debuginfos, use: dnf debuginfo-install libgcc-8.2.1-3.0.fc28.i686
(gdb) bt
#0 0xf7dc661e in ?? () from /lib/libgcc_s.so.1
#1 0xf7dc7c18 in _Unwind_Backtrace () from /lib/libgcc_s.so.1
#2 0xf7f0d809 in __GI___backtrace (array=array@entry=0xffffc7d0,
size=size@entry=20) at ../sysdeps/i386/backtrace.c:127
#3 0x08049254 in compare (p1=p1@entry=0xffffcad0, p2=p2@entry=0xffffcad4)
at backtrace-tst.c:12
#4 0xf7e2a28c in msort_with_tmp (p=p@entry=0xffffca5c, b=b@entry=0xffffcad0,
n=n@entry=2) at msort.c:65
#5 0xf7e29f64 in msort_with_tmp (n=2, b=0xffffcad0, p=0xffffca5c)
at msort.c:53
#6 msort_with_tmp (p=p@entry=0xffffca5c, b=b@entry=0xffffcad0, n=n@entry=5)
at msort.c:53
#7 0xf7e29f64 in msort_with_tmp (n=5, b=0xffffcad0, p=0xffffca5c)
at msort.c:53
#8 msort_with_tmp (p=p@entry=0xffffca5c, b=b@entry=0xffffcad0, n=n@entry=10)
at msort.c:53
#9 0xf7e29f64 in msort_with_tmp (n=10, b=0xffffcad0, p=0xffffca5c)
at msort.c:53
#10 msort_with_tmp (p=p@entry=0xffffca5c, b=b@entry=0xffffcad0, n=n@entry=20)
at msort.c:53
#11 0xf7e2a5b6 in msort_with_tmp (n=20, b=0xffffcad0, p=0xffffca5c)
at msort.c:297
#12 __GI___qsort_r (b=b@entry=0xffffcad0, n=n@entry=20, s=s@entry=4,
cmp=cmp@entry=0x8049230 <compare>, arg=arg@entry=0x0) at msort.c:297
#13 0xf7e2a84d in __GI_qsort (b=b@entry=0xffffcad0, n=n@entry=20, s=s@entry=4,
cmp=cmp@entry=0x8049230 <compare>) at msort.c:308
#14 0x080490f6 in main (argc=2, argv=0xffffcbd4) at backtrace-tst.c:39
FAIL: debug/backtrace-tst
[BZ #23606]
* sysdeps/i386/start.S: Include <sysdep.h>
(_start): Use ENTRY/END to insert ENDBR32 at entry when CET is
enabled. Add cfi_undefined (eip).
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
The x86_64 math_private.h has asm versions of the macros to
reinterpret between floating-point and integer types.
This is the sort of thing we now strongly discourage; the expectation
in such cases, where the generic C code gives the compiler all the
information needed about the required semantics, is that you should
get the compiler to do the right thing for the generic C code rather
than writing an asm version.
Trivial tests showed GCC generates the expected single instructions
for reinterpretation from floating point to integer. In the other
direction, it goes via memory when the asms don't; I asked about this
in GCC bug 87236 and was advised this was deliberate for generic
tuning because it was faster that way on some AMD processors (but
-mtune=intel, and -Os with the latest GCC, avoid going via memory).
The asms don't and can't know about those tuning details, so that's
evidence that they are actually making the code worse.
This patch removes the asms accordingly. Tested for x86_64.
* sysdeps/x86_64/fpu/math_private.h (MOVD): Remove macro.
(MOVQ): Likewise.
(EXTRACT_WORDS64): Likewise.
(INSERT_WORDS64): Likewise.
(GET_FLOAT_WORD): Likewise.
(SET_FLOAT_WORD): Likewise.
Every so often we get libsanitizer or libgo builds breaking with new
glibc because of some change in the glibc headers.
glibc's build-many-glibcs.py deliberately disables libsanitizer and
GCC languages other than C and C++ because the point is to test glibc
and find glibc problems (including problems shown up by new compiler
warnings in new GCC), not to test libsanitizer or libgo; if the
compiler build fails because of libsanitizer or libgo failing to
build, that could hide the existence of new problems in glibc.
However, it seems reasonable to have a non-default mode where
build-many-glibcs.py does build those additional pieces, which this
patch adds.
Note that I do not intend to run a build-many-glibcs.py bot with this
new option. If people concerned with libsanitizer, libgo or other
potentially affected GCC libraries wish to find out about such
problems more quickly, they may wish to run such a bot or bots (and to
monitor the results and fix issues found - obviously there will be
some overlap with issues found by my bots not using that option).
Note also that building a non-native Ada compiler requires a
sufficiently recent native (or build-x-host, in general) Ada compiler
to be used, possibly more or less the same version as being built.
That needs to be in the PATH when build-many-glibcs.py --full-gcc is
run; the script does not deal with setting up such a compiler (or any
of the other host tools needed for building GCC and glibc, beyond the
GMP / MPFR / MPC libraries), but perhaps it should, to avoid the need
to keep updating such a compiler manually when running a bot.
Tested by running build-many-glibcs.py with the new option, with
mainline GCC. There are build failures for various configurations,
which may be of interest to Go / Ada people even if you're not
interested in running such a bot:
* mips64 / mips64el (all configuration): ICE building libstdc++, as
seen without using the new option
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87156>.
* aarch64_be: error building libgo (little-endian aarch64 works fine):
version.go:67:13: error: expected ';' or ')' or newline
67 | BigEndian =
| ^
version.go:67:3: error: reference to undefined name 'BigEndian'
67 | BigEndian =
| ^
* arm (all configurations): error building libgo:
/scratch/jmyers/glibc/many9/src/gcc/libgo/go/internal/syscall/unix/getrandom_linux.go:29:5: error: reference to undefined name 'randomTrap'
29 | if randomTrap == 0 {
| ^
/scratch/jmyers/glibc/many9/src/gcc/libgo/go/internal/syscall/unix/getrandom_linux.go:38:34: error: reference to undefined name 'randomTrap'
38 | r1, _, errno := syscall.Syscall(randomTrap,
| ^
What's happening there is, I think, that the arm*b*-*-* case in
libgo/configure.ac is wrongly matching arm-glibc-linux-gnueabi with
the 'b' in the vendor part, and then something else is failing to
handle GOARCH=armbe. Given that you can have configurations with
multilibs of both endiannesses, endianness should always be detected
by configure.ac, for all architectures, using a compile test of
whether __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__, not based on textual
matches to the host (= target at top-level) triplet.
* armeb (all configurations): error building libada (for some reason
the Arm libada configuration seems to do different things for EH for
big-endian, which makes no sense to me and doesn't actually work):
a-exexpr.adb:87:06: "System.Exceptions.Machine" is not a predefined library unit
a-exexpr.adb:87:06: "Ada.Exceptions (body)" depends on "Ada.Exceptions.Exception_Propagation (body)"
a-exexpr.adb:87:06: "Ada.Exceptions.Exception_Propagation (body)" depends on "System.Exceptions.Machine (spec)"
* hppa: error building libgo (same error as for aarch64_be).
* ia64: ICE building libgo. I've filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87281> for this.
* m68k: ICE in the Go front end building libgo
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84948>.
* microblaze, microblazeel, nios2, sh3, sh3eb: build failure in libada
for lack of a libada port to those systems (I'm not sure sh3 would
actually need anything different from sh4):
a-cbdlli.ads:38:14: violation of restriction "No_Finalization" at system.ads:47
* i686-gnu: build failure in libada, might be fixed by the patch
attached to <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81103>
(not tested):
terminals.c:1115:13: fatal error: termio.h: No such file or directory
* scripts/build-many-glibcs.py (Context.__init__): Add full_gcc
argument.
(Config.build_gcc): Use --disable-libsanitizer for first GCC
build, but not for second build if --full-gcc. Use
--enable-languages=all for second build if --full-gcc.
(get_parser): Add --full-gcc option.
(main): Update call to Context.
CLDR and many other sources say that it_IT (Italian) should use a dot
(".") as a thousands separator and a comma (",") as a decimal separator.
For it_CH and de_CH CLDR says that they should use the Right Single
Quotation Mark ("’") as a thousands separator and a dot (".") as a
decimal separator. Consequently, the same rules are copied to all other
locales in Switzerland.
These rules apply to both LC_MONETARY and LC_NUMERIC.
[BZ #10797]
* localedata/locales/de_CH (mon_thousands_sep): Use "<U2019>" (Right
Single Quotation Mark).
(thousands_sep): Likewise.
* localedata/locales/it_CH (LC_NUMERIC): Use “copy "de_CH"”.
* localedata/locales/it_IT (thousands_sep): Use ".".
(grouping): Use "3;3".
We've had issues before with build failures (with new GCC) in code
only built with --enable-obsolete-rpc or --enable-obsolete-nsl not
being reported for a while because build-many-glibcs.py does not test
those configure options. This patch adds configurations (32-bit and
64-bit) using those options so that in future we can notice quickly if
they start failing to build.
Tested the new configurations do build with GCC 8.
* scripts/build-many-glibcs.py (Context.add_all_configs): Add
x86_64 and i686 configs using --enable-obsolete-rpc
--enable-obsolete-nsl.
If glibc is built with gcc 8 and -march=z900,
the testcase posix/tst-spawn4-compat crashes with a segfault.
In function maybe_script_execute, the new_argv array is dynamically
initialized on stack with (argc + 1) elements.
The function wants to add _PATH_BSHELL as the first argument
and writes out of bounds of new_argv.
There is an off-by-one because maybe_script_execute fails to count
the terminating NULL when sizing new_argv.
ChangeLog:
* sysdeps/unix/sysv/linux/spawni.c (maybe_script_execute):
Increment size of new_argv by one.
This commit also fixes d_fmt in bn_BD which is identical to bn_IN,
in ne_NP which is identical to ne_IN (not supported by Glibc but supported
by CLDR), and in ta_LK which is identical to ta_IN.
For those locales which are supported by CLDR data is imported from
CLDR v33. For others it is copied from those locales which were identical
before this commit.
[BZ #17426]
* localedata/locales/anp_IN (d_fmt): Use "%-d//%-m//%y".
* localedata/locales/ar_IN (d_fmt): Likewise.
* localedata/locales/bhb_IN (d_fmt): Likewise.
* localedata/locales/bho_IN (d_fmt): Likewise.
* localedata/locales/bn_BD (d_fmt): Likewise.
* localedata/locales/bn_IN (d_fmt): Likewise.
* localedata/locales/doi_IN (d_fmt): Likewise.
* localedata/locales/gu_IN (d_fmt): Likewise.
* localedata/locales/hi_IN (d_fmt): Likewise.
* localedata/locales/hne_IN (d_fmt): Likewise.
* localedata/locales/kn_IN (d_fmt): Likewise.
* localedata/locales/mag_IN (d_fmt): Likewise.
* localedata/locales/mai_IN (d_fmt): Likewise.
* localedata/locales/mjw_IN (d_fmt): Likewise.
* localedata/locales/ml_IN (d_fmt): Likewise.
* localedata/locales/mni_IN (d_fmt): Likewise.
* localedata/locales/mr_IN (d_fmt): Likewise.
* localedata/locales/pa_IN (d_fmt): Likewise.
* localedata/locales/raj_IN (d_fmt): Likewise.
* localedata/locales/sat_IN (d_fmt): Likewise.
* localedata/locales/sd_IN (d_fmt): Likewise.
* localedata/locales/sd_IN@devanagari (d_fmt): Likewise.
* localedata/locales/ta_IN (d_fmt): Likewise.
* localedata/locales/ta_LK (d_fmt): Likewise.
* localedata/locales/tcy_IN (d_fmt): Likewise.
* localedata/locales/ur_IN (d_fmt): Likewise.
* localedata/locales/brx_IN (d_fmt): Use "%-m//%-d//%y".
* localedata/locales/ks_IN (d_fmt): Likewise.
* localedata/locales/ks_IN@devanagari (d_fmt): Likewise.
* localedata/locales/kok_IN (d_fmt): Use "%-d-%-m-%y".
* localedata/locales/ne_NP (d_fmt): Use "%y//%-m//%-d".
* localedata/locales/sa_IN (d_fmt): Use "%-d-%m-%y".
* localedata/locales/te_IN (d_fmt): Use "%d-%m-%y".
After some math_private.h cleanups (in particulat math-barriers.h
being split out), the only thing left in the alpha math_private.h was
macro definitions of __isnan and __isnanf, apparently (based on the
comments) intended to avoid problems with inline definitions in other
math_private.h files. Those inline definitions were removed in commit
fe8c2b33ae, and the alpha math_private.h
is no longer needed; this patch removes it.
Tested with build-many-glibcs.py that installed stripped shared
libraries for alpha are unchanged by the patch.
* sysdeps/alpha/fpu/math_private.h: Remove.
Continuing the cleanup of math_private.h, with a view to it becoming
the header for the APIs defined therein and not also a header with
inline variants of math.h APIs, this patch moves inline definitions of
__isinff128 and fabsf128 to include/math.h, so that any users of
math.h in glibc automatically get the optimized functions rather than
quietly missing them if they do not also include math_private.h.
Tested for x86_64 and x86, and with build-many-glibcs.py with GCC 6.
There are changes to installed stripped libc.so on configurations with
distinct _Float128, because of __printf_fp_l code that now gets the
__isinff128 inline where previously it called the out-of-line
function because of the lack of a math_private.h call. It seems
appropriate that this code does get the inline (as it would
automatically with GCC 7 and later when the built-in function is used)
rather than being the only place in glibc that does not.
* sysdeps/generic/math_private.h
[__HAVE_DISTINCT_FLOAT128 && !__GNUC_PREREQ (7, 0)] (__isinff128):
Move this inline function ....
[__HAVE_DISTINCT_FLOAT128] (fabsf128): And this one ....
* include/math.h [!_ISOMAC]: To here....
<fenv_private.h> has inline versions of various <fenv.h> functions,
and their __fe* variants, for systems (generally soft-float) without
support for floating-point exceptions, rounding modes or both.
Having these inlines in a separate header introduces a risk of a
source file including <fenv.h> and compiling OK on x86_64, but failing
to compile (because the feraiseexcept inline is actually a macro that
discards its argument, to avoid the need for #ifdef FE_INVALID
conditionals), or not being properly optimized, on systems without the
exceptions and rounding modes support (when these inlines were in
math_private.h, we had a few cases where this broke the build because
there was no obvious reason for a file to need math_private.h and it
didn't need that header on x86_64). By moving those inlines to
include/fenv.h, this risk can be avoided, and fenv_private.h becomes
more clearly defined as specifically the header for the internal
libc_fe* and SET_RESTORE_ROUND* interfaces.
This patch makes that move, removing fenv_private.h includes that are
no longer needed (or replacing them by fenv.h includes in a few cases
that didn't already have such an include).
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/generic/fenv_private.h [FE_ALL_EXCEPT == 0]: Move this
code ....
[!FE_HAVE_ROUNDING_MODES]: And this code ....
* include/fenv.h [!_ISOMAC]: ... to here.
* math/fraiseexcpt.c (__feraiseexcept): Undefine as macro.
(feraiseexcept): Likewise.
* math/fromfp.h: Do not include <fenv_private.h>.
* math/s_cexp_template.c: Likewise.
* math/s_csin_template.c: Likewise.
* math/s_csinh_template.c: Likewise.
* math/s_ctan_template.c: Likewise.
* math/s_ctanh_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/w_acos_compat.c: Likewise.
* math/w_acosf_compat.c: Likewise.
* math/w_acosl_compat.c: Likewise.
* math/w_asin_compat.c: Likewise.
* math/w_asinf_compat.c: Likewise.
* math/w_asinl_compat.c: Likewise.
* math/w_j0_compat.c: Likewise.
* math/w_j0f_compat.c: Likewise.
* math/w_j0l_compat.c: Likewise.
* math/w_j1_compat.c: Likewise.
* math/w_j1f_compat.c: Likewise.
* math/w_j1l_compat.c: Likewise.
* math/w_jn_compat.c: Likewise.
* math/w_jnf_compat.c: Likewise.
* math/w_log10_compat.c: Likewise.
* math/w_log10f_compat.c: Likewise.
* math/w_log10l_compat.c: Likewise.
* math/w_log2_compat.c: Likewise.
* math/w_log2f_compat.c: Likewise.
* math/w_log2l_compat.c: Likewise.
* math/w_log_compat.c: Likewise.
* math/w_logf_compat.c: Likewise.
* math/w_logl_compat.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llround.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lround.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_llroundf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lroundf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise.
* math/w_ilogb_template.c: Include <fenv.h> instead of
<fenv_private.h>.
* math/w_llogb_template.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrt.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrtf.c: Likewise.
Continuing the clean-up related to the catch-all math_private.h
header, this patch stops math_private.h from including fenv_private.h.
Instead, fenv_private.h is included directly from those users of
math_private.h that also used interfaces from fenv_private.h. No
attempt is made to remove unused includes of math_private.h, but that
is a natural followup.
(However, since math_private.h sometimes defines optimized versions of
math.h interfaces or __* variants thereof, as well as defining its own
interfaces, I think it might make sense to get all those optimized
versions included from include/math.h, not requiring a separate header
at all, before eliminating unused math_private.h includes - that
avoids a file quietly becoming less-optimized if someone adds a call
to one of those interfaces without restoring a math_private.h include
to that file.)
There is still a pitfall that if code uses plain fe* and __fe*
interfaces, but only includes fenv.h and not fenv_private.h or (before
this patch) math_private.h, it will compile on platforms with
exceptions and rounding modes but not get the optimized versions (and
possibly not compile) on platforms without exception and rounding mode
support, so making it easy to break the build for such platforms
accidentally.
I think it would be most natural to move the inlines / macros for fe*
and __fe* in the case of no exceptions and rounding modes into
include/fenv.h, so that all code including fenv.h with _ISOMAC not
defined automatically gets them. Then fenv_private.h would be purely
the header for the libc_fe*, SET_RESTORE_ROUND etc. internal
interfaces and the risk of breaking the build on other platforms than
the one you tested on because of a missing fenv_private.h include
would be much reduced (and there would be some unused fenv_private.h
includes to remove along with unused math_private.h includes).
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by this patch.
* sysdeps/generic/math_private.h: Do not include <fenv_private.h>.
* math/fromfp.h: Include <fenv_private.h>.
* math/math-narrow.h: Likewise.
* math/s_cexp_template.c: Likewise.
* math/s_csin_template.c: Likewise.
* math/s_csinh_template.c: Likewise.
* math/s_ctan_template.c: Likewise.
* math/s_ctanh_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/w_acos_compat.c: Likewise.
* math/w_acosf_compat.c: Likewise.
* math/w_acosl_compat.c: Likewise.
* math/w_asin_compat.c: Likewise.
* math/w_asinf_compat.c: Likewise.
* math/w_asinl_compat.c: Likewise.
* math/w_ilogb_template.c: Likewise.
* math/w_j0_compat.c: Likewise.
* math/w_j0f_compat.c: Likewise.
* math/w_j0l_compat.c: Likewise.
* math/w_j1_compat.c: Likewise.
* math/w_j1f_compat.c: Likewise.
* math/w_j1l_compat.c: Likewise.
* math/w_jn_compat.c: Likewise.
* math/w_jnf_compat.c: Likewise.
* math/w_llogb_template.c: Likewise.
* math/w_log10_compat.c: Likewise.
* math/w_log10f_compat.c: Likewise.
* math/w_log10l_compat.c: Likewise.
* math/w_log2_compat.c: Likewise.
* math/w_log2f_compat.c: Likewise.
* math/w_log2l_compat.c: Likewise.
* math/w_log_compat.c: Likewise.
* math/w_logf_compat.c: Likewise.
* math/w_logl_compat.c: Likewise.
* sysdeps/aarch64/fpu/feholdexcpt.c: Likewise.
* sysdeps/aarch64/fpu/fesetround.c: Likewise.
* sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise.
* sysdeps/aarch64/fpu/ftestexcept.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_jn.c: Likewise.
* sysdeps/ieee754/dbl-64/e_pow.c: Likewise.
* sysdeps/ieee754/dbl-64/e_remainder.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
* sysdeps/ieee754/dbl-64/gamma_product.c: Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llround.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lround.c: Likewise.
* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c: Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c: Likewise.
* sysdeps/ieee754/dbl-64/s_tan.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/x2y2m1.c: Likewise.
* sysdeps/ieee754/float128/float128_private.h: Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_llroundf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lroundf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c: Likewise.
* sysdeps/ieee754/ldbl-128/gamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_j1l.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c: Likewise.
* sysdeps/ieee754/ldbl-96/gamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrt.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrtf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise.
* sysdeps/riscv/rvd/s_finite.c: Likewise.
* sysdeps/riscv/rvd/s_fmax.c: Likewise.
* sysdeps/riscv/rvd/s_fmin.c: Likewise.
* sysdeps/riscv/rvd/s_fpclassify.c: Likewise.
* sysdeps/riscv/rvd/s_isinf.c: Likewise.
* sysdeps/riscv/rvd/s_isnan.c: Likewise.
* sysdeps/riscv/rvd/s_issignaling.c: Likewise.
* sysdeps/riscv/rvf/fegetround.c: Likewise.
* sysdeps/riscv/rvf/feholdexcpt.c: Likewise.
* sysdeps/riscv/rvf/fesetenv.c: Likewise.
* sysdeps/riscv/rvf/fesetround.c: Likewise.
* sysdeps/riscv/rvf/feupdateenv.c: Likewise.
* sysdeps/riscv/rvf/fgetexcptflg.c: Likewise.
* sysdeps/riscv/rvf/ftestexcept.c: Likewise.
* sysdeps/riscv/rvf/s_ceilf.c: Likewise.
* sysdeps/riscv/rvf/s_finitef.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/riscv/rvf/s_fmaxf.c: Likewise.
* sysdeps/riscv/rvf/s_fminf.c: Likewise.
* sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise.
* sysdeps/riscv/rvf/s_isinff.c: Likewise.
* sysdeps/riscv/rvf/s_isnanf.c: Likewise.
* sysdeps/riscv/rvf/s_issignalingf.c: Likewise.
* sysdeps/riscv/rvf/s_nearbyintf.c: Likewise.
* sysdeps/riscv/rvf/s_roundevenf.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/riscv/rvf/s_truncf.c: Likewise.
Continuing the move of test code from Perl to Python (which seems
uncontroversial, unlike dependencies on Python in the actual build of
glibc), this patch replaces conform/list-header-symbols.pl with a
Python script, as a first step in converting the conform/ tests.
(conform/glibcconform.py is an equivalent to GlibcConform.pm,
containing code that will be relevant to move than one of the conform/
scripts.)
Tested for x86_64, including verifying that the symbol lists generated
are identical to those generated by the Perl version.
* conform/glibcconform.py: New file.
* conform/list-header-symbols.py: Likewise.
* conform/list-header-symbols.pl: Remove.
* conform/Makefile (tests-special): Only add linknamespace tests
if [PYTHON].
($(linknamespace-symlists-tests)): Use list-header-symbols.py.
copy_file_range can't be used to copy a file from glibc source directory
to glibc build directory since they may be on different filesystems.
This patch adds xcopy_file_range for cross-device copy.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
[BZ #23597]
* support/Makefile (libsupport-routines): Add
support_copy_file_range and xcopy_file_range.
* support/support.h: Include <sys/types.h>.
(support_copy_file_range): New prototype.
* support/support_copy_file_range.c: New file. Copied and
modified from io/copy_file_range-compat.c.
* support/test-container.c (copy_one_file): Call xcopy_file_rang
instead of copy_file_range.
* support/xcopy_file_range.c: New file.
* support/xunistd.h (xcopy_file_range): New prototype.
The elf/tst-dlopen-aout.c test uses asserts to verify properties of the
test execution. Instead of using assert it should use xpthread_create
and xpthread_join to catch errors starting the threads and fail the
test. This shows up in Fedora 28 when building for i686-pc-linux-gnu
and using gcc 8.1.1.
Tested on i686, and fixes a check failure with -DNDEBUG.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Initially, this function was restricted to _GNU_SOURCE, but experience
shows that compatibility with existing build systems is improved if we
declare it under _DEFAULT_SOURCE as well.
The test tries to allocate more than 2^31 bytes which will always fail on s390
as it has maximum 2^31bit of memory.
Before commit 6c3a8a9d86, this test returned
unsupported if malloc fails. This patch re enables this behaviour.
Furthermore support_delete_temp_files() failed to remove the temp directory
in this case as it is not empty due to the created symlink.
Thus the creation of the symlink is moved behind malloc.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
ChangeLog:
* stdlib/test-bz22786.c (do_test): Return EXIT_UNSUPPORTED
if malloc fails.
When converting gen-libm-test to Python, in one place I noted a bug in
the old Perl version that I preserved in the Python version so that
the generated output files were the same with both versions, as such
comparisons help give confidence in the correctness of such a rewrite
of a script. Now that the conversion has been done, this patch fixes
that bug, by arranging for tests with plus_oflow or minus_oflow
results (manually written tests in libm-test-*.inc that have
overflowing results that thus depend on the rounding mode) to be
properly treated as having non-finite results, and thus not run for
the __FINITE_MATH_ONLY__ tests. (As the affected tests in fact did
pass for __FINITE_MATH_ONLY__ testing, this is just a matter of
logical correctness in the choice of which tests run for that case,
rather than fixing any actual test failures.)
Tested for x86_64.
* math/gen-libm-test.py (gen_test_args_res): Also treat plus_oflow
and minus_oflow as non-finite.
On some architectures, the parts of math_private.h relating to the
floating-point environment are in a separate file fenv_private.h
included from math_private.h. As this is purely an
architecture-specific convention used by several architectures,
however, all such architectures still need their own math_private.h,
even if it has nothing to do beyond #include <fenv_private.h> and
peculiarity of including the i386 file directly instead of having a
shared file in sysdeps/x86.
This patch makes the fenv_private.h name an architecture-independent
convention in glibc. The include of fenv_private.h from
math_private.h becomes architecture-independent (until callers are
updated to include fenv_private.h directly so the include from
math_private.h is no longer needed). Some architecture math_private.h
headers are removed if no longer needed, or renamed to fenv_private.h
if all they define belongs in that header; architecture fenv_private.h
headers now do require #include_next <fenv_private.h>. The i386
fenv_private.h file moves to sysdeps/x86/fpu/ to reflect how it is
actually shared with x86_64. The generic math_private.h gets a new
include of <stdbool.h>, as needed for bool in some prototypes in that
header (previously that was indirectly included via include/fenv.h,
which now only gets included too late in math_private.h, after those
prototypes).
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/aarch64/fpu/fenv_private.h: New file. Based on ....
* sysdeps/aarch64/fpu/math_private.h: ... this file. All contents
moved to fenv_private.h except for ...
(TOINT_INTRINSICS): Kept in math_private.h.
(roundtoint): Likewise.
(converttoint): Likewise.
* sysdeps/arm/fenv_private.h: Change multiple-include guard to
[ARM_FENV_PRIVATE_H]. Include next <fenv_private.h>.
* sysdeps/arm/math_private.h: Remove.
* sysdeps/generic/fenv_private.h: New file. Contents moved from
....
* sysdeps/generic/math_private.h: ... this file. Include
<stdbool.h>. Do not include <fenv.h> or <get-rounding-mode.h>.
Include <fenv_private.h>. Remove functions and macros moved to
fenv_private.h.
* sysdeps/i386/fpu/math_private.h: Remove.
* sysdeps/mips/math_private.h: Move to ....
* sysdeps/mips/fpu/fenv_private.h: ... here. Change
multiple-include guard to [MIPS_FENV_PRIVATE_H]. Remove
[__mips_hard_float] conditional. Include next <fenv_private.h>.
* sysdeps/powerpc/fpu/fenv_private.h: Change multiple-include
guard to [POWERPC_FENV_PRIVATE_H]. Include next <fenv_private.h>.
* sysdeps/powerpc/fpu/math_private.h: Do not include
<fenv_private.h>.
* sysdeps/riscv/rvf/math_private.h: Move to ....
* sysdeps/riscv/rvf/fenv_private.h: ... here. Change
multiple-include guard to [RISCV_FENV_PRIVATE_H]. Include next
<fenv_private.h>.
* sysdeps/sparc/fpu/fenv_private.h: Change multiple-include guard
to [SPARC_FENV_PRIVATE_H]. Include next <fenv_private.h>.
* sysdeps/sparc/fpu/math_private.h: Remove.
* sysdeps/i386/fpu/fenv_private.h: Move to ....
* sysdeps/x86/fpu/fenv_private.h: ... here. Change
multiple-include guard to [X86_FENV_PRIVATE_H]. Include next
<fenv_private.h>.
* sysdeps/x86_64/fpu/math_private.h: Do not include
<sysdeps/i386/fpu/fenv_private.h>.
As done in commit 284f42bc77, memcmp
can be used after memchr to avoid the initialization overhead of the
two-way algorithm for the first match. This has shown improvement
>40% for first match.
Completing the move of macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the EXCEPTION_SET_FORCES_TRAP macro out to its own
math-tests-trap-force.h header.
Tested with build-many-glibcs.py.
* sysdeps/generic/math-tests-trap-force.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-trap-force.h>.
(EXCEPTION_SET_FORCES_TRAP): Do not define here.
* sysdeps/powerpc/math-tests.h: Remove file.
* sysdeps/powerpc/fpu/math-tests-trap-force.h: New file.
Continuing moving macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the EXCEPTION_ENABLE_SUPPORTED macro out to its own
math-tests-trap.h header.
Tested with build-many-glibcs.py.
* sysdeps/generic/math-tests-trap.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-trap.h>.
(EXCEPTION_ENABLE_SUPPORTED): Do not define here.
* sysdeps/aarch64/math-tests.h: Remove file.
* sysdeps/arm/math-tests.h: Likewise.
* sysdeps/riscv/math-tests.h: Likewise.
* sysdeps/aarch64/math-tests-trap.h: New file.
* sysdeps/arm/math-tests-trap.h: Likewise.
* sysdeps/riscv/math-tests-trap.h: Likewise.
Continuing moving macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the EXCEPTION_TESTS_* macros for individual types out to their
own sysdeps header.
As with ROUNDING_TESTS_*, there is no need to define these macros if
FE_ALL_EXCEPT == 0 and the individual exception macros are undefined;
thus, math-tests-exceptions.h headers are only needed for soft-float
ARM and RISC-V, while the other cases that defined these macros do not
need to do so (and the associated math-tests.h headers are thus
removed without needing replacement by math-tests-exceptions.h
headers).
Tested with build-many-glibcs.py.
* sysdeps/generic/math-tests-exceptions.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-exceptions.h>.
(EXCEPTION_TESTS_float): Do not define here.
(EXCEPTION_TESTS_double): Likewise.
(EXCEPTION_TESTS_long_double): Likewise.
(EXCEPTION_TESTS_float128): Likewise.
* sysdeps/arm/math-tests.h [__SOFTFP__] (EXCEPTION_TESTS_float):
Likewise.
[__SOFTFP__] (EXCEPTION_TESTS_double): Likewise.
[__SOFTFP__] (EXCEPTION_TESTS_long_double): Likewise.
* sysdeps/arm/nofpu/math-tests-exceptions.h: New file.
* sysdeps/m68k/coldfire/math-tests.h: Remove file.
* sysdeps/mips/math-tests.h: Likewise.
* sysdeps/nios2/math-tests.h: Likewise.
* sysdeps/riscv/math-tests.h [!__riscv_flen]
(EXCEPTION_TESTS_float): Do not define here.
[!__riscv_flen] (EXCEPTION_TESTS_double): Likewise.
[!__riscv_flen] (EXCEPTION_TESTS_long_double): Likewise.
* sysdeps/riscv/nofpu/math-tests-exceptions.h: New file.
The NEWS entry for sinf improvements is listed for 2.28, while it was
committed in 2.29, so move it there and mention tanf.
Committed as obvious.
* NEWS: Move optimized sinf entry to 2.29.
Speedup tanf range reduction by using the new sincosf range
reduction algorithm. Overall code quality is improved due to
inlining, so there is a speedup even if no range reduction is
required.
tanf throughput gains on Cortex-A72:
* |x| < M_PI_4 : 1.1x
* |x| < M_PI_2 : 1.2x
* |x| < 2 * M_PI: 1.5x
* |x| < 120.0 : 1.6x
* |x| < Inf : 12.1x
* sysdeps/ieee754/flt-32/s_tanf.c (__tanf): Use fast range reduction.
This patch completes the move of ROUNDING_TESTS_* macros to typo-proof
conventions by stopping redefining them in test-*-vlen*.h. Instead,
libm-test-driver.c is made to check TEST_MATHVEC when setting
non-to-nearest rounding modes.
Tested for x86_64.
* math/test-double-vlen2.h: Don't include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Remove.
* math/test-double-vlen4.h: Don't include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Remove.
* math/test-double-vlen8.h: Don't include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Remove.
* math/test-float-vlen16.h: Don't include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Remove.
* math/test-float-vlen4.h: Don't include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Remove.
* math/test-float-vlen8.h: Don't include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Remove.
* math/libm-test-driver.c (IF_ROUND_INIT_FE_DOWNWARD): Check
!TEST_MATHVEC here.
(IF_ROUND_INIT_FE_TOWARDZERO): Likewise.
(IF_ROUND_INIT_FE_UPWARD): Likewise.
Continuing moving macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the ROUNDING_TESTS_* macros for individual types out to their
own sysdeps header.
In the soft-float case where FE_TONEAREST is the only rounding mode
macro defined, there is no need to define ROUNDING_TESTS_*; it is only
necessary when rounding modes macros are defined that may not be
supported at runtime. Thus, the ROUNDING_TESTS_* definitions for some
configurations are just removed, not moved to new
math-tests-rounding.h headers; the only architectures needing
math-tests-rounding.h are those where the macros are defined in
bits/fenv.h because of the possibility of a soft-float compilation
using a hard-float glibc with the same ABI (i.e., ARM and RISC-V).
The test-*-vlen*.h headers, by using #undef, do not yet follow
typo-proof conventions (but they no longer implicitly rely on being
included before math-tests.h, and this area can always be cleaned up
further in future).
Tested with build-many-glibcs.py.
* sysdeps/generic/math-tests-rounding.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Do not define here.
(ROUNDING_TESTS_double): Likewise.
(ROUNDING_TESTS_long_double): Likewise.
(ROUNDING_TESTS_float128): Likewise.
* math/test-double-vlen2.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Undefine before defining.
* math/test-double-vlen4.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Undefine before defining.
* math/test-double-vlen8.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_double): Undefine before defining.
* math/test-float-vlen16.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Undefine before defining.
* math/test-float-vlen4.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Undefine before defining.
* math/test-float-vlen8.h: Include <math-tests-rounding.h>.
(ROUNDING_TESTS_float): Undefine before defining.
* sysdeps/arm/nofpu/math-tests-rounding.h: New file.
* sysdeps/arm/math-tests.h [__SOFTFP__] (ROUNDING_TESTS_float): Do
not define here.
[__SOFTFP__] (ROUNDING_TESTS_double): Likewise.
[__SOFTFP__] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/riscv/nofpu/math-tests-rounding.h: New file.
* sysdeps/riscv/math-tests.h [!__riscv_flen]
(ROUNDING_TESTS_float): Do not define here.
[!__riscv_flen] (ROUNDING_TESTS_double): Likewise.
[!__risv_flen] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/m68k/coldfire/math-tests.h [!__mcffpu__]
(ROUNDING_TESTS_float): Likewise.
[!__mcffpu__] (ROUNDING_TESTS_double): Likewise.
[!__mcffpu__] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/mips/math-tests.h [__mips_soft_float]
(ROUNDING_TESTS_float): Likewise.
[__mips_soft_float] (ROUNDING_TESTS_double): Likewise.
[__mips_soft_float] (ROUNDING_TESTS_long_double): Likewise.
* sysdeps/nios2/math-tests.h (ROUNDING_TESTS_float): Likewise.
(ROUNDING_TESTS_double): Likewise.
(ROUNDING_TESTS_long_double): Likewise.
This patch adds the PF_XDP, AF_XDP and SOL_XDP macros from Linux 4.18 to
sysdeps/unix/sysv/linux/bits/socket.h.
* sysdeps/unix/sysv/linux/bits/socket.h (PF_MAX): Set to 45.
(PF_XDP): New macro.
(AF_XDP): New macro.
(SOL_XDP): New macro.
This patch adds constants from netinet/tcp.h in Linux 4.18, and an
associated struct tcp_zerocopy_receive, to sysdeps/gnu/netinet/tcp.h.
The new TCP_REPAIR_* constants seemed sufficiently related to those
already present to include them.
Note that this patch does not include additions to struct tcp_info;
there are many other elements in this structure in the Linux kernel
that are not included in the glibc version (which was last extended in
2007, it seems). Such additions to the end of the structure may be OK
with the expected way it is used (size passed explicitly to the kernel
with getsockopt), but in principle any change to the size of a type
provided by glibc is an ABI change for external applications /
libraries using that type in their ABIs, and has the associated risks
of such a change.
Tested for x86_64.
* sysdeps/gnu/netinet/tcp.h (TCP_ZEROCOPY_RECEIVE): New macro.
(TCP_INQ): Likewise.
(TCP_CM_INQ): Likewise.
(TCP_REPAIR_ON): Likewise.
(TCP_REPAIR_OFF): Likewise.
(TCP_REPAIR_OFF_NO_WP): Likewise.
(struct tcp_zerocopy_receive): New type.
This patch updates struct signalfd_siginfo in sys/signalfd.h with new
members from Linux 4.18 (plus ssi_addr_lsb, added to the kernel in
2.6.37 without being added to sys/signalfd.h at that time). The
__pad2 member name follows the kernel and the existing __pad name.
Tested for x86_64.
* sysdeps/unix/sysv/linux/sys/signalfd.h (struct
signalfd_siginfo): Add ssi_addr_lsb, ssi_syscall, ssi_call_addr
and ssi_arch members.
This patch adds two new constants from Linux 4.18 to elf.h,
NT_VMCOREDD and AT_MINSIGSTKSZ.
Tested for x86_64.
* elf/elf.c (NT_VMCOREDD): New macro.
(AT_MINSIGSTKSZ): Likewise.
New generic optimization of sinf and cosf introduced by commit
599cf39766 shows improvement
compared to powerpc specific assembly version. Hence removing
the powerpc assembly versions to make use of generic code.
The House of Force is a well-known technique to exploit heap
overflow. In essence, this exploit takes three steps:
1. Overwrite the size of top chunk with very large value (e.g. -1).
2. Request x bytes from top chunk. As the size of top chunk
is corrupted, x can be arbitrarily large and top chunk will
still be offset by x.
3. The next allocation from top chunk will thus be controllable.
If we verify the size of top chunk at step 2, we can stop such attack.
This patch moves little endian specific POWER9 optimization files to
sysdeps/powerpc/powerpc64/le and creates POWER9 ifunc functions
only for little endian.
This variant of strlen uses vector loads and operations to reduce the
size of the code and also eliminate the non-ascii fallback. This
works very well for falkor because of its two vector units and
efficient vector ops. In the best case it reduces latency of cases in
bench-strlen by 48%, with gains throughout the benchmark.
strlen-walk also sees uniform gains in the 5%-15% range.
Overall the routine appears to work better than the stock one for falkor
regardless of the benchmark, length of string or cache state.
The same cannot be said of a53 and a72 though. a53 performance was
greatly reduced and for a72 it was a bit of a mixed bag, slightly on the
negative side but I reckon it might be fast in some situations.
* sysdeps/aarch64/strlen.S (__strlen): Rename to STRLEN.
[!STRLEN](STRLEN): Set to __strlen.
* sysdeps/aarch64/multiarch/strlen.c: New file.
* sysdeps/aarch64/multiarch/strlen_generic.S: Likewise.
* sysdeps/aarch64/multiarch/strlen_asimd.S: Likewise.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add strlen.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines): Add
strlen_generic and strlen_asimd.
Reviewed-By: szabolcs.nagy@arm.com
CC: pinskia@gmail.com
The internal functions __kernel_sinf and __kernel_cosf are used only by
lgammaf_r. Removing the internal functions and using the generic sinf
and cosf is better overall. Benchmarking on Cortex-A72 shows the generic
sinf and cosf are 1.4x and 2.3x faster in the range |x| < PI/4, and 0.66x
and 1.1x for |x| < PI/2, so it should make lgammaf_r faster on average.
GLIBC regression tests pass on AArch64.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Use __sinf/__cosf.
* sysdeps/ieee754/flt-32/k_cosf.c (__kernel_cosf): Remove all code.
* sysdeps/ieee754/flt-32/k_sinf.c (__kernel_sinf): Likewise.
Fix a few missing spaces, it's now identical to the regenerated version.
Passes GLIBC tests on x64.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerate to fix spaces.
The second patch improves performance of sinf and cosf using the same
algorithms and polynomials. The returned values are identical to sincosf
for the same input. ULP definitions for AArch64 and x64 are updated.
sinf/cosf througput gains on Cortex-A72:
* |x| < 0x1p-12 : 1.2x
* |x| < M_PI_4 : 1.8x
* |x| < 2 * M_PI: 1.7x
* |x| < 120.0 : 2.3x
* |x| < Inf : 3.0x
* NEWS: Mention sinf, cosf, sincosf.
* sysdeps/aarch64/libm-test-ulps: Update ULP for sinf, cosf, sincosf.
* sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sinf and cosf.
* sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: Add definitions of
constants rather than including generic sincosf.h.
* sysdeps/x86_64/fpu/s_sincosf_data.c: Remove.
* sysdeps/ieee754/flt-32/s_cosf.c (cosf): Rewrite.
* sysdeps/ieee754/flt-32/s_sincosf.h (reduced_sin): Remove.
(reduced_cos): Remove.
(sinf_poly): New function.
* sysdeps/ieee754/flt-32/s_sinf.c (sinf): Rewrite.
This patch updates sysdeps/unix/sysv/linux/syscall-names.list for
Linux 4.18. The io_pgetevents and rseq syscalls are added to the
kernel on various architectures, so need to be mentioned in this file.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.18.
(io_pgetevents): New syscall.
(rseq): Likewise.
The install.texi documentation of uses of Perl and Python is
substantially out of date.
The description of Perl is "to test the installation" (which I
interpret as referring to test-installation.pl), but it's used for
more tests than that, and to build the manual, and to regenerate one
file in the source tree.
The description of Python is only for pretty-printer tests, but it's
used for other tests / benchmarks as well (and for other internal uses
such as updating Unicode data, for which we already require Python 3,
but I think install.texi only needs to describe uses from the main
glibc Makefiles).
This patch updates the descriptions of what those tools are used for.
The Python information (and information about other tools for testing
pretty printers) was awkwardly in the middle of the general
description of building and testing glibc, rather than with the rest
of information about tools used in glibc build and test; this patch
moves the information about those tools into the main list.
Tested with regeneration of INSTALL as well as "make info" and "make
pdf".
* manual/install.texi (Configuring and compiling): Do not list
tools used for testing pretty printers here.
(Tools for Compilation): List Python, PExpect and GDB here.
Update descriptions of uses of Perl and Python.
* INSTALL: Regenerate.
Add the workload test properties (max-throughput, latency, etc.) to
the schema to prevent benchmark output validation from failing.
* benchtests/scripts/benchout.schema.json (properties): Add
new properties.
Add the duration and iterations attributes to the workloads tests to
make the json schema parser happy
* benchtests/bench-skeleton.c (main): Add duration and
iterations attributes.
Adjust the non-glibc code to agree with what Gawk needs for
rational range interpretation (RRI) for regular expression ranges.
In unibyte locales, Gawk wants ranges to use the underlying byte
rather than the character code point. This change does not affect
glibc proper.
* posix/regcomp.c (parse_byte) [!LIBC && RE_ENABLE_I18N]:
In unibyte locales, use the byte value rather than
running it through btowc.
Continuing moving macros out of math-tests.h to smaller headers
following typo-proof conventions instead of using #ifndef, this patch
moves the SNAN_TESTS_* macros for individual types out to their own
sysdeps header (while the type-generic SNAN_TESTS wrapper for those
macros remains in math-tests.h).
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/generic/math-tests-snan.h: New file.
* sysdeps/generic/math-tests.h: Include <math-tests-snan.h>.
(SNAN_TESTS_float): Do not define here.
(SNAN_TESTS_double): Likewise.
(SNAN_TESTS_long_double): Likewise.
(SNAN_TESTS_float128): Likewise.
* sysdeps/i386/fpu/math-tests-snan.h: New file.
* sysdeps/i386/fpu/math-tests.h: Remove file.
* sysdeps/ia64/math-tests-snan.h: New file.
* sysdeps/ia64/math-tests.h: Remove file.
* sysdeps/x86/math-tests.h: Likewise.
* sysdeps/x86_64/fpu/math-tests-snan.h: New file.
This patch is a complete rewrite of sincosf. The new version is
significantly faster, as well as simple and accurate.
The worst-case ULP is 0.5607, maximum relative error is 0.5303 * 2^-23 over
all 4 billion inputs. In non-nearest rounding modes the error is 1ULP.
The algorithm uses 3 main cases: small inputs which don't need argument
reduction, small inputs which need a simple range reduction and large inputs
requiring complex range reduction. The code uses approximate integer
comparisons to quickly decide between these cases.
The small range reducer uses a single reduction step to handle values up to
120.0. It is fastest on targets which support inlined round instructions.
The large range reducer uses integer arithmetic for simplicity. It does a
32x96 bit multiply to compute a 64-bit modulo result. This is more than
accurate enough to handle the worst-case cancellation for values close to
an integer multiple of PI/4. It could be further optimized, however it is
already much faster than necessary.
sincosf throughput gains on Cortex-A72:
* |x| < 0x1p-12 : 1.6x
* |x| < M_PI_4 : 1.7x
* |x| < 2 * M_PI: 1.5x
* |x| < 120.0 : 1.8x
* |x| < Inf : 2.3x
* math/Makefile: Add s_sincosf_data.c.
* sysdeps/ia64/fpu/s_sincosf_data.c: New file.
* sysdeps/ieee754/flt-32/s_sincosf.h (abstop12): Add new function.
(sincosf_poly): Likewise.
(reduce_small): Likewise.
(reduce_large): Likewise.
* sysdeps/ieee754/flt-32/s_sincosf.c (sincosf): Rewrite.
* sysdeps/ieee754/flt-32/s_sincosf_data.c: New file with sincosf data.
* sysdeps/m68k/m680x0/fpu/s_sincosf_data.c: New file.
* sysdeps/x86_64/fpu/s_sincosf_data.c: New file.
This patch currently only affects aarch64.
The roundtoint and converttoint internal functions are only called with small
values, so 32 bit result is enough for converttoint and it is a signed int
conversion so the return type is changed to int32_t.
The original idea was to help the compiler keeping the result in uint64_t,
then it's clear that no sign extension is needed and there is no accidental
undefined or implementation defined signed int arithmetics.
But it turns out gcc does a good job with inlining so changing the type has
no overhead and the semantics of the conversion is less surprising this way.
Since we want to allow the asuint64 (x + 0x1.8p52) style conversion, the top
bits were never usable and the existing code ensures that only the bottom
32 bits of the conversion result are used.
On aarch64 the neon intrinsics (which round ties to even) are changed to
round and lround (which round ties away from zero) this does not affect the
results in a significant way, but more portable (relies on round and lround
being inlined which works with -fno-math-errno).
The TOINT_SHIFT and TOINT_RINT macros were removed, only keep separate code
paths for TOINT_INTRINSICS and !TOINT_INTRINSICS.
* sysdeps/aarch64/fpu/math_private.h (roundtoint): Use round.
(converttoint): Use lround.
* sysdeps/ieee754/flt-32/math_config.h (roundtoint): Declare and
document the semantics when TOINT_INTRINSICS is set.
(converttoint): Likewise.
(TOINT_RINT): Remove.
(TOINT_SHIFT): Remove.
* sysdeps/ieee754/flt-32/e_expf.c (__expf): Remove the TOINT_RINT code
path.
Commit 298d0e3129 ("Consolidate Linux
getdents{64} implementation") broke the implementation because it does
not take into account struct offset differences.
The new implementation is close to the old one, before the
consolidation, but has been cleaned up slightly.
* Since __fentry__ is almost the same as _mcount, reuse the code by
#including it twice with different #defines around.
* Remove LA usages - they are needed in 31-bit mode to clear the top
bit, but in 64-bit they appear to do nothing.
* Add CFI rule for the nonstandard return register. This rule applies
to the current function (binutils generates a new CIE - see
gas/dw2gencfi.c:select_cie_for_fde()), so it is not necessary to put
__fentry__ into a new file.
* Fix CFI offset for %r14.
* Add CFI rule for %r0.
* Fix unwound value of %r15 being off by 244 bytes.
* Unwinding in __fentry__@plt does not work, no plan to fix it - it
would require asking linker to generate CFI for return address in
%r0. From functional perspective keeping it broken is fine, since
the callee did not have a chance to do anything yet. From
convenience perspective it would be possible to enhance GDB in the
future to treat __fentry__@plt in a special way.
* Fix whitespace.
* Fix offsets in comments, which were copied from 32-bit code.
* 32-bit version will not be implemented, since it's not compatible
with the corresponding PLT stubs: they assume %r12 points to GOT,
which is not the case for gcc-emitted __fentry__ stub, which runs
before the prolog.
This patch adds the runtime support in glibc for the -mfentry
gcc feature introduced in [1] and [2].
[1] https://gcc.gnu.org/ml/gcc-patches/2018-07/msg00784.html
[2] https://gcc.gnu.org/ml/gcc-patches/2018-07/msg00912.html
ChangeLog:
* sysdeps/s390/s390-64/Versions (__fentry__): Add.
* sysdeps/s390/s390-64/s390x-mcount.S: Move the common
code to s390x-mcount.h and #include it.
* sysdeps/s390/s390-64/s390x-mcount.h: New file.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist
(__fentry__): Add.
__fentry__ symbol is currently not defined for other architectures.
Attempts to introduce it cause abicheck to fail, because it will be
available since 2.29 earliest, and not 2.13, which is the case for
Intel. With the new code, abicheck passes for i686-linux-gnu,
x86_64-linux-gnu and x86_64-linux-gnu32 triples.
ChangeLog:
* stdlib/Versions: Remove __fentry__.
* sysdeps/i386/Versions: Add __fentry__.
* sysdeps/x86_64/Versions: Add __fentry__.
The following combinations need to be tested:
* 32- (g5, esa and zarch) and 64-bit
* linux32 glibc/configure CC='gcc -m31 -march=g5'
* linux32 glibc/configure CC='gcc -m31'
* linux32 glibc/configure CC='gcc -m31 -mzarch'
* With and without VX:
* glibc/configure libc_cv_asm_s390_vx=no
* With and without profiling (using LD_PROFILE)
* With and without pltexit (using LD_AUDIT)
ChangeLog:
* sysdeps/s390/Makefile: Register the new tests.
* sysdeps/s390/tst-dl-runtime-mod.S: New file.
* sysdeps/s390/tst-dl-runtime-profile-audit.c: New file.
* sysdeps/s390/tst-dl-runtime-profile-noaudit.c: New file.
* sysdeps/s390/tst-dl-runtime-resolve-audit.c: New file.
* sysdeps/s390/tst-dl-runtime-resolve-noaudit.c: New file.
* sysdeps/s390/tst-dl-runtime.c: New file.
Following the recent discussion of using Python instead of Perl and
Awk for glibc build / test, this patch replaces gen-libm-test.pl with
a new gen-libm-test.py script. This script should work with all
Python versions supported by glibc (tested by hand with Python 2.7,
tested in the build system with Python 3.5; configure prefers Python 3
if available).
This script is designed to give identical output to gen-libm-test.pl
for ease of verification of the change, except for generated comments
referring to .py instead of .pl. (That is, identical for actual
inputs passed to the script, not necessarily for all possible input;
for example, this version more precisely follows the C standard syntax
for floating-point constants when deciding when to add LIT macro
calls.) In one place a comment notes that the generation of
NON_FINITE flags is replicating a bug in the Perl script to assist in
such comparisons (with the expectation that this bug can then be
separately fixed in the Python script later).
Tested for x86_64, including comparison of generated files (and hand
testing of the case of generating a sorted libm-test-ulps file, which
isn't covered by normal "make check").
I'd expect to follow this up by extending the new script to produce
the ulps tables for the manual as well (replacing
manual/libm-err-tab.pl, so that then we just have one ulps file
parser) - at which point the manual build would depend on both Perl
and Python (eliminating the Perl dependency would require someone to
rewrite summary.pl in Python, and that would only eliminate the
*direct* Perl dependency; current makeinfo is written in Perl so there
would still be an indirect dependency).
I think install.texi is more or less equally out-of-date regarding
Perl and Python uses before and after this patch, so I don't think
this patch depends on my patch
<https://sourceware.org/ml/libc-alpha/2018-08/msg00133.html> to update
install.texi regarding such uses (pending review).
* math/gen-libm-test.py: New file.
* math/gen-libm-test.pl: Remove.
* math/Makefile [$(PERL) != no]: Change condition to [PYTHON].
($(objpfx)libm-test-ulps.h): Use gen-libm-test.py instead of
gen-libm-test.pl.
($(libm-test-c-noauto-obj)): Likewise.
($(libm-test-c-auto-obj)): Likewise.
($(libm-test-c-narrow-obj)): Likewise.
(regen-ulps): Likewise.
* math/README.libm-test: Update references to gen-libm-test.pl.
* math/libm-test-driver.c (struct test_fj_f_data): Update comment
referencing gen-libm-test.pl.
* math/libm-test-nexttoward.inc (nexttoward_test_data): Likewise.
* math/libm-test-support.c: Likewise.
* math/libm-test-support.h: Likewise.
* sysdeps/generic/libm-test-ulps: Likewise.
MIN_PAGE_SIZE is normally set to 4096 but for testing it can be set to
16 so that it exercises the page crossing code for every misaligned
access. The value was set to 15, which is obviously wrong, so fixed
as obvious and tested.
* sysdeps/aarch64/strlen.S [TEST_PAGE_CROSS](MIN_PAGE_SIZE):
Fix value.
When libm tests were split into separate per-function .inc files, a
comment relating to the nexttoward tests ended up at the end of
libm-test-nextdown.inc (because the split was based on starting each
function's tests with the <function>_test_data definition, which
failed to allow for comments before such definitions). This patch
moves that comment to the correct location.
Tested for x86_64.
* math/libm-test-nextdown.inc (do_test): Move comment to ....
* math/libm-test-nexttoward.inc (nexttoward_test_data): ... here.
Drop realloc_bufs in favour of making alloc_bufs transparently
reallocate the buffers if it had allocated before. Also consolidate
computation of buffer lengths so that they don't get repeated on every
reallocation.
* benchtests/bench-string.h (buf1_size, buf2_size): New
variables.
(init_sizes): New function.
(test_init): Use it.
(alloc_buf, exit_error): New functions.
(alloc_bufs): Use ALLOC_BUF.
(realloc_bufs): Remove.
* benchtests/bench-memcmp.c (do_test): Adjust.
* benchtests/bench-memset-large.c (do_test): Likewise.
* benchtests/bench-memset-walk.c (do_test): Likewise.
* benchtests/bench-memset.c (do_test): Likewise.
* benchtests/bench-strncmp.c (do_test): Likewise.
Since RISC-V stores the thread pointer in a general register libthread_db
can just ask the debugger for the register contents instead of trying to
call ps_get_thread_area. This enables thread debugging in gdb.
* sysdeps/riscv/nptl/tls.h (DB_THREAD_SELF): Use REGISTER instead
of CONST_THREAD_AREA.
Move STATE_SAVE_OFFSET and STATE_SAVE_MASK to sysdep.h to make
sysdeps/x86/cpu-features.h a C header file.
* sysdeps/x86/cpu-features.h (STATE_SAVE_OFFSET): Removed.
(STATE_SAVE_MASK): Likewise.
Don't check __ASSEMBLER__ to include <cpu-features-offsets.h>.
* sysdeps/x86/sysdep.h (STATE_SAVE_OFFSET): New.
(STATE_SAVE_MASK): Likewise.
* sysdeps/x86_64/dl-trampoline.S: Include <cpu-features-offsets.h>
instead of <cpu-features.h>.