This enables searching shared libraries in atomics/ when the hardware
supports LSE atomics of armv8.1 so one can provide optimized variants
of libraries in a portable way.
LSE atomics does not affect library abi, the new instructions can
interoperate with old ones.
I considered the earlier comments on the patch
https://sourceware.org/ml/libc-alpha/2018-04/msg00400.htmlhttps://sourceware.org/ml/libc-alpha/2018-04/msg00625.html
It turns out that the way glibc dynamic linker decides on the search
path is not very flexible: it wants to use hwcap bits and associated
strings. So some targets reuse hwcap bits for glibc internal purposes
to affect the search logic. But hwcap is an interface with the kernel,
glibc should not allocate bits in it for its internal logic as that
limits future hwcap extensions and confusing to users who expect to see
hwcap bits in ifunc resolvers. Instead of rewriting the dynamic linker
path logic (which affects all targets) this patch just uses the existing
mechanism, however this means that the path name has to be the hwcap
name "atomics" and cannot be changed to something more meaningful to
users.
It is hard to tell how much performance benefit this can give, in
principle armv8.1 atomics can be better optimized in the hardware, so it
can make a difference for synchronization heavy code. On some systems
such multilib setup may be the only viable way to get optimized
libraries used.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT): Add
HWCAP_ATOMICS.
This partially reverts
commit f82e9672ad
Author: Siddhesh Poyarekar <siddhesh@sourceware.org>
aarch64: Allow overriding HWCAP_CPUID feature check using HWCAP_MASK
The idea was to make it possible to disable cpuid based ifunc resolution
in glibc by changing the hwcap mask which the user could already control.
However the hwcap mask has an orthogonal role: it specifies additional
library search paths for the dynamic linker. So "cpuid" got added to
the search paths when it was set in the default mask (HWCAP_IMPORTANT),
which is not useful behaviour, the hwcap masking should not be reused
in the cpu features code.
Meanwhile there is a tunable to set the cpu explicitly so it is possible
to disable the cpuid based dispatch without using a hwcap mask:
GLIBC_TUNABLES=glibc.tune.cpu=generic
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (init_cpu_features):
Use dl_hwcap without masking.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT):
Remove HWCAP_CPUID.
From Zen onwards this will be enabled. It was disabled for the
Excavator case and will remain disabled.
Reviewd-by: Carlos O'Donell <carlos@redhat.com>
Define a new ABSOLUTE ABI for static linker's use with EI_ABIVERSION
where correct absolute (SHN_ABS) symbol run-time load semantics is
required. This way it can be ensured at static link time that a program
or DSO will not suffer from previous semantics where absolute symbols
were relocated by the base address, or symbols whose `st_value' is zero
silently ignored leading to a confusing "undefined symbol" error message
at load time, and instead "ELF file ABI version invalid" is printed with
old dynamic loaders, making it clear that there is an ABI version
incompatibility.
[BZ #19818]
[BZ #23307]
* libc-abis (ABSOLUTE): New ABI.
* sysdeps/unix/sysv/linux/mips/libc-abis (ABSOLUTE): New ABI.
* NEWS: Mention the new ABI.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The implementation falls back to renameat if renameat2 is not available
in the kernel (or in the kernel headers) and the flags argument is zero.
Without kernel support, a non-zero argument returns EINVAL, not ENOSYS.
This mirrors what the kernel does for invalid renameat2 flags.
Different than Linux, hurd does not need the OFD locks fix from
06ab719d30 (since OFD locks are current Linux specific). This in
turn allows hurd to not provide a fcntl compat symbol.
Checked on a i686-gnu with check-abi.
* sysdeps/mach/hurd/i386/libc.abilist [GLIBC_2.28] (fcntl): Remove
symbol.
Since the addition of the _Float128 API, strfromf128 and printf_size use
__printf_fp to print _Float128 values. This is achieved by setting the
'is_binary128' member of the 'printf_info' structure to one. Now that
the format of long double on powerpc64le is getting a third option, this
mechanism is reused for long double values that have binary128 format
(i.e.: when -mabi=ieeelongdouble).
This patch adds __printf_sizeieee128 as an exported symbol, but doesn't
provide redirections from printf_size, yet. All redirections will be
installed in a future commit, once all other functions that print or
read long double values with binary128 format are ready. In
__printf_fp, when 'is_binary128' is one, the floating-point argument is
treated as if it was of _Float128 type, regardless of the value of
'is_long_double', thus __printf_sizeieee128 sets 'is_binary128' to the
same value of 'is_long_double'. Otherwise, double values would not be
printed correctly.
Tested for powerpc64le.
Ideally sign should be bool, but sometimes (e.g. in powf) it's more
efficient to pass a non-zero value than 1 to indicate that the sign
should be set. The fixed size int is less ambigous than unsigned
long.
* sysdeps/ieee754/flt-32/e_powf.c (__powf): Use uint32_t.
(exp2f_inline): Likewise.
* sysdeps/ieee754/flt-32/math_config.h (__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
* sysdeps/ieee754/flt-32/math_errf.c (xflowf): Likewise.
(__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
The __libc_freeres framework does not extend to non-libc.so objects.
This causes problems in general for valgrind and mtrace detecting
unfreed objects in both libdl.so and libpthread.so. This change is
a pre-requisite to properly moving the malloc hooks out of malloc
since such a move now requires precise accounting of all allocated
data before destructors are run.
This commit adds a proper hook in libc.so.6 for both libdl.so and
for libpthread.so, this ensures that shm-directory.c which uses
freeit () to free memory is called properly. We also remove the
nptl_freeres hook and fall back to using weak-ref-and-check idiom
for a loaded libpthread.so, thus making this process similar for
all DSOs.
Lastly we follow best practice and use explicit free calls for
both libdl.so and libpthread.so instead of the generic hook process
which has undefined order.
Tested on x86_64 with no regressions.
Signed-off-by: DJ Delorie <dj@redhat.com>
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Vector registers perform better than scalar register pairs for copying
data so prefer them instead. This results in a time reduction of over
50% (i.e. 2x speed improvemnet) for some smaller sizes for memcpy-walk.
Larger sizes show improvements of around 1% to 2%. memcpy-random shows
a very small improvement, in the range of 1-2%.
* sysdeps/aarch64/multiarch/memcpy_falkor.S (__memcpy_falkor):
Use vector registers.
Vector registers perform much better for moves compared to pairs of
registers on falkor, so use them instead. This results in a time
reduction of up to 50% (i.e. 2x improvement) for a lot of the smaller
sizes, i.e. up to 1K in memmove-walk. Improvements for larger sizes are
smaller, at about 1%-2%.
* sysdeps/aarch64/multiarch/memmove_falkor.S
(__memcpy_falkor): Use vector registers.
A lookup operation in map_newlink could turn into an insert because of
holes in the interface part of the map. This leads to incorrectly set
the name of the interface to NULL when the interface is not present
for the address being processed (most likely because the interface was
added between the RTM_GETLINK and RTM_GETADDR calls to the kernel).
When such changes are detected by the kernel, it'll mark the dump as
"inconsistent" by setting NLM_F_DUMP_INTR flag on the next netlink
message.
This patch checks this condition and retries the whole operation.
Hopes are that next time the interface corresponding to the address
entry is present in the list and correct name is returned.
This patch adds __*ieee128 symbols for strfrom, strtold, strtold_l, wcstold
and wcstold_l functions. Redirection from *l to *ieee128 will be handled
in separate patch once we start building these new files.
2018-06-28 Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
* sysdeps/ieee754/ldbl-128ibm-compat/Versions: Add __strfromieee128,
__strtoieee128, __strtoieee128_l,__wcstoieee128 and __wcstoieee128_l.
* sysdeps/ieee754/ldbl-128ibm-compat/strfromf128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/strtof128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/strtof128_l.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128_l.c: New file.
This patch fixes the OFD ("file private") locks for architectures that
support non-LFS flock definition (__USE_FILE_OFFSET64 not defined). The
issue in this case is both F_OFD_{GETLK,SETLK,SETLKW} and
F_{SET,GET}L{W}K64 expects a flock64 argument and when using old
F_OFD_* flags with a non LFS flock argument the kernel might interpret
the underlying data wrongly. Kernel idea originally was to avoid using
such flags in non-LFS syscall, but since GLIBC uses fcntl with LFS
semantic as default it is possible to provide the functionality and
avoid the bogus struct kernel passing by adjusting the struct manually
for the required flags.
The idea follows other LFS interfaces that provide two symbols:
1. A new LFS fcntl64 is added on default ABI with the usual macros to
select it for FILE_OFFSET_BITS=64.
2. The Linux non-LFS fcntl use a stack allocated struct flock64 for
F_OFD_{GETLK,SETLK,SETLKW} copy the results on the user provided
struct.
3. Keep a compat symbol with old broken semantic for architectures
that do not define __OFF_T_MATCHES_OFF64_T.
So for architectures which defines __USE_FILE_OFFSET64, fcntl64 will
aliased to fcntl and no adjustment would be required. So to actually
use F_OFD_* with LFS support the source must be built with LFS support
(_FILE_OFFSET_BITS=64).
Also F_OFD_SETLKW command is handled a cancellation point, as for
F_SETLKW{64}.
Checked on x86_64-linux-gnu and i686-linux-gnu.
[BZ #20251]
* NEWS: Mention fcntl64 addition.
* csu/check_fds.c: Replace __fcntl_nocancel by __fcntl64_nocancel.
* login/utmp_file.c: Likewise.
* sysdeps/posix/fdopendir.c: Likewise.
* sysdeps/posix/opendir.c: Likewise.
* sysdeps/unix/pt-fcntl.c: Likewise.
* include/fcntl.h (__libc_fcntl64, __fcntl64,
__fcntl64_nocancel_adjusted): New prototype.
(__fcntl_nocancel_adjusted): Remove prototype.
* io/Makefile (routines): Add fcntl64.
(CFLAGS-fcntl64.c): New rule.
* io/Versions [GLIBC_2.28] (fcntl64): New symbol.
[GLIBC_PRIVATE] (__libc_fcntl): Rename to __libc_fcntl64.
* io/fcntl.h (fcntl64): Add prototype and redirect if
__USE_FILE_OFFSET64 is defined.
* io/fcntl64.c: New file.
* manual/llio.text: Add a note for which commands fcntl acts a
cancellation point.
* nptl/Makefile (CFLAGS-fcntl64.c): New rule.
* sysdeps/mach/hurd/fcntl.c: Alias fcntl to fcntl64 symbols.
* sysdeps/mach/hurd/i386/libc.abilist [GLIBC_2.28] (fcntl, fcntl64):
New symbols.
* sysdeps/unix/sysv/linux/fcntl.c (__libc_fcntl): Fix F_GETLK64,
F_OFD_GETLK, F_SETLK64, F_SETLKW64, F_OFD_SETLK, and F_OFD_SETLKW for
non-LFS case.
* sysdeps/unix/sysv/linux/fcntl64.c: New file.
* sysdeps/unix/sysv/linux/fcntl_nocancel.c (__fcntl_nocancel): Rename
to __fcntl64_nocancel.
(__fcntl_nocancel_adjusted): Rename to __fcntl64_nocancel_adjusted.
* sysdeps/unix/sysv/linux/not-cancel.h (__fcntl_nocancel): Rename
to __fcntl64_nocancel.
* sysdeps/unix/sysv/linux/tst-ofdlocks.c: New file.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Likewise.
* sysdeps/unix/sysv/linux/Makefile (tests): Add tst-ofdlocks.
(tests-internal): Add tst-ofdlocks-compat.
* sysdeps/unix/sysv/linux/aarch64/libc.abilist [GLIBC_2.28]
(fcntl64): New symbol.
* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist: Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libc.abilist [GLIBC_2.28] (fcntl,
fcntl64): Likewise.
* sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libc.abilis: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
Commit 5e79e0292b broke m68k after
s_significand.c became available in the build directory. All m68k
implementations of log1p and significand were including s_significand.c
and stopped working after the inclusion of the the auto-generated file.
This patch reorganizes the implementation of log1p and significand for
m680x0 in order to avoid hitting this problem.
* sysdeps/m68k/m680x0/fpu/s_log1p.c: Set as the generic file for
all log1p and significand functions on m680x0.
* sysdeps/m68k/m680x0/fpu/s_log1pf.c: Include s_log1p.c instead
of s_significand.c..
* sysdeps/m68k/m680x0/fpu/s_log1pl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significandf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significandl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_significand.c: Move all the code to
s_log1p.c and include it..
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Add a new libm-alias-float128.h in order to provide the __*ieee128
aliases for the existing *f128 that do not have a globally exported
symbol.
* sysdeps/ieee754/ldbl-128ibm-compat/Versions: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/libm-alias-float128.h: New file.
Move declare_mgen_finite_alias, declare_mgen_finite_alias_s and
declare_mgen_finite_alias_x to a shared place in order to reuse them in
other files that also declare _finite aliases.
* math/e_exp2_template.c (declare_mgen_finite_alias,
declare_mgen_finite_alias_s, declare_mgen_finite_alias_x): Move to...
* sysdeps/generic/math-type-macros.h (declare_mgen_finite_alias,
declare_mgen_finite_alias_s, declare_mgen_finite_alias_x): ... here.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch updates the hppa definition of MAP_TYPE to reflect a
corresponding change in the Linux kernel in 4.17 (so the value now has
four bits set, as it does on other architectures, although they are
different from other architectures because of hppa differences in
other MAP_* bits).
Tested with build-many-glibcs.py for hppa.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_MISC]
(MAP_TYPE): Change value to 0x2b.
My recent nan-sign tests fail to build for powerpc64le with GCC 8
because of the special compile / link options needed there for any
test using _Float128. This patch arranges for these tests to be
handled on powerpc64le similarly to other such tests.
Tested with build-many-glibcs.py for powerpc64le.
[BZ #23303]
* sysdeps/powerpc/powerpc64/le/Makefile
(CFLAGS-tst-strtod-nan-sign.c): Add -mfloat128.
(CFLAGS-tst-wcstod-nan-sign.c): Likewise.
(gnulib-tests): Also add $(f128-loader-link) for
tst-strtod-nan-sign abd tst-wcstod-nan-sign.
* sysdeps/mach/include/mach-shortcuts-hidden.h: New file.
* mach/shortcut.awk: Make syscall stubs include
<mach-shortcuts-hidden.h> and add hidden definition.
* sysdeps/mach/include/mach.h: Include <mach-shortcuts-hidden.h>.
* sysdeps/mach/hurd/lseek.c: Include <errno.h>.
* sysdeps/mach/hurd/lseek.c (__libc_lseek): Check that the value returned
by __lseek64 can fit off_t, return EOVERFLOW otherwise.
126b3ec370 ("hurd: Avoid PLTs for __mach_thread_self and
__mach_reply_port") made mach traps hidden, but htl actually uses two of
them. Re-expose them for now. Exposing them properly will be more involved
since their definition is generated.
* sysdeps/mach/include/mach/mach_traps.h (__mach_thread_self,
__mach_task_self): Remove attribute_hidden.
This patch uses an ifunc to implement gettimeofday in the shared libc.
This is faster compared to the vsyscall mechanism that has to check a
global pointer, demangle it and call it indirectly when the VDSO is
present. Resolving the gettimeofday symbol directly to the VDSO code
is safe because there are no failures that the libc has to handle by
setting errno like in a generic vsyscall (the only failure when the
VDSO code falls back to a syscall is EFAULT, but passing an invalid
pointer is undefined behaviour so returning -EFAULT is fine).
If the kernel supports the VDSO interface we use it for extern calls,
otherwise the old vsyscall method is used which falls back to a syscall.
The static version of gettimeofday continues to use a syscall, libc.so
internal calls use the old vsyscall method.
* sysdeps/unix/sysv/linux/aarch64/gettimeofday.c: New file.
after 329ea513b4 ("Avoid cancellable I/O primitives in ld.so.")
* sysdeps/mach/hurd/localplt.data (ld.so): Add __open64, rename
__libc_read and __libc_write to __read and __write.
They need more work to implement, see bug 23286.
* sysdeps/mach/hurd/i386/Makefile (test-xfail-check-abi-libhurduser,
test-xfail-check-abi-libmachuser): Add.
Neither the <dlfcn.h> entry points, nor lazy symbol resolution, nor
initial shared library load-up, are cancellation points, so ld.so
should exclusively use I/O primitives that are not cancellable. We
currently achieve this by having the cancellation hooks compile as
no-ops when IS_IN(rtld); this patch changes to using exclusively
_nocancel primitives in the source code instead, which makes the
intent clearer and significantly reduces the amount of code compiled
under IS_IN(rtld) as well as IS_IN(libc) -- in particular,
elf/Makefile no longer thinks we require a copy of unwind.c in
rtld-libc.a. (The older mechanism is preserved as a backstop.)
The bulk of the change is splitting up the files that define the
_nocancel I/O functions, so they don't also define the variants that
*are* cancellation points; after which, the existing logic for picking
out the bits of libc that need to be recompiled as part of ld.so Just
Works. I did this for all of the _nocancel functions, not just the
ones used by ld.so, for consistency.
fcntl was a little tricky because it's only a cancellation point for
certain opcodes (F_SETLKW(64), which can block), and the existing
__fcntl_nocancel wasn't applying the FCNTL_ADJUST_CMD hook, which
strikes me as asking for trouble, especially as the only nontrivial
definition of FCNTL_ADJUST_CMD (for powerpc64) changes F_*LK* opcodes.
To fix this, fcntl_common moves to fcntl_nocancel.c along with
__fcntl_nocancel, and changes its name to the extern (but hidden)
symbol __fcntl_nocancel_adjusted, so that regular fcntl can continue
calling it. __fcntl_nocancel now applies FCNTL_ADJUST_CMD; so that
both both fcntl.c and fcntl_nocancel.c can see it, the only nontrivial
definition moves from sysdeps/u/s/l/powerpc/powerpc64/fcntl.c to
.../powerpc64/sysdep.h and becomes entirely a macro, instead of a macro
that calls an inline function.
The nptl version of libpthread also changes a little, because its
"compat-routines" formerly included files that defined all the
_nocancel functions it uses; instead of continuing to duplicate them,
I exported the relevant ones from libc.so as GLIBC_PRIVATE. Since the
Linux fcntl.c calls a function defined by fcntl_nocancel.c, it can no
longer be used from libpthread.so; instead, introduce a custom
forwarder, pt-fcntl.c, and export __libc_fcntl from libc.so as
GLIBC_PRIVATE. The nios2-linux ABI doesn't include a copy of vfork()
in libpthread, and it was handling that by manipulating
libpthread-routines in .../linux/nios2/Makefile; it is cleaner to do
what other such ports do, and have a pt-vfork.S that defines no symbols.
Right now, it appears that Hurd does not implement _nocancel I/O, so
sysdeps/generic/not-cancel.h will forward everything back to the
regular functions. This changed the names of some of the functions
that sysdeps/mach/hurd/dl-sysdep.c needs to interpose.
* elf/dl-load.c, elf/dl-misc.c, elf/dl-profile.c, elf/rtld.c
* sysdeps/unix/sysv/linux/dl-sysdep.c
Include not-cancel.h. Use __close_nocancel instead of __close,
__open64_nocancel instead of __open, __read_nocancel instead of
__libc_read, and __write_nocancel instead of __libc_write.
* csu/check_fds.c (check_one_fd)
* sysdeps/posix/fdopendir.c (__fdopendir)
* sysdeps/posix/opendir.c (__alloc_dir): Use __fcntl_nocancel
instead of __fcntl and/or __libc_fcntl.
* sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np)
* sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np)
* sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system):
Use __open64_nocancel instead of __open_nocancel.
* sysdeps/unix/sysv/linux/not-cancel.h: Move all of the
hidden_proto declarations to the end and issue them if either
IS_IN(libc) or IS_IN(rtld).
* sysdeps/unix/sysv/linux/Makefile [subdir=io] (sysdep_routines):
Add close_nocancel, fcntl_nocancel, nanosleep_nocancel,
open_nocancel, open64_nocancel, openat_nocancel, pause_nocancel,
read_nocancel, waitpid_nocancel, write_nocancel.
* io/Versions [GLIBC_PRIVATE]: Add __libc_fcntl,
__fcntl_nocancel, __open64_nocancel, __write_nocancel.
* posix/Versions: Add __nanosleep_nocancel, __pause_nocancel.
* nptl/pt-fcntl.c: New file.
* nptl/Makefile (pthread-compat-wrappers): Remove fcntl.
(libpthread-routines): Add pt-fcntl.
* include/fcntl.h (__fcntl_nocancel_adjusted): New function.
(__libc_fcntl): Remove attribute_hidden.
* sysdeps/unix/sysv/linux/fcntl.c (__libc_fcntl): Call
__fcntl_nocancel_adjusted, not fcntl_common.
(__fcntl_nocancel): Move to new file fcntl_nocancel.c.
(fcntl_common): Rename to __fcntl_nocancel_adjusted; also move
to fcntl_nocancel.c.
* sysdeps/unix/sysv/linux/fcntl_nocancel.c: New file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/fcntl.c: Remove file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h:
Define FCNTL_ADJUST_CMD here, as a self-contained macro.
* sysdeps/unix/sysv/linux/close.c: Move __close_nocancel to...
* sysdeps/unix/sysv/linux/close_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/nanosleep.c: Move __nanosleep_nocancel to...
* sysdeps/unix/sysv/linux/nanosleep_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/open.c: Move __open_nocancel to...
* sysdeps/unix/sysv/linux/open_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/open64.c: Move __open64_nocancel to...
* sysdeps/unix/sysv/linux/open64_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/openat.c: Move __openat_nocancel to...
* sysdeps/unix/sysv/linux/openat_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/openat64.c: Move __openat64_nocancel to...
* sysdeps/unix/sysv/linux/openat64_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/pause.c: Move __pause_nocancel to...
* sysdeps/unix/sysv/linux/pause_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/read.c: Move __read_nocancel to...
* sysdeps/unix/sysv/linux/read_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/waitpid.c: Move __waitpid_nocancel to...
* sysdeps/unix/sysv/linux/waitpid_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/write.c: Move __write_nocancel to...
* sysdeps/unix/sysv/linux/write_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/nios2/Makefile: Don't override
libpthread-routines.
* sysdeps/unix/sysv/linux/nios2/pt-vfork.S: New file which
defines nothing.
* sysdeps/mach/hurd/dl-sysdep.c: Define __read instead of
__libc_read, and __write instead of __libc_write. Define
__open64 in addition to __open.
sysdeps/i386/nptl/tls.h has
typedef struct
{
void *tcb; /* Pointer to the TCB. Not necessarily the
thread descriptor used by libpthread. */
dtv_t *dtv;
void *self; /* Pointer to the thread descriptor. */
int multiple_threads;
uintptr_t sysinfo;
uintptr_t stack_guard;
uintptr_t pointer_guard;
int gscope_flag;
int __glibc_reserved1;
/* Reservation of some values for the TM ABI. */
void *__private_tm[4];
/* GCC split stack support. */
void *__private_ss;
} tcbhead_t;
The offset of __private_ss is 0x34. But GCC defines
/* We steal the last transactional memory word. */
#define TARGET_THREAD_SPLIT_STACK_OFFSET 0x30
and libgcc/config/i386/morestack.S has
cmpl %gs:0x30,%eax # See if we have enough space.
movl %eax,%gs:0x30 # Save the new stack boundary.
movl %eax,%gs:0x30 # Save the new stack boundary.
movl %ecx,%gs:0x30 # Save new stack boundary.
movl %eax,%gs:0x30
movl %gs:0x30,%eax
movl %eax,%gs:0x30
Since update TARGET_THREAD_SPLIT_STACK_OFFSET changes split stack ABI,
this patch updates tcbhead_t to match GCC.
[BZ #23250]
[BZ #10686]
* sysdeps/i386/nptl/tls.h (tcbhead_t): Change __private_tm[4]
to _private_tm[3] and add __glibc_reserved2.
Add _Static_assert of offset of __private_ss == 0x30.
* sysdeps/x86_64/nptl/tls.h: Add _Static_assert of offset of
__private_ss == 0x40 for ILP32 and == 0x70 for LP64.
Due to the way the conditions were written, the rtld build of strncmp
ended up with no definition of the strncmp symbol at all: The
implementations were renamed for use within an IFUNC resolver, but the
IFUNC resolver itself was missing (because rtld does not use IFUNCs).
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
As reported in bug 23272, the ldbl-96 implementation of fma (fma for
double, in terms of ldbl-96 as the internal arithmetic type, as used
on 32-bit x86) is missing some of the special-case handling for
non-finite arguments, resulting in incorrect NaN results when the
first two arguments are infinities, the third is finite and so the
infinities go through the logic for finite arguments. This patch
fixes it by handling all cases of non-finite arguments up front, with
additional fma tests for the problem cases being added to the
testsuite.
Tested for x86_64 and x86.
[BZ #23272]
* sysdeps/ieee754/ldbl-96/s_fma.c (__fma): Start by handling all
cases of non-finite arguments.
* math/libm-test-fma.inc (fma_test_data): Add more tests.
syscall restarts and signal returns. Thus, we need to xfail the
check-execstack test.
[BZ #23174]
* sysdeps/unix/sysv/linux/hppa/Makefile: xfail check-execstack.
Current posix_spawnp implementation wrongly tries to execute invalid
binaries (for instance script without shebang) as a shell script in
non compat mode. It was a regression introduced by
9ff72da471 when __spawni started to use
__execvpe instead of __execve (glibc __execvpe try to execute ENOEXEC
as shell script regardless).
This patch fixes it by using an internal symbol (__execvpex) with the
faulty semantic (since compat mode is handled by spawni.c itself).
It was reported by Daniel Drake on libc-help [1].
Checked on x86_64-linux-gnu and i686-linux-gnu.
[BZ #23264]
* include/unistd.h (__execvpex): New prototype.
* posix/Makefile (tests): Add tst-spawn4.
(tests-internal): Add tst-spawn4-compat.
* posix/execvpe.c (__execvpe_common, __execvpex): New functions.
* posix/tst-spawn4-compat.c: New file.
* posix/tst-spawn4.c: Likewise.
* sysdeps/unix/sysv/linux/spawni.c (__spawni): Do not interpret invalid
binaries as shell scripts.
* sysdeps/posix/spawni.c (__spawni): Likewise.
[1] https://sourceware.org/ml/libc-help/2018-06/msg00012.html
_init and _fini are special functions provided by glibc for linker to
define DT_INIT and DT_FINI in executable and shared library. They
should never be put in dynamic symbol table. This patch marks them as
hidden to remove them from dynamic symbol table.
Tested with build-many-glibcs.py.
[BZ #23145]
* elf/Makefile (tests-special): Add $(objpfx)check-initfini.out.
($(all-built-dso:=.dynsym): New target.
(common-generated): Add $(all-built-dso:$(common-objpfx)%=%.dynsym).
($(objpfx)check-initfini.out): New target.
(generated): Add check-initfini.out.
* scripts/check-initfini.awk: New file.
* sysdeps/aarch64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/alpha/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/arm/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/hppa/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/i386/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/ia64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/m68k/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/microblaze/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/nios2/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sh/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sparc/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
When building with -mlong-double-128 or -mabi=ibmlongdouble, TFtype
represents the IBM 128-bit extended floating point type, while KFtype
represents the IEEE 128-bit floating point type.
The soft float implementation of e_sqrtf128 had to redefine TFtype and
TF in order to workaround this issue. However, this behavior changes
when -mabi=ieeelongdouble is used and the macros are not necessary.
* sysdeps/powerpc/powerpc64/le/fpu/e_sqrtf128.c
[__HAVE_FLOAT128_UNLIKE_LDBL] (TFtype, TF): Restrict TFtype
and TF redirection to KFtype and KF only when the default
long double type is not the IEEE 128-bit floating point type.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Linux 4.17 adds four new AArch64 hwcap values. This patch adds them
to glibc's AArch64 bits/hwcap.h, with corresponding dl-procinfo.c
updates.
Tested with build-many-glibcs.py for aarch64.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_DIT): New
macro.
(HWCAP_USCAT): Likewise.
(HWCAP_ILRCPC): Likewise.
(HWCAP_FLAGM): Likewise.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Increase to 28.
(_dl_aarch64_cap_flags): Add new flag names.
As far as I can tell, Linux 4.17 does not add any new syscalls; this
patch updates the version number in syscall-names.list to reflect that
it's still current for 4.17.
Tested for x86_64-linux-gnu with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.17.
Optimize x86-64 strcmp/wcscmp and strncmp/wcsncmp with AVX2. It uses vector
comparison as much as possible. Peak performance observed on a SkyLake
machine: 9x, 3x, 2.5x and 5.5x for strcmp, strncmp, wcscmp and wcsncmp,
respectively. The larger the comparison length, the more benefit using
avx2 functions, except on the strcmp, where peak is observed at length
== 32 bytes. Select AVX2 strcmp/wcscmp on AVX2 machines where vzeroupper
is preferred and AVX unaligned load is fast.
NB: It uses TZCNT instead of BSF since TZCNT produces the same result
as BSF for non-zero input. TZCNT is faster than BSF and is executed
as BSF if machine doesn't support TZCNT.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
strcmp-avx2, strncmp-avx2, wcscmp-avx2, wcscmp-sse2, wcsncmp-avx2 and
wcsncmp-sse2.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add tests for __strcmp_avx2,
__strncmp_avx2, __wcscmp_avx2, __wcsncmp_avx2, __wcscmp_sse2
and __wcsncmp_sse2.
* sysdeps/x86_64/multiarch/strcmp.c (OPTIMIZE (avx2)):
(IFUNC_SELECTOR): Return OPTIMIZE (avx2) on AVX 2 machines if
AVX unaligned load is fast and vzeroupper is preferred.
* sysdeps/x86_64/multiarch/strncmp.c: Likewise.
* sysdeps/x86_64/multiarch/strcmp-avx2.S: New file.
* sysdeps/x86_64/multiarch/strncmp-avx2.S: Likewise.
* sysdeps/x86_64/multiarch/wcscmp-avx2.S: Likewise.
* sysdeps/x86_64/multiarch/wcscmp-sse2.S: Likewise.
* sysdeps/x86_64/multiarch/wcscmp.c: Likewise.
* sysdeps/x86_64/multiarch/wcsncmp-avx2.S: Likewise.
* sysdeps/x86_64/multiarch/wcsncmp-sse2.c: Likewise.
* sysdeps/x86_64/multiarch/wcsncmp.c: Likewise.
* sysdeps/x86_64/wcscmp.S (__wcscmp): Add alias only if __wcscmp
is undefined.
The results are from configuring with --disable-multi-arch, building
with “-march=x86-64 -mtune=generic -mfpmath=sse” and running the
testsuite on a Haswell-era CPU.
powerpc-nofpu libc exports __sqrtsf2 and __sqrtdf2 symbols. The
export of these soft-fp symbols is a mistake; they aren't part of the
libgcc interface and GCC will never generate code that calls them.
This patch makes them into compat symbols (no code built for static
libc), moving their sources from the generic soft-fp sources to
sysdeps/powerpc/nofpu (the underlying soft-fp FP_SQRT functionality
remains of use to implement actual sqrt public interfaces, such as
sqrtl / sqrtf128 for which it is used on various platforms, but
__sqrt[sdt]f2 are not such interfaces).
Tested with build-many-glibcs.py for relevant platforms.
[BZ #18473]
* soft-fp/sqrttf2.c: Remove file.
* soft-fp/sqrtdf2.c: Move to ....
* sysdeps/powerpc/nofpu/sqrtdf2.c: ... here. Include
<shlib-compat.h>.
(__sqrtdf2): Make conditional on
[SHLIB_COMPAT (libc, GLIBC_2_3_2, GLIBC_2_28)]. Define as compat
symbol.
* soft-fp/sqrtsf2.c: Move to ....
* sysdeps/powerpc/nofpu/sqrtsf2.c: ... here. Include
<shlib-compat.h>.
(__sqrtsf2): Make conditional on
[SHLIB_COMPAT (libc, GLIBC_2_3_2, GLIBC_2_28)]. Define as compat
symbol.
* soft-fp/Makefile (gcc-single-routines): Remove sqrtsf2.
(gcc-double-routines): Remove sqrtdf2.
(gcc-quad-routines): Remove sqrttf2.
* sysdeps/nios2/Makefile [$(subdir) = soft-fp] (sysdep_routines):
Do not filter out sqrtsf2 and sqrtdf2.
* sysdeps/powerpc/nofpu/Makefile [$(subdir) = soft-fp]
(sysdep_routines): Add sqrtsf2 and sqrtdf2.
This patch creates ifunc for sqrtf128() to make use of new xssqrtqp
instruction for POWER9 when --enable-multi-arch and --with-cpu=power8
options are used on power9 system. This is achieved by explicitly
adding -mcpu=power9 flag for sqrtf128-power9.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/sparc/sparc64/soft-fp directory accordingly, merging its
contents into sysdeps/sparc/sparc64. This completes removing the
unnecessary <arch>/soft-fp sysdeps directories.
sysdeps/sparc/sparc64/soft-fp/e_ilogbl.c is removed rather than moved.
It was not in fact used previously - the ldbl-128 version of
e_ilogbl.c was used instead - and moving it into sysdeps/sparc/sparc64
results in it being used, but causing a build failure because of
FP_DECL_EX declaring an unused variable (as I noted in
<https://sourceware.org/ml/libc-alpha/2013-10/msg00457.html> that file
doesn't appear to use FP_DECL_EX). Given that the file was previously
unused and so presumably not tested recently, removing it is the safe
way to avoid this patch changing what actually gets built into glibc
(if this file should turn out more efficient than the ldbl-128
e_ilogbl.c, it can always be added back in future with the build
failure fixed).
Tested with build-many-glibcs.py that installed stripped shared
libraries for sparc configurations are unchanged by this patch.
* sysdeps/sparc/sparc64/Implies: Remove sparc/sparc64/soft-fp.
* sysdeps/sparc/sparc64/Makefile [$(subdir) = soft-fp]
(sparc64-quad-routines): New variable. Moved from ....
[$(subdir) = soft-fp] (sysdep_routines): Add
$(sparc64-quad-routines). Moved from ....
[$(subdir) = math] (CPPFLAGS): Add -I../soft-fp/. Moved from ....
* sysdeps/sparc/sparc64/soft-fp/Makefile: ... here. Remove file.
* sysdeps/sparc/sparc64/Versions (libc): Add GLIBC_2.2 symbols
moved from ....
* sysdeps/sparc/sparc64/soft-fp/Versions: ... here. Remove file.
* sysdeps/sparc/sparc64/soft-fp/e_ilogbl.c: Remove file.
* sysdeps/sparc/sparc64/soft-fp/qp_add.c: Move to ....
* sysdeps/sparc/sparc64/qp_add.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_cmp.c: Move to ....
* sysdeps/sparc/sparc64/qp_cmp.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_cmpe.c: Move to ....
* sysdeps/sparc/sparc64/qp_cmpe.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_div.c: Move to ....
* sysdeps/sparc/sparc64/qp_div.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_dtoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_dtoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_feq.c: Move to ....
* sysdeps/sparc/sparc64/qp_feq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fge.c: Move to ....
* sysdeps/sparc/sparc64/qp_fge.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fgt.c: Move to ....
* sysdeps/sparc/sparc64/qp_fgt.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fle.c: Move to ....
* sysdeps/sparc/sparc64/qp_fle.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_flt.c: Move to ....
* sysdeps/sparc/sparc64/qp_flt.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_fne.c: Move to ....
* sysdeps/sparc/sparc64/qp_fne.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_itoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_itoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_mul.c: Move to ....
* sysdeps/sparc/sparc64/qp_mul.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_neg.S: Move to ....
* sysdeps/sparc/sparc64/qp_neg.S: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtod.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtod.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtoi.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtoi.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtos.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtos.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtoui.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtoui.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtoux.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtoux.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_qtox.c: Move to ....
* sysdeps/sparc/sparc64/qp_qtox.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_sqrt.c: Move to ....
* sysdeps/sparc/sparc64/qp_sqrt.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_stoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_stoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_sub.c: Move to ....
* sysdeps/sparc/sparc64/qp_sub.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_uitoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_uitoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_util.c: Move to ....
* sysdeps/sparc/sparc64/qp_util.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_uxtoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_uxtoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/qp_xtoq.c: Move to ....
* sysdeps/sparc/sparc64/qp_xtoq.c: ... here.
* sysdeps/sparc/sparc64/soft-fp/sfp-machine.h: Move to ....
* sysdeps/sparc/sparc64/sfp-machine.h: ... here.
Currently, powerpc, powerpc64, and powerpc64le imply the same set of
subdirectories from sysdeps/ieee754: flt-32, dbl-64, ldbl-128ibm, and
ldbl-opt. In preparation for the transition of the long double format -
from IBM Extended Precision to IEEE 754 128-bits floating-point - on
powerpc64le, this patch splits the shared Implies file into three
separate files (one for each of the powerpc architectures), without
changing their contents. Future patches will modify powerpc64le.
* sysdeps/powerpc/Implies: Removed. Previous contents copied to...
* sysdeps/powerpc/powerpc32/Implies-after: ... here.
* sysdeps/powerpc/powerpc64/be/Implies-after: ... here.
* sysdeps/powerpc/powerpc64/le/Implies-before: ... and here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar.
sysdeps/powerpc/soft-fp isn't quite such a case, as the Implies files
pointing to it are
sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/Implies and
sysdeps/unix/sysv/linux/powerpc/powerpc32/e500/nofpu/Implies (and
indeed there is a different sfp-machine.h used for powerpc64le).
However, the same principle applies: there is no need for this
directory because sfp-machine.h, the only file in it, can most
naturally go in sysdeps/powerpc/nofpu, which is used by exactly the
same configurations (and there is a close dependence between the files
there and the sfp-machine.h implementation). This patch eliminates
the sysdeps/powerpc/soft-fp directory accordingly.
Tested with build-many-glibcs.py that installed stripped shared
libraries for powerpc configurations are unchanged by this patch.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/Implies: Remove
powerpc/soft-fp.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/e500/nofpu/Implies:
Likewise.
* sysdeps/powerpc/soft-fp/sfp-machine.h: Move to ....
* sysdeps/powerpc/nofpu/sfp-machine.h: ... here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the sysdeps/sh/soft-fp
directory accordingly, merging its contents into sysdeps/sh.
Tested with build-many-glibcs.py that installed stripped shared
libraries for sh configurations are unchanged by this patch.
* sysdeps/sh/Implies: Remove sh/soft-fp.
* sysdeps/sh/soft-fp/sfp-machine.h: Move to ....
* sysdeps/sh/sfp-machine.h: ... here.
This patch skips zero length in __mempcpy_erms, __memmove_erms and
__memset_erms.
Tested on x86-64.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S
(__mempcpy_erms): Skip zero length.
(__memmove_erms): Likewise.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(__memset_erms): Likewise.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/alpha/soft-fp directory accordingly, merging its contents
into sysdeps/alpha.
Tested with build-many-glibcs.py that installed stripped shared
libraries for alpha-linux-gnu are unchanged by this patch.
* sysdeps/alpha/Implies: Remove alpha/soft-fp.
* sysdeps/alpha/Makefile [$(subdir) = soft-fp] (sysdep_routines):
Add functions moved from ....
[$(subdir) = math] (CPPFLAGS): Add -I../soft-fp. Moved from ....
* sysdeps/alpha/soft-fp/Makefile: ... here. Remove file.
* sysdeps/alpha/Versions (libc): Add GLIBC_2.3.4 symbols moved
from ....
* sysdeps/alpha/soft-fp/Versions: ... here. Remove file.
* sysdeps/alpha/soft-fp/e_sqrtl.c: Move to ....
* sysdeps/alpha/e_sqrtl.c: ... here.
* sysdeps/alpha/soft-fp/local-soft-fp.h: Move to ....
* sysdeps/alpha/local-soft-fp.h: ... here.
* sysdeps/alpha/soft-fp/ots_add.c: Move to ....
* sysdeps/alpha/ots_add.c: ... here.
* sysdeps/alpha/soft-fp/ots_cmp.c: Move to ....
* sysdeps/alpha/ots_cmp.c: ... here.
* sysdeps/alpha/soft-fp/ots_cmpe.c: Move to ....
* sysdeps/alpha/ots_cmpe.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtqux.c: Move to ....
* sysdeps/alpha/ots_cvtqux.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtqx.c: Move to ....
* sysdeps/alpha/ots_cvtqx.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvttx.c: Move to ....
* sysdeps/alpha/ots_cvttx.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtxq.c: Move to ....
* sysdeps/alpha/ots_cvtxq.c: ... here.
* sysdeps/alpha/soft-fp/ots_cvtxt.c: Move to ....
* sysdeps/alpha/ots_cvtxt.c: ... here.
* sysdeps/alpha/soft-fp/ots_div.c: Move to ....
* sysdeps/alpha/ots_div.c: ... here.
* sysdeps/alpha/soft-fp/ots_mul.c: Move to ....
* sysdeps/alpha/ots_mul.c: ... here.
* sysdeps/alpha/soft-fp/ots_nintxq.c: Move to ....
* sysdeps/alpha/ots_nintxq.c: ... here.
* sysdeps/alpha/soft-fp/ots_sub.c: Move to ....
* sysdeps/alpha/ots_sub.c: ... here.
* sysdeps/alpha/soft-fp/sfp-machine.h: Move to ....
* sysdeps/alpha/sfp-machine.h: ... here.
As per <https://sourceware.org/ml/libc-alpha/2014-10/msg00369.html>,
there should not be separate sysdeps/<arch>/soft-fp directories when
those are used by all configurations that use sysdeps/<arch>, and,
more generally, should not be sysdeps/foo/Implies files pointing to a
subdirectory foo/bar. This patch eliminates the
sysdeps/aarch64/soft-fp directory accordingly, merging its contents
into sysdeps/aarch64.
Tested with build-many-glibcs.py that installed stripped shared
libraries for aarch64 configurations are unchanged by this patch.
* sysdeps/aarch64/Implies: Remove aarch64/soft-fp.
* sysdeps/aarch64/Makefile [$(subdir) = math] (CPPFLAGS): Add
-I../soft-fp. Moved from ....
* sysdeps/aarch64/soft-fp/Makefile: ... here. Remove file.
* sysdeps/aarch64/soft-fp/e_sqrtl.c: Move to ....
* sysdeps/aarch64/e_sqrtl.c: ... here.
* sysdeps/aarch64/soft-fp/sfp-machine.h: Move to ....
* sysdeps/aarch64/sfp-machine.h: ... here.
Building with recent GCC mainline for i686-linux-gnu is failing with:
../sysdeps/ieee754/flt-32/k_rem_pio2f.c: In function '__kernel_rem_pio2f':
../sysdeps/ieee754/flt-32/k_rem_pio2f.c:186:28: error: 'fq[0]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
fv = math_narrow_eval (fq[0]-fv);
^
and
../sysdeps/ieee754/dbl-64/k_rem_pio2.c: In function '__kernel_rem_pio2':
../sysdeps/ieee754/dbl-64/k_rem_pio2.c:333:32: error: 'fq[0]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
fv = math_narrow_eval (fq[0] - fv);
^
These are similar to -Warray-bounds cases for which the DIAG_* macros
are already used in those files: the array element is in fact always
initialized, but the reasoning that it is depends on another array not
having been all zero at an earlier point, which depends on the
functions not being called with zero arguments. Thus, this patch uses
DIAG_* to disable -Wmaybe-uninitialized for this code.
(The warning may be i686-specific because of math_narrow_eval somehow
perturbing what the compiler does with this code enough to cause the
warning. I don't know why it doesn't appear for i686-gnu.)
Tested with build-many-glibcs.py that this fixes the i686 build in
this configuration.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2): Ignore
-Wmaybe-uninitialized around access to fq[0].
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
The llseek function name is an obsolete, Linux-specific, unprototyped
name for lseek64 with a link-time warning. This patch completes the
obsoletion of this function name by making it into a compat symbol,
not available for newly linked programs and not included in the ABI
for new ports.
When a compat symbol is defined in syscalls.list, the code for that
function is not built at all for static linking unless some non-compat
symbol for that function is also defined with an explicit symbol
version, so an explicit symbol version for lseek64 is added to the
MIPS n32 syscalls.list. The case in make-syscalls.sh that handles
such explicit non-compat symbol versions then needs to be changed to
use weak_alias instead of strong_alias when the syscall is built
outside of libc, to avoid linknamespace failures from a strong lseek64
symbol in static libpthread.
The x32 llseek.S was as far as I could tell already unused (nothing
builds an llseek.* source file, at least since the lseek / lseek64 /
llseek consolidation), so is removed in this patch as well.
Tested for x86_64 and x86, and with build-many-glibcs.py.
[BZ #18471]
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Use weak
aliases for non-libc case of versioned symbols.
* sysdeps/unix/sysv/linux/lseek64.c: Include <shlib-compat.h>.
(llseek): Define as compat symbol if
[SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_28)], not as weak alias
with link warning.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (llseek):
Make into a compat symbol, disabled for minimum symbol version
GLIBC_2.28 and later.
* sysdeps/unix/sysv/linux/x86_64/x32/llseek.S: Remove file.
Although the REP MOVSB implementations of memmove, memcpy and mempcpy
aren't used by the current processors, this patch adds Prefer_FSRM
check in ifunc-memmove.h so that they can be used in the future.
* sysdeps/x86/cpu-features.h (bit_arch_Prefer_FSRM): New.
(index_arch_Prefer_FSRM): Likewise.
* sysdeps/x86/cpu-tunables.c (TUNABLE_CALLBACK (set_hwcaps)):
Also check Prefer_FSRM.
* sysdeps/x86_64/multiarch/ifunc-memmove.h (IFUNC_SELECTOR):
Also return OPTIMIZE (erms) for Prefer_FSRM.
The newer Intel processors support Fast Short REP MOVSB which has a
feature bit in CPUID. This patch adds the Fast Short REP MOVSB (FSRM)
bit to x86 cpu-features.
* sysdeps/x86/cpu-features.h (bit_cpu_FSRM): New.
(index_cpu_FSRM): Likewise.
(reg_FSRM): Likewise.
The Linux nfsservctl syscall was removed in Linux 3.1. Since the
minimum kernel version for use with glibc is 3.2, the glibc wrapper
for this syscall can no longer usefully be called. This patch makes
it into a compat symbol, not provided at all for static linking or new
ports. (It was already the case that there was no header declaration
of this function.)
Tested for x86_64.
* sysdeps/unix/sysv/linux/syscalls.list (nfsservctl): Make into a
compat symbol, disabled for minimum symbol version GLIBC_2.28 and
later.
_Float128 is defined for certain compilers indirectly from
<libm-alias-double.h>, and <ieee754_float128.h> (included from
<math-nan-payload-float128.h>) needs this definition.
As indicated by BZ#23178, concurrent access on some files read by nscd
may result non expected data send through service requisition. This is
due 'sendfile' Linux implementation where for sockets with zero-copy
support, callers must ensure the transferred portions of the the file
reffered by input file descriptor remain unmodified until the reader
on the other end of socket has consumed the transferred data.
I could not find any explicit documentation stating this behaviour on
Linux kernel documentation. However man-pages sendfile entry [1] states
in NOTES the aforementioned remark. It was initially pushed on man-pages
with an explicit testcase [2] that shows changing the file used in
'sendfile' call prior the socket input data consumption results in
previous data being lost.
From commit message it stated on tested Linux version (3.15) only TCP
socket showed this issues, however on recent kernels (4.4) I noticed the
same behaviour for local sockets as well.
Since sendfile on HURD is a read/write operation and the underlying
issue on Linux, the straightforward fix is just remove sendfile use
altogether. I am really skeptical it is hitting some hotstop (there
are indication over internet that sendfile is helpfull only for large
files, more than 10kb) here to justify that extra code complexity or
to pursuit other possible fix (through memory or file locks for
instance, which I am not sure it is doable).
Checked on x86_64-linux-gnu.
[BZ #23178]
* nscd/nscd-client.h (sendfileall): Remove prototype.
* nscd/connections.c [HAVE_SENDFILE] (sendfileall): Remove function.
(handle_request): Use writeall instead of sendfileall.
* nscd/aicache.c (addhstaiX): Likewise.
* nscd/grpcache.c (cache_addgr): Likewise.
* nscd/hstcache.c (cache_addhst): Likewise.
* nscd/initgrcache.c (addinitgroupsX): Likewise.
* nscd/netgroupcache.c (addgetnetgrentX, addinnetgrX): Likewise.
* nscd/pwdcache.c (cache_addpw): Likewise.
* nscd/servicescache.c (cache_addserv): Likewise.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) == nscd]
(sysdep-CFLAGS): Remove -DHAVE_SENDFILE.
* sysdeps/unix/sysv/linux/kernel-features.h (__ASSUME_SENDFILE):
Remove define.
[1] http://man7.org/linux/man-pages/man2/sendfile.2.html
[2] 7b6a329977 (diff-efd6af3a70f0f07c578e85b51e83b3c3)
Unlike i386, we can call hidden IFUNC functions inside libc.so since
x86-64 PLT is always PIC.
Tested on x86-64.
* sysdeps/x86_64/multiarch/strncat-c.c (STRNCAT_PRIMARY): Removed.
Include <string/strncat.c>.
* sysdeps/x86_64/multiarch/strncat.c (__strncat): New strong
alias.
(__GI___strncat): New hidden alias.
Since we have loaded address of PREINIT_FUNCTION into %eax, we can
avoid extra branch to PLT slot.
* sysdeps/i386/crti.S (_init): Replace PREINIT_FUNCTION@PLT
with *%eax in call.
Acked-by: Christian Brauner (Ubuntu) <christian@brauner.io>
Since the result of testl is never used, this patch removes it.
Tested on 64-bit AVX2 machine.
* sysdeps/x86_64/multiarch/strlen-avx2.S (STRLEN): Remove the
unnecessary testl.
When compiling C++ code with -mabi=ieeelongdouble, KCtype is
unavailable and the long double type should be used instead.
This is also providing macro __HAVE_FLOAT128_UNLIKE_LDBL in order to
identify the kind of long double type is being used in the current
compilation unit.
Notice that bits/floatn.h cannot benefit from the new macro due to order
of header inclusion.
* bits/floatn-common.h: Define __HAVE_FLOAT128_UNLIKE_LDBL.
* math/math.h: Restrict the prototype definition for the functions
issignaling(_Float128) and iszero(_Float128); and template
__iseqsig_type<_Float128>, from __HAVE_DISTINCT_FLOAT128 to
__HAVE_FLOAT128_UNLIKE_LDBL.
* sysdeps/powerpc/bits/floatn.h [__HAVE_FLOAT128
&& (!__GNUC_PREREQ (7, 0) || defined __cplusplus)
&& __LDBL_MANT_DIG__ == 113]: Use long double suffix for
__f128() constants; define the type _Float128 as long double;
and reuse long double in __CFLOAT128.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch continues the math_private.h cleanup by stopping
math_private.h from including math-barriers.h and making the users of
the barrier macros include the latter header directly. No attempt is
made to remove any math_private.h includes that are now unused, except
in strtod_l.c where that is done to avoid line number changes in
assertions, so that installed stripped shared libraries can be
compared before and after the patch. (I think the floating-point
environment support in math_private.h should also move out - some
architectures already have fenv_private.h as an architecture-internal
header included from their math_private.h - and after moving that out
might be a better time to identify unused math_private.h includes.)
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/generic/math_private.h: Do not include
<math-barriers.h>.
* stdlib/strtod_l.c: Include <math-barriers.h> instead of
<math_private.h>.
* math/fromfp.h: Include <math-barriers.h>.
* math/math-narrow.h: Likewise.
* math/s_nextafter.c: Likewise.
* math/s_nexttowardf.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_nextafterl.c: Likewise.
* sysdeps/i386/fpu/s_nexttoward.c: Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atanh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_expm1.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_log1p.c: Likewise.
* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/flt-32/e_atanhf.c: Likewise.
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
For smaller and medium sized copies, the effect of hardware
prefetching are not as dominant as instruction level parallelism.
Hence it makes more sense to load data into multiple registers than to
try and route them to the same prefetch unit. This is also the case
for the loop exit where we are unable to latch on to the same prefetch
unit anyway so it makes more sense to have data loaded in parallel.
The performance results are a bit mixed with memcpy-random, with
numbers jumping between -1% and +3%, i.e. the numbers don't seem
repeatable. memcpy-walk sees a 70% improvement (i.e. > 2x) for 128
bytes and that improvement reduces down as the impact of the tail copy
decreases in comparison to the loop.
* sysdeps/aarch64/multiarch/memcpy_falkor.S (__memcpy_falkor):
Use multiple registers to copy data in loop tail.
The tail of the copy loops are unable to train the falkor hardware
prefetcher because they load from a different base compared to the hot
loop. In this case avoid serializing the instructions by loading them
into different registers. Also peel the last iteration of the loop
into the tail (and have them use different registers) since it gives
better performance for medium sizes.
This results in performance improvements of between 3% and 20% over
the current falkor implementation for sizes between 128 bytes and 1K
on the memmove-walk benchmark, thus mostly covering the regressions
seen against the generic memmove.
* sysdeps/aarch64/multiarch/memmove_falkor.S
(__memmove_falkor): Use multiple registers to move data in
loop tail.
This patch continues cleaning up math_private.h by moving the
math_opt_barrier and math_force_eval macros to a separate header
math-barriers.h.
At present, those macros are inside a "#ifndef math_opt_barrier" in
math_private.h to allow architectures to override them and then use
a separate math-barriers.h header, no such #ifndef or #include_next is
needed; architectures just have their own alternative version of
math-barriers.h when providing their own optimized versions that avoid
going through memory unnecessarily. The generic math-barriers.h has a
comment added to document these two macros.
In this patch, math_private.h is made to #include <math-barriers.h>,
so files using these macros do not need updating yet. That is because
of uses of math_force_eval in math_check_force_underflow and
math_check_force_underflow_nonneg, which are still defined in
math_private.h. Once those are moved out to a separate header, that
separate header can be made to include <math-barriers.h>, as can the
other files directly using these barrier macros, and then the include
of <math-barriers.h> from math_private.h can be removed.
Tested for x86_64 and x86. Also tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by this patch.
* sysdeps/generic/math-barriers.h: New file.
* sysdeps/generic/math_private.h [!math_opt_barrier]
(math_opt_barrier): Move to math-barriers.h.
[!math_opt_barrier] (math_force_eval): Likewise.
* sysdeps/aarch64/fpu/math-barriers.h: New file.
* sysdeps/aarch64/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/alpha/fpu/math-barriers.h: New file.
* sysdeps/alpha/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/x86/fpu/math-barriers.h: New file.
* sysdeps/i386/fpu/fenv_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
* sysdeps/m68k/m680x0/fpu/math_private.h: Move to....
* sysdeps/m68k/m680x0/fpu/math-barriers.h: ... here. Adjust
multiple-include guard for rename.
* sysdeps/powerpc/fpu/math-barriers.h: New file.
* sysdeps/powerpc/fpu/math_private.h (math_opt_barrier): Move to
math-barriers.h.
(math_force_eval): Likewise.
This patch continues cleaning up the math_private.h header, which
contains lots of different definitions many of which are only needed
by a limited subset of files using that header (and some of which are
overridden by architectures that only want to override selected parts
of the header), by moving the math_narrow_eval macro out to a separate
math-narrow-eval.h header, only included by those files that need it.
That header is placed in include/ (since it's used in stdlib/, not
just files built in math/, but no sysdeps variants are needed at
present).
Tested for x86_64, and with build-many-glibcs.py. (Installed stripped
shared libraries change because of line numbers in assertions in
strtod_l.c.)
* include/math-narrow-eval.h: New file. Contents moved from ....
* sysdeps/generic/math_private.h: ... here.
(math_narrow_eval): Remove macro. Moved to math-narrow-eval.h.
[FLT_EVAL_METHOD != 0] (excess_precision): Likewise.
* math/s_fdim_template.c: Include <math-narrow-eval.h>.
* stdlib/strtod_l.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/ieee754/dbl-64/e_cosh.c: Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j1.c: Likewise.
* sysdeps/ieee754/dbl-64/e_jn.c: Likewise.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c: Likewise.
* sysdeps/ieee754/dbl-64/gamma_productf.c: Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c: Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: Likewise.
* sysdeps/ieee754/dbl-64/s_erf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/flt-32/e_coshf.c: Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c: Likewise.
* sysdeps/ieee754/flt-32/e_expf.c: Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c: Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c: Likewise.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/s_erff.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/ldbl-96/gamma_product.c: Likewise.
When MEMSET_SYMBOL (__memset, erms) is provided for debugger, mark it
as hidden so that it will be local to the library.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(MEMSET_SYMBOL (__memset, erms)): Mark the debugger symbol as
hidden.
On s390 (31bit) if glibc is build with -Os, pthread_join sometimes
blocks indefinitely. This is e.g. observable with
testcase intl/tst-gettext6.
pthread_join is calling lll_wait_tid(tid), which performs the futex-wait
syscall in a loop as long as tid != 0 (thread is alive).
On s390 (and build with -Os), tid is loaded from memory before
comparing against zero and then the tid is loaded a second time
in order to pass it to the futex-wait-syscall.
If the thread exits in between, then the futex-wait-syscall is
called with the value zero and it waits until a futex-wake occurs.
As the thread is already exited, there won't be a futex-wake.
In lll_wait_tid, the tid is stored to the local variable __tid,
which is then used as argument for the futex-wait-syscall.
But unfortunately the compiler is allowed to reload the value
from memory.
With this patch, the tid is loaded with atomic_load_acquire.
Then the compiler is not allowed to reload the value for __tid from memory.
ChangeLog:
[BZ #23137]
* sysdeps/nptl/lowlevellock.h (lll_wait_tid):
Use atomic_load_acquire to load __tid.
To prepare for shadow stack support, restore the pointer into %rdx after
syscall and use %rdx, instead of %rsi, to restore context. There is no
functional change.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86_64/swapcontext.S (__swapcontext):
Restore the pointer into %rdx, after syscall and use %rdx,
instead of %rsi, to restore context.
To prepare for shadow stack support, pop the pointer into %rdx after
syscall and use %rdx, instead of %rsi, to restore context. There is
no functional change.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86_64/setcontext.S (__setcontext):
Pop the pointer into %rdx after syscall and use %rdx, instead
of %rsi, to restore context.
The pad array in struct pthread_unwind_buf is used by setjmp to save
shadow stack register. We assert that size of struct pthread_unwind_buf
is no less than offset of shadow stack pointer + shadow stack pointer
size.
Since functions, like LIBC_START_MAIN, START_THREAD_DEFN as well as
these with thread cancellation, call setjmp, but never return after
__libc_unwind_longjmp, __libc_unwind_longjmp, which is defined as
__libc_longjmp on x86, doesn't need to restore shadow stack register.
__libc_longjmp, which is a private interface for thread cancellation
implementation in libpthread, is changed to call __longjmp_cancel,
instead of __longjmp. __longjmp_cancel is a new internal function
in libc, which is similar to __longjmp, but doesn't restore shadow
stack register.
The compatibility longjmp and siglongjmp in libpthread.so are changed
to call __libc_siglongjmp, instead of __libc_longjmp, so that they will
restore shadow stack register.
Tested with build-many-glibcs.py.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* nptl/pthread_create.c (START_THREAD_DEFN): Clear previous
handlers after setjmp.
* setjmp/longjmp.c (__libc_longjmp): Don't define alias if
defined.
* sysdeps/unix/sysv/linux/x86/setjmpP.h: Include
<libc-pointer-arith.h>.
(_JUMP_BUF_SIGSET_BITS_PER_WORD): New.
(_JUMP_BUF_SIGSET_NSIG): Changed to 96.
(_JUMP_BUF_SIGSET_NWORDS): Changed to use ALIGN_UP and
_JUMP_BUF_SIGSET_BITS_PER_WORD.
* sysdeps/x86/Makefile (sysdep_routines): Add __longjmp_cancel.
* sysdeps/x86/__longjmp_cancel.S: New file.
* sysdeps/x86/longjmp.c: Likewise.
* sysdeps/x86/nptl/pt-longjmp.c: Likewise.
As for sysctl, ustat has been deprecated in favor of {f}statfs. Also
some newer ports which uses generic interface builds a stub version that
returns ENOSYS.
This patch deprecates ustat interface by removing ustat.h related headers,
adding a compatibility symbol, and avoiding new ports to build and provide
the symbol.
Checked on x86_64-linux-gnu and i686-linux-gnu. Also checked with a
check-abi on all affected ABIs.
* NEWS: Add ustat.h deprecation entry.
* bits/ustat.h: Remove file.
* misc/sys/ustat.h: Likewise.
* misc/ustat.h: Likewise.
* sysdeps/unix/sysv/linux/generic/ustat.c: Likewise.
* misc/Makefile (headers): Remove ustat.h and sys/ustat.h.
* misc/ustat.c (__ustat): Rename to __old_ustat and export only in
compatibility mode.
* sysdeps/unix/sysv/linux/ustat.c (__ustat): Likewise.
* sysdeps/unix/sysv/linux/mips/ustat.c: Define DEV_TO_KDEV and use
generic Linux implementation.
This patch consolidate Linux readahead implementation on generic
sysdeps/unix/sysv/linux/readahead.c one. The changes are:
- Assume __NR_readahead existence with current minimum kernel of 3.2
for all architectures.
- Use INLINE_SYSCALL_CALL, __ALIGNMENT_ARG, and SYSCALL_LL64 to pass
the 64 bit offset. This allows architectures with different abis
to use the same implementation.
- Remove arch-specific readahead implementations.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* sysdeps/unix/sysv/linux/arm/readahead.c: Remove file.
* sysdeps/unix/sysv/linux/mips/mips32/readahead.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/syscalls.list (readahead):
Remove.
* sysdeps/unix/sysv/linux/mips/mips64/n64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/readahead.c (__readahead): Assume
__NR_readahead existence, and use INLINE_SYSCALL_CALL, __ALIGNMENT_ARG,
and SYSCALL_LL64.
The creation of the divergent sysdeps directory for powerpc64le
commit 2f7f3cd8cd
Author: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
Date: Fri Jul 15 18:04:40 2016 -0500
powerpc64le: Create divergent sysdep directory for powerpc64le.
allowed float128 to be enabled for powerpc64le (little-endian) and not
for powerpc64 (big-endian). Since the only intended difference between
them was the presence or absence of the float128 interface, the sysdeps
directory for powerpc64le explicitly reused the files from powerpc64
(through the use of Implies files).
Although this works, it also means that files under the powerpc64
directory might be preferred over files under powerpc64le. For
instance, on a build for powerpc64le with target set to power9, a file
from powerpc64/power5 might get built, even though a file with the same
name exists in powerpc64le/power8. That happens because the processor
hierarchy was only defined in the sysdeps directory for powerpc64 (and
borrowed by powerpc64le).
This patch fixes this behavior, by creating new subdirectories under
powerpc64 (i.e.: powerpc64/be and powerpc64/le) and creating new Implies
files to provide the hierarchy of processors for powerpc64 and
powerpc64le separately. These changes have no effect on installed,
stripped binaries (which remain unchanged).
Tested that installed stripped binaries are unchanged and that there are
no regressions on powerpc64 and powerpc64le.
Since tile support has been removed from the Linux kernel for 4.17,
this patch removes the (unmaintained) port to tilegx from glibc (the
tilepro support having been previously removed). This reflects the
general principle that a glibc port needs upstream support for the
architecture in all the components it build-depends on (so binutils,
GCC and the Linux kernel, for the normal case of a port supporting the
Linux kernel but no other OS), in order to be maintainable.
Apart from removal of sysdeps/tile and sysdeps/unix/sysv/linux/tile,
there are updates to various comments referencing tile for which
removal of those references seemed appropriate. The configuration is
removed from README and from build-many-glibcs.py. contrib.texi keeps
mention of removed contributions, but I updated Chris Metcalf's entry
to reflect that he also contributed the non-removed support for the
generic Linux kernel syscall interface.
__ASSUME_FADVISE64_64_NO_ALIGN support is removed, as it was only used
by tile.
* sysdeps/tile: Remove.
* sysdeps/unix/sysv/linux/tile: Likewise.
* README (tilegx-*-linux-gnu): Remove from list of supported
configurations.
* manual/contrib.texi (Contributors): Mention Chris Metcalf's
contribution of support for generic Linux kernel syscall
interface.
* scripts/build-many-glibcs.py (Context.add_all_configs): Remove
tilegx configurations.
(Config.install_linux_headers): Do not handle tile.
* sysdeps/unix/sysv/linux/aarch64/ldsodefs.h: Do not mention Tile
in comment.
* sysdeps/unix/sysv/linux/nios2/Makefile: Likewise.
* sysdeps/unix/sysv/linux/posix_fadvise.c: Likewise.
[__ASSUME_FADVISE64_64_NO_ALIGN] (__ALIGNMENT_ARG): Remove
conditional undefine and redefine.
* sysdeps/unix/sysv/linux/posix_fadvise64.c: Do not mention Tile
in comment.
[__ASSUME_FADVISE64_64_NO_ALIGN] (__ALIGNMENT_ARG): Remove
conditional undefine and redefine.
Prevent random runtime crashes due to missing symbols caused by mixed
libnss_* versions.
[BZ #22766]
* include/dlfcn.h [__libc_dl_open]: Replace RTLD_LAZY with RTLD_NOW.
* sysdeps/gnu/unwind-resume.c (__lib_gcc_s_init): Replace
__libc_dlopen_mode() using RTLD_NOW with __libc_dlopen.
* sysdeps/nptl/unwind-forcedunwind.c: Likewise.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch consolidates Linux getdirentries{64} implementation on just
the default sysdeps/unix/sysv/linux/getdirentries{64} ones. The default
implementation handles the Linux requirements:
* getdirentries is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdirentries64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/getdirentries.c (getdirentries): Build iff
_DIRENT_MATCHES_DIRENT64 is not defined.
* sysdeps/unix/sysv/linux/getdirentries64.c (getdirentries64): Open
implementation and alias to getdirentries if _DIRENT_MATCHES_DIRENT64
is defined.
* sysdeps/unix/sysv/linux/wordsize-64/getdirentries.c: Remove file.
* sysdeps/unix/sysv/linux/wordsize-64/getdirentries64.c: Remove file.
The build of glibc for Hurd has been failing with GCC mainline because
of the checks that aliases have the same type as the symbol aliased;
the Hurd dl-sysdep.c has a macro that defines aliases without using
the proper type. When GCC 8 branches (soon), I intend to make it the
default version in build-many-glibcs.py, so these failures would mean
the default build-many-glibcs.py build fails for Hurd again.
This patch fixes the Hurd build with GCC 8 by changing the macro that
defines the problem aliases to use the correct type for them. An
include of <not-errno.h> is needed to avoid this use of typeof
resulting in an error for __access_noerrno not being declared.
Tested compilation for i686-gnu with build-many-glibcs.py.
* sysdeps/mach/hurd/dl-sysdep.c: Include <not-errno.h>.
(check_no_hidden): Use type of original function when declaring
alias.
This patch adds the PTRACE_SECCOMP_GET_METADATA constant from Linux
4.16 to all relevant sys/ptrace.h files. A type struct
__ptrace_seccomp_metadata, analogous to other such types, is also
added.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): New enum value and macro.
* sysdeps/unix/sysv/linux/bits/ptrace-shared.h
(struct __ptrace_seccomp_metadata): New type.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/arm/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/s390/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/tile/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
* sysdeps/unix/sysv/linux/x86/sys/ptrace.h
(PTRACE_SECCOMP_GET_METADATA): Likewise.
This patch consolidates both alphasort{64} and versionsort{64}
implementation on just the default dirent/alphasort{64}c and
dirent/versionsort{64} respectively. It changes the logic
to follow the conventions used on other code consolidation:
* the non-LFS variant is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* the LFS variant is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Also on Linux the compat symbol for old non-LFS dirent64 definition
requires a platform-specific scandir64.c. For powerpc32 and sparcv9
it requires to add specific arch-implementation to override the
generic Linux one because neither ABI exports an compat symbol for
non-LFS alphasort64 and versionsort64 variant. It is most likely a
bug and it is also not one that can be fixed (in that there would be
existing binaries expecting both meanings of that symbol at its single
existing version, with binaries expecting the new meaning probably much
more common than those expecting the original meaning of that symbol at
that version).
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* dirent/alphasort.c (alphasort): Build iff _DIRENT_MATCHES_DIRENT64 is
defined.
* dirent/versionsort.c (versionsort): Likewise.
* dirent/alphasort64.c (alphasort64): Build regardless and alias to
alphasort if _DIRENT_MATCHES_DIRENT64 is defined.
* dirent/versionsort64.c (versionsort64): Likewise.
* sysdeps/unix/sysv/linux/i386/alphasort64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/alphasort64.c: New file.
* sysdeps/unix/sysv/linux/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/versionsort64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/alphasort64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/versionsort64.c: Likewise.
This patch makes the alpha bits/termios.h define XTABS to TAB3, so
matching a change made in Linux 4.16 as well as matching other
architectures where the values are already equal.
Tested with build-many-glibcs.py for alpha-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h [__USE_MISC]
(XTABS): Define to TAB3.
This patch consolidates scandir{at}{64} implementation on just
the default dirent/scandir{at}{64}{_r}.c ones. It changes the logic
to follow the conventions used on other code consolidation:
* scandir{at} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* scandir{at}{64} is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
Also on Linux the compat symbol for old non-LFS dirent64 definition
requires a platform-specific scandir64.c.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* dirent/scandir-tail-common.c: New file.
* dirent/scandir-tail.c: Use scandir-tail-common.c.
(__scandir_tail): Build iff _DIRENT_MATCHES_DIRENT64 is not defined.
* dirent/scandir.c: Use scandir-tail-common.c.
* dirent/scandirat.c: Likewise.
* dirent/scandir64-tail.c: Use scandir-tail-common.c.
* dirent/scandir64.c (scandir64): Always build and alias to scandir
if _DIRENT_MATCHES_DIRENT64 is defined.
* dirent/scandirat64.c (scandirat64): Likewise.
* include/dirent.h (__scandir_tail): Only define iff
_DIRENT_MATCHES_DIRENT64 is not defined.
(__scandir64_tail): Define regardless.
(__scandirat, scandirat64): Remove libc_hidden_proto.
* sysdeps/unix/sysv/linux/arm/scandir64.c: Remove file.
* sysdeps/unix/sysv/linux/m68k/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/scandir64.c: Likewise.
* sysdeps/unix/sysv/linux/scandir64.c: New file.
This patch updates the aarch64 bits/hwcap.h and dl-procinfo.c for the
new HWCAP_ASIMDFHM value in Linux 4.16.
Tested with build-many-glibcs.py for aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_ASIMDFHM):
New macro.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Increase to 24.
(_dl_aarch64_cap_flags): Add asimdfhm.
* sysdeps/pthread/bits/types/sigevent_t.h: New file, based on the
generic version but include <bits/pthreadtypes.h> to make struct
sigevent's sigev_notify_attributes field a pthread_attr_t*.
* bits/sched.h: Include <bits/types/struct_sched_param.h> and move struct
sched_param definition to it.
* sysdeps/unix/sysv/linux/bits/sched.h: Likewise.
* bits/types/struct_sched_param.h: New file.
* sysdeps/htl/bits/types/struct___pthread_attr.h: Include
<bits/types/struct_sched_param.h> instead of <sched.h>.
* posix/Makefile (headers): Add bits/types/struct_sched_param.h.
Fix commit 298d0e3 for mips64n32, checked on a mips64n32-linux-gnu build.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c (__getdents64):
Only alias to __getdents for _DIRENT_MATCHES_DIRENT64.
* bits/in.h [!__USE_MISC]: Do not define struct ip_opts.
* conform/data/netinet/in.h-data: Allow sin_ and sin6_ prefix.
* sysdeps/gnu/bits/msq.h (struct msqid_ds): Use __wait_queue struct
instead of wait_queue.
* sysdeps/gnu/bits/shm.h (struct shmid_ds): Use __vm_area_struct
instead of vm_area_struct.
This patch consolidates Linux getdents{64} implementation on just
the default sysdeps/unix/sysv/linux/getdents{64}{_r}.c ones.
Although this symbol is used only internally, the non-LFS version
still need to be build due the non-LFS getdirentries which requires
its semantic.
The non-LFS default implementation now uses the wordsize-32 as base
which uses getdents64 syscall plus adjustment for overflow (it allows
to use the same code for architectures that does not support non-LFS
getdents syscall). It has two main differences to wordsize-32 one:
- DIRENT_SET_DP_INO is added to handle alpha requirement to zero
the padding.
- alloca is removed by allocating a bounded temporary buffer (it
increases stack usage by roughly 276 bytes).
The default implementation handle the Linux requirements:
* getdents is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdents64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
* A compat symbol is added for getdents64 for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/getdents.c: Add comments with alpha
requirements.
(_DIRENT_MATCHES_DIRENT64): Undef
* sysdeps/unix/sysv/linux/alpha/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/getdents64.c: Remove file.
* sysdeps/unix/sysv/linux/generic/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/generic/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/getdents.c: Simplify implementation by
use getdents64 syscalls as base.
* sysdeps/unix/sysv/linux/getdents64.c: Likewise and add compatibility
symbol if required.
* sysdeps/unix/sysv/linux/hppa/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c
(__get_clockfreq_via_proc_openprom): Use __getdents64.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c: New file.
* sysdeps/mach/hurd/bits/statfs.h (struct statfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statfs64): Likewise.
Standards require that the f_bsize, f_frsize, f_flag and f_namemax fields be
unsigned long. They used to be only unsigned on hurd, which happens to be
compatible with unsigned long on the only existing, 32bit, port. We can
thus merely fix the type.
* sysdeps/mach/hurd/bits/statvfs.h (struct statvfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statvfs64): Likewise.
* sysdeps/mach/include/lock-intern.h: Move to include/.
* sysdeps/mach/include/mach.h: Move to include/.
* sysdeps/mach/include/mach/mig_support.h: Move to include/mach/.
* sysdeps/mach/include/mach_error.h: Move to include/.
This patch removes the ununsed ARM code path for armv6t2 memchr and
strlen and armv7 memch and strcmp. In all implementation, the ARM
code is not used in any possible build (unless glibc is explicit
build with the non-documented NO_THUMB compiler flag) and for armv7
the resulting code either produces wrong results (memchr) and throw
build error (strcmp).
Checked on arm-linux-gnueabihf built targeting both armv6 and
armv7.
* sysdeps/arm/armv6t2/memchr.S (memchr): Remove ARM code path.
* sysdeps/arm/armv6t2/strlen.S (memchr): Likewise.
* sysdeps/arm/armv7/multiarch/memchr_neon.S (memchr): Likewise.
* sysdeps/arm/armv7/strcmp.S (strcmp): Likewise.
Adds a fast path to e_exp.c when |x| < 1.03972053527832.
When values are tested in isolation, reduction in execution
time is: aarch 30%, sparc 18%, x86 37%.
When comparing benchtests/bench.out which includes values
outside that range, the gains are:
aarch 8%, sparc 5%, x86 9%.
make check is clean (no increase in ulp for any math test).
Testing 20M values for each rounding mode in that range shows
approximately one in 200 values is off by 1 ulp. No value tested
for exp(x) changed by 2 or more ulp.
No observed change in performance or accuracy for x outside
fast path range.
These changes will be active for all platforms that don't provide
their own exp() routines. They will also be active for ieee754
versions of ccos, ccosh, cosh, csin, csinh, sinh, exp10, gamma, and
erf.
Linux 4.16 does not add any new syscalls; this patch updates the
version number in syscall-names.list to reflect that it's still
current for 4.16.
Tested for x86_64 (compilation with build-many-glibcs.py, using Linux
4.16).
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.16.
The recent commit b4a5d26d88
"linux: Consolidate sigaction implementation" changed the definition
of struct sigaction for s390 (31bit). Unfortunately the order of the
fields were wrong.
This leads to blocking testcases e.g. nptl/tst-sem11.
A thread which blocks due to sem_wait() is cancelled via pthread_cancel()
and the signal-handler sigcancel_handler (see <glibc-src>/nptl/nptl-init.c
is called.
But it just returns as the siginfo_t argument is not setup by the kernel.
Then the main-thread is blocking due to pthread_join().
The flag SA_SIGINFO is set in sa_flags in struct sigaction and
is copied to the "kernel_sigaction.h" struct by the sigaction() call,
but due to the wrong ordering of the struct fields,
the kernel does not recognize it.
This patch consolidates Linux readdir{64}{_r} implementation on just
the default sysdeps/unix/sysv/linux/readdir{64}{_r}.c ones. The
default implementation handle the Linux requirements:
* readdir{_r} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* readdir64{_r} is always built and aliased to readdir{_r} for
ABI that define _DIRENT_MATCHES_DIRENT64.
* A compat symbol is added for readdir64{_r} for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/readdir.c (__READDIR, __GETDENTS, DIRENTY_TYPE,
__READDIR_ALIAS): Undefine after usage.
* sysdeps/posix/readdir_r.c (__READDIR_R, __GETDENTS, DIRENT_TYPE,
__READDIR_R_ALIAS): Likewise.
* sysdeps/unix/sysv/linux/arm/readdir64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir.c: New file.
* sysdeps/unix/sysv/linux/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir64.c: Add compat symbol if required.
* sysdeps/unix/sysv/linux/readdir64_r.c: Likewise.
This patch consolidates all Linux sigaction implementations on the default
sysdeps/unix/sysv/linux/sigaction.c. The idea is remove redundant code
and simplify new ports addition by following the current generic
Linux User API (UAPI).
The UAPI for new ports defines a generic extensible sigaction struct as:
struct sigaction
{
__sighandler_t sa_handler;
unsigned long sa_flags;
#ifdef SA_RESTORER
void (*sa_restorer) (void);
#endif
sigset_t sa_mask;
};
Where SA_RESTORER is just placed for compatibility reasons (news ports
should not add it). A similar definition is used on generic
kernel_sigaction.h.
The user exported sigaction definition is not changed, so for most
architectures it requires an adjustment to kernel expected one for the
syscall.
The main changes are:
- All architectures now define and use a kernel_sigaction struct meant
for the syscall, even for the architectures where the user sigaction
has the same layout of the kernel expected one (s390-64 and ia64).
Although it requires more work for these architectures, it simplifies
the generic implementation. Also, sigaction is hardly a hotspot where
micro optimization would play an important role.
- The generic kernel_sigaction definition is now aligned with expected
UAPI one for newer ports, where SA_RESTORER and sa_restorer are not
expected to be defined. This means adding kernel_sigaction for
current architectures that does define it (m68k, nios2, powerpc, s390,
sh, sparc, and tile) and which rely on previous generic definition.
- Remove old MIPS usage of sa_restorer. This was removed since 2.6.27
(2957c9e61ee9c - "[MIPS] IRIX: Goodbye and thanks for all the fish").
- The remaining arch-specific sigaction.c are to handle ABI idiosyncrasies
(like SPARC kernel ABI for rt_sigaction that requires an additional
stub argument).
So for new ports the generic implementation should work if its uses
Linux UAPI. If SA_RESTORER is still required (due some architecture
limitation), it should define its own kernel_sigaction.h, define it and
include generic header (assuming it still uses the default generic kernel
layout).
Checked on x86_64-linux-gnu, i686-linux-gnu, arm-linux-gnueabihf,
aarch64-linux-gnu, sparc64-linux-gnu, sparcv9-linux-gnu, powerpc-linux-gnu,
powerpc64-linux-gnu, ia64-linux-gnu and alpha-linux-gnu. I also checked the
build on all remaining affected ABIs.
* sysdeps/unix/sysv/linux/aarch64/sigaction.c: Use default Linux version
as base implementation.
* sysdeps/unix/sysv/linux/arm/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/i386/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/alpha/kernel_sigaction.h: Add include guards,
remove unrequired definitions and update comments.
* sysdeps/unix/sysv/linux/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/mips/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/kernel_sigaction.h: New file.
* sysdeps/unix/sysv/linux/m68k/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel_sigaction: Likewise.
* sysdeps/unix/sysv/linux/s390/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sh/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/tile/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sigaction.c: Remove file.
* sysdeps/unix/sysv/linux/mips/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sigaction.c: Add STUB, SET_SA_RESTORER,
and RESET_SA_RESTORER hooks.
* sysdeps/powerpc/fpu/libm-test-ulps: Increase double-precision
sin, cos and sincos to 1 ULP.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Do not relocate absolute symbols by the base address. Such symbols have
SHN_ABS as the section index and their value is not supposed to be
affected by relocation as per the ELF gABI[1]:
"SHN_ABS
The symbol has an absolute value that will not change because of
relocation."
The reason for our non-conformance here seems to be an old SysV linker
bug causing symbols like _DYNAMIC to be incorrectly emitted as absolute
symbols[2]. However in a previous discussion it was pointed that this
is seriously flawed by preventing the lone purpose of the existence of
absolute symbols from being used[3]:
"On the contrary, the only interpretation that makes sense to me is that
it will not change because of relocation at link time or at load time.
Absolute symbols, from the days of the earliest linking loaders, have
been used to represent addresses that are outside the address space of
the module (e.g., memory-mapped addresses or kernel gateway pages).
They've even been used to represent true symbolic constants (e.g.,
system entry point numbers, sizes, version numbers). There's no other
way to represent a true absolute symbol, while the meaning you seek is
easily represented by giving the symbol a non-negative st_shndx value."
and we ought to stop supporting our current broken interpretation.
Update processing for dladdr(3) and dladdr1(3) so that SHN_ABS symbols
are ignored, because under the corrected interpretation they do not
represent addresses within a mapped file and therefore are not supposed
to be considered.
References:
[1] "System V Application Binary Interface - DRAFT - 19 October 2010",
The SCO Group, Section "Symbol Table",
<http://www.sco.com/developers/gabi/2012-12-31/ch4.symtab.html>
[2] Alan Modra, "Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00019.html>
[3] Cary Coutant, "Re: Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00020.html>
[BZ #19818]
* sysdeps/generic/ldsodefs.h (SYMBOL_ADDRESS): Handle SHN_ABS
symbols.
* elf/dl-addr.c (determine_info): Ignore SHN_ABS symbols.
* elf/tst-absolute-sym.c: New file.
* elf/tst-absolute-sym-lib.c: New file.
* elf/tst-absolute-sym-lib.lds: New file.
* elf/Makefile (tests): Add `tst-absolute-sym'.
(modules-names): Add `tst-absolute-sym-lib'.
(LDLIBS-tst-absolute-sym-lib.so): New variable.
($(objpfx)tst-absolute-sym-lib.so): New dependency.
($(objpfx)tst-absolute-sym): New dependency.
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Three of the functions defined by internal-signals.h were not actually
fulfilling their contracts when the sysdeps/generic version of that
file was used. Also, the Linux version included several more headers
than the generic version, which is the root cause of a build failure
on Hurd (already addressed in another way, but I think it is proper to
make the headers match).
* sysdeps/generic/internal-signals.h: Include signal.h,
sigsetops.h, and stdbool.h.
(__libc_signal_block_all): Actually block all signals.
(__libc_signal_block_app): Likewise.
(__libc_signal_restore_set): Actually restore the signal mask.
This patch filters out the internal NPTL signals (SIGCANCEL/SIGTIMER and
SIGSETXID) from signal functions. GLIBC on Linux requires both signals to
proper implement pthread cancellation, posix timers, and set*id posix
thread synchronization.
And not filtering out the internal signal is troublesome:
- A conformant program on a architecture that does not filter out the
signals might inadvertently disable pthread asynchronous cancellation,
set*id synchronization or posix timers.
- It might also to security issues if SIGSETXID is masked and set*id
functions are called (some threads might have effective user or group
id different from the rest).
The changes are basically:
- Change __is_internal_signal to bool and used on all signal function
that has a signal number as input. Also for signal function which accepts
signals sets (sigset_t) it assumes that canonical function were used to
add/remove signals which lead to some input simplification.
- Fix tst-sigset.c to avoid check for SIGCANCEL/SIGTIMER and SIGSETXID.
It is rewritten to check each signal indidually and to check realtime
signals using canonical macros.
- Add generic __clear_internal_signals and __is_internal_signal
version since both symbols are used on generic implementations.
- Remove superflous sysdeps/nptl/sigfillset.c.
- Remove superflous SIGTIMER handling on Linux __is_internal_signal
since it is the same of SIGCANCEL.
- Remove dangling define and obvious comment on nptl/sigaction.c.
Checked on x86_64-linux-gnu.
[BZ #22391]
* nptl/sigaction.c (__sigaction): Use __is_internal_signal to
check for internal nptl signals.
* nptl/sigaction.c (__sigaction): Likewise.
* signal/sigaddset.c (sigaddset): Likewise.
* signal/sigdelset.c (sigdelset): Likewise.
* sysdeps/posix/signal.c (__bsd_signal): Likewise.
* sysdeps/posix/sigset.c (sigset): Call and check sigaddset return
value.
* signal/sigfillset.c (sigfillset): User __clear_internal_signals
to filter out internal nptl signals.
* signal/tst-sigset.c (do_test): Check ech signal indidually and
also check realtime signals using standard macros.
* sysdeps/generic/internal-signals.h (__clear_internal_signals,
__is_internal_signal, __libc_signal_block_all,
__libc_signal_block_app, __libc_signal_restore_set): New functions.
* sysdeps/nptl/sigfillset.c: Remove file.
* sysdeps/unix/sysv/linux/internal-signals.h (__is_internal_signal):
Change return to bool.
(__clear_internal_signals): Remove SIGTIMER clean since it is
equal to SIGCANEL on Linux.
* sysdeps/unix/sysv/linux/sigtimedwait.c (__sigtimedwait): Assume
signal set was constructed using standard functions.
Reported-by: Yury Norov <ynorov@caviumnetworks.com>
Refactor the sincos implementation - rather than rely on odd partial inlining
of preprocessed portions from sin and cos, explicitly write out the cases.
This makes sincos much easier to maintain and provides an additional 16-20%
speedup between 0 and 2^27. The overall speedup of sincos is 48% over this range.
Between 0 and PI it is 66% faster.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Cleanup ifdefs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (__sincos): Refactor using the same
logic as sin and cos.
Refactor duplicated code into do_sin. Since all calls to do_sin use copysign to
set the sign of the result, move it inside do_sin. Small inputs use a separate
polynomial, so move this into do_sin as well (the check is based on the more
conservative case when doing large range reduction, but could be relaxed).
* sysdeps/ieee754/dbl-64/s_sin.c (do_sin): Use TAYLOR_SIN for small
inputs. Return correct sign.
(do_sincos): Remove small input check before do_sin, let do_sin set
the sign.
(__sin): Likewise.
(__cos): Likewise.
For huge inputs use the improved do_sincos function as well. Now no cases use
the correction factor returned by do_sin, do_cos and TAYLOR_SIN, so remove it.
* sysdeps/ieee754/dbl-64/s_sin.c (TAYLOR_SIN): Remove cor parameter.
(do_cos): Remove corp parameter and calculations.
(do_sin): Likewise.
(do_sincos): Remove cor variable.
(__sin): Use do_sincos for huge inputs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
(reduce_and_compute_sincos): Remove unused function.
This patch improves the accuracy of the range reduction. When the input is
large (2^27) and very close to a multiple of PI/2, using 110 bits of PI is not
enough. Improve range reduction accuracy to 136 bits. As a result the special
checks for results close to zero can be removed. The ULP of the polynomials is
at worst 0.55ULP, so there is no reason for the slow functions, and they can be
removed.
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_1): Rename to
reduce_sincos, improve accuracy to 136 bits.
(do_sincos_1): Rename to do_sincos, remove fallbacks to slow functions.
(__sin): Use improved reduction and simplified do_sincos calculation.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
This patch removes the large range reduction code and defers to the huge range
reduction code. The first level range reducer supports inputs up to 2^27,
which is way too large given that inputs for sin/cos are typically small
(< 10), and optimizing for a smaller range would give a significant speedup.
Input values above 2^27 are practically never used, so there is no reason for
supporting range reduction between 2^27 and 2^48. Removing it significantly
simplifies code and enables further speedups. There is about a 2.3x slowdown
in this range due to __branred being extremely slow (a better algorithm could
easily more than double performance).
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_2): Remove function.
(do_sincos_2): Likewise.
(__sin): Remove middle range reduction case.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Remove middle range
reduction case.
This series of patches removes the slow patchs from sin, cos and sincos.
Besides greatly simplifying the implementation, the new version is also much
faster for inputs up to PI (41% faster) and for large inputs needing range
reduction (27% faster).
ULP is ~0.55 with no errors found after testing 1.6 billion inputs across most
of the range with mpsin and mpcos. The number of incorrectly rounded results
(ie. ULP >0.5) is at most ~2750 per million inputs between 0.125 and 0.5,
the average is ~850 per million between 0 and PI.
Tested on AArch64 and x86_64 with no regressions.
The first patch removes the slow paths for the cases where the input is small
and doesn't require range reduction. Update ULP tables for sin, cos and sincos
on AArch64 and x86_64.
* sysdeps/aarch64/libm-test-ulps: Update ULP for sin, cos, sincos.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Remove slow paths for small
inputs.
(__cos): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sin, cos, sincos.
This patch assumes O_DIRECTORY works as defined by POSIX on opendir
implementation (aligning with other glibc code, for instance pwd). This
allows remove both the fallback code to handle system with missing or
broken O_DIRECTORY along with the Linux specific opendir.c which just
advertise the working flag.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/opendir.c (o_directory_works, tryopen_o_directory):
Remove definitions.
(opendir_oflags): Use O_DIRECTORY regardless.
(__opendir, __opendirat): Remove need_isdir_precheck usage.
* sysdeps/unix/sysv/linux/opendir.c: Remove file.
* htl/cthreads-compat.c (__cthread_detach): Call __pthread_detach
instead of pthread_detach.
(__cthread_fork): Call __pthread_create instead of pthread_create.
(__cthread_keycreate): Call __pthread_key_create instead of
pthread_key_create.
(__cthread_getspecific): Call __pthread_getspecific instead of
pthread_getspecific.
(__cthread_setspecific): Call __pthread_setspecific instead of
pthread_setspecific.
* htl/pt-alloc.c (__pthread_alloc): Call __pthread_mutex_lock and
__pthread_mutex_unlock instead of pthread_mutex_lock and
pthread_mutex_unlock.
* htl/pt-cleanup.c (__pthread_get_cleanup_stack): Rename to
___pthread_get_cleanup_stack.
(__pthread_get_cleanup_stack): New strong alias.
* htl/pt-create.c: Include <pthreadP.h>.
(entry_point): Call __pthread_exit instead of pthread_exit.
(pthread_create): Rename to __pthread_create.
(pthread_create): New strong alias.
* htl/pt-detach.c (pthread_detach): Rename to __pthread_detach.
(pthread_detach): New strong alias.
(__pthread_detach): Call __pthread_cond_broadcast instead of
pthread_cond_broadcast.
* htl/pt-exit.c (__pthread_exit): Call __pthread_setcancelstate
instead of pthread_setcancelstate.
* htl/pt-testcancel.c: Include <pthreadP.h>.
(pthread_testcancel): Call __pthread_exit instead of pthread_exit.
* sysdeps/htl/pt-attr-getstack.c: Include <pthreadP.h>
(__pthread_attr_getstack): Call __pthread_attr_getstackaddr and
__pthread_attr_getstacksize instead of pthread_attr_getstackaddr and
pthread_attr_getstacksize.
* sysdeps/htl/pt-attr-getstackaddr.c (pthread_attr_getstackaddr):
Rename to __pthread_attr_getstackaddr.
(pthread_attr_getstackaddr): New strong alias.
* sysdeps/htl/pt-attr-getstacksize.c (pthread_attr_getstacksize):
Rename to __pthread_attr_getstacksize.
(pthread_attr_getstacksize): New strong alias.
* sysdeps/htl/pt-attr-setstack.c: Include <pthreadP.h>.
(pthread_attr_setstack): Rename to __pthread_attr_setstack.
(pthread_attr_setstack): New strong alias.
(__pthread_attr_setstack): Call __pthread_attr_getstacksize,
__pthread_attr_setstacksize and __pthread_attr_setstackaddr instead of
pthread_attr_getstacksize, pthread_attr_setstacksize and
pthread_attr_setstackaddr.
* sysdeps/htl/pt-attr-setstackaddr.c (pthread_attr_setstackaddr):
Rename to __pthread_attr_setstackaddr.
(pthread_attr_setstackaddr): New strong alias.
* sysdeps/htl/pt-attr-setstacksize.c (pthread_attr_setstacksize):
Rename to __pthread_attr_setstacksize.
(pthread_attr_setstacksize): New strong alias.
* sysdeps/htl/pt-cond-timedwait.c: Include <pthreadP.h>.
(__pthread_cond_timedwait_internal): Use __pthread_exit instead of
pthread_exit.
* sysdeps/htl/pt-key-create.c: Include <pthreadP.h>.
(__pthread_key_create): New hidden def.
* sysdeps/htl/pt-key.h: Include <pthreadP.h>.
* sysdeps/htl/pthreadP.h (_pthread_mutex_init,
__pthread_cond_broadcast, __pthread_create, __pthread_detach,
__pthread_exit, __pthread_key_create, __pthread_getspecific,
__pthread_setspecific, __pthread_setcancelstate,
__pthread_attr_getstackaddr, __pthread_attr_setstackaddr,
__pthread_attr_getstacksize, __pthread_attr_setstacksize,
__pthread_attr_setstack, ___pthread_get_cleanup_stack): New
declarations.
(__pthread_key_create, _pthread_mutex_init): New hidden declarations.
* sysdeps/mach/hurd/htl/pt-attr-setstackaddr.c
(pthread_attr_setstackaddr): Rename to __pthread_attr_setstackaddr.
(pthread_attr_setstackaddr): New strong alias.
* sysdeps/mach/hurd/htl/pt-attr-setstacksize.c
(pthread_attr_setstacksize): Rename to __pthread_attr_setstacksize.
(pthread_attr_setstacksize): New strong alias.
* sysdeps/mach/hurd/htl/pt-docancel.c: Include <pthreadP.h>.
(call_exit): Call __pthread_exit instead of pthread_exit.
* sysdeps/mach/hurd/htl/pt-mutex-init.c: Include <pthreadP.h>.
(_pthread_mutex_init): New hidden definition.
* sysdeps/mach/hurd/htl/pt-sysdep.c: Include <pthreadP.h>.
(_init_routine): Call __pthread_attr_init and __pthread_attr_setstack
instead of pthread_attr_init and pthread_attr_setstack.
Contributed by
Agustina Arzille <avarzille@riseup.net>
Amos Jeffries <squid3@treenet.co.nz>
David Michael <fedora.dm0@gmail.com>
Marco Gerards <marco@gnu.org>
Marcus Brinkmann <marcus@gnu.org>
Neal H. Walfield <neal@gnu.org>
Pino Toscano <toscano.pino@tiscali.it>
Richard Braun <rbraun@sceen.net>
Roland McGrath <roland@gnu.org>
Samuel Thibault <samuel.thibault@ens-lyon.org>
Thomas DiModica <ricinwich@yahoo.com>
Thomas Schwinge <tschwinge@gnu.org>
* htl: New directory.
* sysdeps/htl: New directory.
* sysdeps/hurd/htl: New directory.
* sysdeps/i386/htl: New directory.
* sysdeps/mach/htl: New directory.
* sysdeps/mach/hurd/htl: New directory.
* sysdeps/mach/hurd/i386/htl: New directory.
* nscd/Depend, resolv/Depend, rt/Depend: Add htl dependency.
* sysdeps/mach/hurd/i386/Implies: Add mach/hurd/i386/htl imply.
* sysdeps/mach/hurd/i386/libpthread.abilist: New file.
This patch fixes 3dc214977 for sparc. Different than other architectures
SPARC kernel Kconfig does not define CONFIG_CLONE_BACKWARDS, however it
has the same ABI as if it did, implemented by sparc-specific code
(sparc_do_fork).
It also has a unique return value convention for clone:
Parent --> %o0 == child's pid, %o1 == 0
Child --> %o0 == parent's pid, %o1 == 1
Which required a special macro to correct issue the syscall
(INLINE_CLONE_SYSCALL).
Checked on sparc64-linux-gnu and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/arch-fork.h [__ASSUME_CLONE_BACKWARDS]
(arch_fork): Issue INLINE_CLONE_SYSCALL if defined.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Define.
When there is no login uid Linux sets /proc/self/loginid to the sentinel
value of, (uid_t) -1. If this is set we can return early and avoid
needlessly looking up the sentinel value in any configured nss
databases.
Checked on aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Return
early when linux sentinel value is set.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux kernel architectures have various arrangements for umount
syscalls. There is a syscall that takes flags, and an older one that
does not. Newer architectures have only the one taking flags, under
the name umount2 (or under the name umount, in the ia64 case). Older
architectures may have both, under the names umount2 and umount (or
under the names umount and oldumount, in the alpha case). glibc then
has several similar implementations of the umount function (no flags)
in terms of either the __umount2 function, or the corresponding
syscall, or in terms of the old syscall under either of its names.
This patch simplifies the implementations in glibc by always using the
__umount2 function to implement the umount function on all systems
using the Linux kernel. The linux/generic implementation is moved to
sysdeps/unix/sysv/linux (without any changes to code or comments) and
all the other variants are removed. (This will have the effect of
causing the new syscall to be used in some cases that previously used
the old one, but as discussed for previous changes, such a change to
the underlying syscalls used is OK.)
There remain two variants of how the __umount2 function is
implemented, either in umount2.S, or, for ia64, in syscalls.list.
Tested with build-many-glibcs.py.
[BZ #16552]
* sysdeps/unix/sysv/linux/generic/umount.c: Move to ....
* sysdeps/unix/sysv/linux/umount.c: ... here.
* sysdeps/unix/sysv/linux/arm/umount.c: Remove file.
* sysdeps/unix/sysv/linux/hppa/umount.c: Likewise.
* sysdeps/unix/sysv/linux/ia64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/umount.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/umount.c: Likewise.
* sysdeps/generic/libc-start.h [!SHARED] (ARCH_SETUP_TLS): Define to
__libc_setup_tls.
* sysdeps/unix/sysv/linux/powerpc/libc-start.h [!SHARED]
(ARCH_SETUP_TLS): Likewise.
* sysdeps/mach/hurd/libc-start.h: New file copied from
sysdeps/generic/libc-start.h, but define ARCH_SETUP_TLS to empty.
* csu/libc-start.c [!SHARED] (LIBC_START_MAIN): Call ARCH_SETUP_TLS instead
of __libc_setup_tls.
* sysdeps/mach/hurd/i386/init-first.c [!SHARED] (init1): Call
__libc_setup_tls before initializing libpthread and running _hurd_init which
starts the signal thread.
No glibc configuration uses the present debug/backtrace.c, whereas
several #include the x86_64 version. The x86_64 version is
effectively a generic one (using _Unwind_Backtrace from libgcc, which
works much more reliably than the built-in functions used by
debug/backtrace.c). This patch moves it to debug/backtrace.c and
removes all the #includes of the x86_64 version from other
architectures which are no longer required.
I do not know whether all the other architecture-specific backtrace
implementations that are based on _Unwind_Backtrace are required, or
whether, where their differences from the generic version do something
useful, suitable hooks could be added to the generic version to reduce
the duplication involved.
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by this patch.
* sysdeps/x86_64/backtrace.c: Move to ....
* debug/backtrace.c: ... here.
* sysdeps/aarch64/backtrace.c: Remove file.
* sysdeps/alpha/backtrace.c: Likewise.
* sysdeps/hppa/backtrace.c: Likewise.
* sysdeps/ia64/backtrace.c: Likewise.
* sysdeps/mips/backtrace.c: Likewise.
* sysdeps/nios2/backtrace.c: Likewise.
* sysdeps/riscv/backtrace.c: Likewise.
* sysdeps/sh/backtrace.c: Likewise.
* sysdeps/tile/backtrace.c: Likewise.
The powerpc and sparc bits/mathinline.h include inlines of fdim and
fdimf. These are not restricted to -fno-math-errno, but do not set
errno, and wrongly use ordered <= comparisons instead of the required
islessequal comparisons (this latter issue is latent on powerpc
because GCC wrongly uses unordered comparison instructions for
operations that should use ordered comparison instructions).
Since we wish to avoid such header inlines anyway, leaving it to the
compiler to inline such standard functions under appropriate
conditions, this patch fixes those issues by removing the inlines in
question (and thus removing the sparc bits/mathinline.h header which
had no other inlines left in it). I've filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85003> for adding
correct fdim inlines to GCC, since the function is simple enough that
a correct inline is a perfectly reasonable architecture-independent
optimization with -fno-math-errno and in the absence of implicit
excess precision.
Tested with build-many-glibcs.py for all its powerpc and sparc
configurations.
[BZ #22987]
* sysdeps/powerpc/bits/mathinline.h (fdim): Remove inline
function.
(fdimf): Likewise.
* sysdeps/sparc/fpu/bits/mathinline.h: Remove file.
* manual/errno.texi (EOWNERDEAD, ENOTRECOVERABLE): Remove errno
values from Linux-specific section now that it is in the GNU section.
* sysdeps/gnu/errlist.c: Regenerate.
* hurd/Makefile (routines): Add hurdlock.
* hurd/Versions (GLIBC_PRIVATE): Added new entry to export the above
interface.
(HURD_CTHREADS_0.3): Remove __libc_getspecific.
* hurd/hurdpid.c: Include <lowlevellock.h>
(_S_msg_proc_newids): Use lll_wait to synchronize.
* hurd/hurdsig.c: (reauth_proc): Use __mutex_lock and __mutex_unlock.
* hurd/setauth.c: Include <hurdlock.h>, use integer for synchronization.
* mach/Makefile (lock-headers): Remove machine-lock.h.
* mach/lock-intern.h: Include <lowlevellock.h> instead of
<machine-lock.h>.
(__spin_lock_t): New type.
(__SPIN_LOCK_INITIALIZER): New macro.
(__spin_lock, __spin_unlock, __spin_try_lock, __spin_lock_locked,
__mutex_init, __mutex_lock_solid, __mutex_unlock_solid, __mutex_lock,
__mutex_unlock, __mutex_trylock): Use lll to implement locks.
* mach/mutex-init.c: Include <lowlevellock.h> instead of <cthreads.h>.
(__mutex_init): Initialize with lll.
* manual/errno.texi (EOWNERDEAD, ENOTRECOVERABLE): New errno values.
* sysdeps/mach/Makefile: Add libmachuser as dependencies for libs
needing lll.
* sysdeps/mach/hurd/bits/errno.h: Regenerate.
* sysdeps/mach/hurd/cthreads.c (__libc_getspecific): Remove function.
* sysdeps/mach/hurd/bits/libc-lock.h: Remove file.
* sysdeps/mach/hurd/setpgid.c: Include <lowlevellock.h>.
(__setpgid): Use lll for synchronization.
* sysdeps/mach/hurd/setsid.c: Likewise with __setsid.
* sysdeps/mach/bits/libc-lock.h: Include <tls.h> and <lowlevellock.h>
instead of <cthreads.h>.
(_IO_lock_inexpensive): New macro
(__libc_lock_recursive_t, __rtld_lock_recursive_t): New structures.
(__libc_lock_self0): New declaration.
(__libc_lock_owner_self): New macro.
(__libc_key_t): Remove type.
(_LIBC_LOCK_INITIALIZER): New macro.
(__libc_lock_define_initialized, __libc_lock_init, __libc_lock_fini,
__libc_lock_fini_recursive, __rtld_lock_fini_recursive,
__libc_lock_lock, __libc_lock_trylock, __libc_lock_unlock,
__libc_lock_define_initialized_recursive,
__rtld_lock_define_initialized_recursive,
__libc_lock_init_recursive, __libc_lock_trylock_recursive,
__libc_lock_lock_recursive, __libc_lock_unlock_recursive,
__rtld_lock_initialize, __rtld_lock_trylock_recursive,
__rtld_lock_lock_recursive, __rtld_lock_unlock_recursive
__libc_once_define, __libc_mutex_unlock): Reimplement with lll.
(__libc_lock_define_recursive, __rtld_lock_define_recursive,
_LIBC_LOCK_RECURSIVE_INITIALIZER, _RTLD_LOCK_RECURSIVE_INITIALIZER):
New macros.
Include <libc-lockP.h> to reimplement libc_key* with pthread_key*.
* hurd/hurdlock.c: New file.
* hurd/hurdlock.h: New file.
* mach/lowlevellock.h: New file
This makes it notably safe against 'return' and such, and used for
__libc_cleanup_push/pop.
* sysdeps/mach/libc-lock.h (__libc_cleanup_frame): Define structure.
(__libc_cleanup_fct): Define function.
(__libc_cleanup_region_start, __libc_cleanup_region_end,
__libc_cleanup_end): Rewrite implementation using
__attribute__ ((__cleanup__)).
(__libc_cleanup_push, __libc_cleanup_pop): New macros.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h: Always include
<dl-sysdep.h>. Test for value of RTLD_PRIVATE_ERRNO instead of
testing whether it is defined.
This gets rid of a lot of kludge and gets closer to other ports.
* hurd/Makefile (headers): Remove threadvar.h.
(inline-headers): Remove threadvar.h.
* hurd/Versions (GLIBC_2.0: Remove __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables,
__hurd_threadvar_max, __hurd_errno_location.
(HURD_CTHREADS_0.3): Add pthread_getattr_np, pthread_attr_getstack.
* hurd/hurd/signal.h: Do not include <hurd/threadvar.h>.
(_hurd_self_sigstate): Use THREAD_SELF to get _hurd_sigstate.
(_HURD_SIGNAL_H_EXTERN_INLINE): Use THREAD_SELF to get _hurd_sigstate,
unless TLS is not initialized yet, in which case we do not need a
critical section yet anyway.
* hurd/hurd/threadvar.h: Include <tls.h>, do not include
<machine-sp.h>.
(__hurd_sigthread_variables, __hurd_threadvar_max): Remove variables
declarations.
(__hurd_threadvar_index): Remove enum.
(_HURD_THREADVAR_H_EXTERN_INLINE): Remove macro.
(__hurd_threadvar_location_from_sp,__hurd_threadvar_location): Remove
inlines.
(__hurd_reply_port0): New variable declaration.
(__hurd_local_reply_port): New macro.
* hurd/hurdsig.c (__hurd_sigthread_variables): Remove variable.
(interrupted_reply_port_location): Add thread_t parameter. Use it
with THREAD_TCB to access thread-local variables.
(_hurdsig_abort_rpcs): Pass ss->thread to
interrupted_reply_port_location.
(_hurd_internal_post_signal): Likewise.
(_hurdsig_init): Use presence of cthread_fork instead of
__hurd_threadvar_stack_mask to start signal thread by hand.
Remove signal thread threadvar initialization.
* hurd/hurdstartup.c: Do not include <hurd/threadvar.h>
* hurd/sigunwind.c: Include <hurd/threadvar.h>
(_hurdsig_longjmp_from_handler): Use __hurd_local_reply_port instead
of threadvar.
* sysdeps/mach/hurd/Versions (libc.GLIBC_PRIVATE): Add
__libc_lock_self0.
(ld.GLIBC_2.0): Remove __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables.
(ld.GLIBC_PRIVATE): Add __libc_lock_self0.
* sysdeps/mach/hurd/cthreads.c: Add __libc_lock_self0.
* sysdeps/mach/hurd/dl-sysdep.c (errno, __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables, threadvars,
__hurd_threadvar_stack_offset, __hurd_threadvar_stack_mask): Do not
define variables.
* sysdeps/mach/hurd/errno-loc.c: Do not include <errno.h> and
<hurd/threadvar.h>.
[IS_IN(rtld)] (rtld_errno): New variable.
[IS_IN(rtld)] (__errno_location): New weak function.
[!IS_IN(rtld)]: Include "../../../csu/errno-loc.c".
* sysdeps/mach/hurd/errno.c: Remove file.
* sysdeps/mach/hurd/fork.c: Include <hurd/threadvar.h>
(__fork): Remove THREADVAR_SPACE macro and its use.
* sysdeps/mach/hurd/i386/init-first.c (__hurd_threadvar_max): Remove
variable.
(init): Do not initialize threadvar.
* sysdeps/mach/hurd/i386/libc.abilist (__hurd_threadvar_max): Remove
symbol.
* sysdeps/mach/hurd/i386/sigreturn.c (__sigreturn): Use
__hurd_local_reply_port instead of threadvar.
* sysdeps/mach/hurd/i386/tls.h (tcbhead_t): Add reply_port and
_hurd_sigstate fields.
(HURD_DESC_TLS, __LIBC_NO_TLS, THREAD_TCB): New macro.
* sysdeps/mach/hurd/i386/trampoline.c: Remove outdated comment.
* sysdeps/mach/hurd/libc-lock.h: Do not include <hurd/threadvar.h>.
(__libc_lock_owner_self): Use &__libc_lock_self0 and THREAD_SELF
instead of threadvar.
* sysdeps/mach/hurd/libc-tsd.h: Remove file.
* sysdeps/mach/hurd/mig-reply.c (GETPORT, reply_port): Remove macros.
(use_threadvar, global_reply_port): Remove variables.
(__hurd_reply_port0): New variable.
(__mig_get_reply_port): Use __hurd_local_reply_port and
__hurd_reply_port0 instead of threadvar.
(__mig_dealloc_reply_port): Likewise.
(__mig_init): Do not initialize threadvar.
* sysdeps/mach/hurd/profil.c: Fix comment.
* sysdeps/generic/thread_state.h (MACHINE_NEW_THREAD_STATE_FLAVOR):
Define macro.
* sysdeps/mach/thread_state.h (MACHINE_THREAD_STATE_FIX_NEW): New macro.
* sysdeps/mach/i386/thread_state.h
(MACHINE_NEW_THREAD_STATE_FLAVOR): New macro, defined to
i386_THREAD_STATE.
(MACHINE_THREAD_STATE_FLAVOR): Define to i386_REGS_SEGS_STATE instead of
i386_THREAD_STATE.
(MACHINE_THREAD_STATE_FIX_NEW): New macro, reads segments.
* sysdeps/mach/hurd/i386/trampoline.c (_hurd_setup_sighandler): Use
i386_REGS_SEGS_STATE instead of i386_THREAD_STATE.
* sysdeps/mach/hurd/i386/tls.h (TCB_ALIGNMENT, HURD_SEL_LDT): New
macros.
(_hurd_tls_fork): Add original thread parameter, Duplicate existing LDT
descriptor instead of creating a new one.
(_hurd_tls_new): New function, creates a new descriptor and updates tcb.
* mach/setup-thread.c: Include <ldsodefs.h>.
(__mach_setup_thread): Call _dl_allocate_tls, pass
MACHINE_NEW_THREAD_STATE_FLAVOR to __thread_set_state instead of
MACHINE_THREAD_STATE_FLAVOR, before getting
MACHINE_THREAD_STATE_FLAVOR, calling _hurd_tls_new, and setting
MACHINE_THREAD_STATE_FLAVOR with the result.
* hurd/hurdfault.c (_hurdsig_fault_init): Call
MACHINE_THREAD_STATE_FIX_NEW.
* sysdeps/mach/hurd/fork.c (__fork): Call _hurd_tls_fork for sigthread
too. Add original thread parameter.
Continuing the removals of inline functions from the x86
bits/mathinline.h, this patch removes an inline of __finite (which was
not actually architecture-specific at all beyond its
endianness-dependence).
This inline is not normally used with GCC 4.4 or later, because
isfinite now uses __builtin_isfinite except for -fsignaling-nans.
Allowing __builtin_isfinite etc. to work properly even for
-fsignaling-nans, by implementing versions of those built-in functions
that use integer arithmetic in GCC, is
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66462> (a patch was
committed but had to be reverted because it caused problems, and that
patch didn't address all formats for all architectures, only some, so
by itself would not have been sufficient to allow glibc to use
__builtin_isfinite unconditionally for new-enough GCC).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [__USE_MISC] (__finite):
Remove inline function.
I found the i386 libm-test-ulps files needed updating (probably the
sqrt changes perturbed exactly when excess precision was used by the
compiler).
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
Revert m68k __ieee754_sqrt change as it causes a build failure in one
m68k configuration. m68k-linux-gnu now passes again.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Revert previous
commit.
Remove the now unused target specific__ieee754_sqrt(f/l) inlines.
Also remove inlines of sqrt which are for really old GCC versions.
Removing these is desirable, under the general principle of leaving
such inlining to the compiler rather than trying to do it in installed
headers, especially when only very old compilers are affected.
Note that removing inlines for __ieee754_sqrt disables inlining in the
sqrt wrapper functions. Given the sqrt function will typically only be
called for negative arguments, it doesn't matter whether the inlining
happens or not.
* sysdeps/aarch64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/alpha/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/generic/math-type-macros.h (M_SQRT): Use sqrt.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/powerpc/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/s390/fpu/bits/mathinline.h: Remove file.
* sysdeps/sparc/fpu/bits/mathinline.h (sqrt) Remove.
(sqrtf): Remove.
(sqrtl): Remove.
(__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/x86/fpu/math_private.h (__ieee754_sqrt): Remove.
* sysdeps/x86_64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
This patch series cleans up the many uses of __ieee754_sqrt(f/l) in GLIBC.
The goal is to enable GCC to do the inlining, and if this fails call the
__ieee754_sqrt function. This is done by internally declaring sqrt with asm
redirects. The compat symbols and sqrt wrappers need to disable the redirect.
The redirect is also disabled if there are already redirects defined when
using -ffinite-math-only.
All math functions (but not math tests, non-library code and libnldbl) are
built with -fno-math-errno which means GCC will typically inline sqrt as a
single instruction. This means targets are no longer forced to add a special
inline for sqrt.
* include/math.h (sqrt): Declare with asm redirect.
(sqrtf): Likewise.
(sqrtl): Likewise.
(sqrtf128): Likewise.
* Makeconfig: Add -fno-math-errno for libc/libm, but build testsuite,
nonlib and libnldbl with -fmath-errno.
* math/w_sqrt_compat.c: Define NO_MATH_REDIRECT.
* math/w_sqrt_template.c: Likewise.
* math/w_sqrtf_compat.c: Likewise.
* math/w_sqrtl_compat.c: Likewise.
* sysdeps/i386/fpu/w_sqrt.c: Likewise.
* sysdeps/i386/fpu/w_sqrt_compat.c: Likewise.
* sysdeps/generic/math-type-macros-float128.h: Remove math.h and
complex.h.
This patch removes further parts of sysdeps/x86/fpu/bits/mathinline.h
that are only of value for optimization with older compiler versions,
in accordance with general principles of preferring the let the
compiler deal with such inlining through built-in functions.
In general, GCC supports inlining all these functions as of version
4.3 or earlier. However, some inlines in GCC may have had excessively
restrictive conditions in past GCC versions (e.g. requiring
-ffast-math when the inline is valid under broader conditions). (In
particular, GCC had, before GCC 7, unnecessarily restrictive
conditions on when it could apply floor and ceil inlines corresponding
to the ones removed here. The same was true for rint, but
bits/mathinline.h *also* was excessively restrictive there.)
The removed sincos inlines are for __sincos etc. functions (not a
public interface and not currently used in this header either; not in
a part of the header ever used for building glibc itself). Likewise,
the atan2 inlines included one for __atan2l, also not a public
interface and not used for building glibc itself (calls inside glibc
generally use __ieee754_atan2l, for which there is a separate
__LIBC_INTERNAL_MATH_INLINES case in this header).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [__FAST_MATH__]
(__sincos_code): Remove define and undefine.
[__FAST_MATH__] (__sincos): Remove inline function.
[__FAST_MATH__] (__sincosf): Remove inline function.
[__FAST_MATH__] (__sincosl): Remove inline function.
(__atan2l): Remove inline functions.
[!__GNUC_PREREQ (3, 4)] (__atan2_code): Remove macro.
[!__GNUC_PREREQ (3, 4) && __FAST_MATH__] (atan2): Remove inline
function.
(floor): Remove inline function.
(ceil): Likewise.
[__FAST_MATH__] (__ldexp_code): Remove macro.
[__FAST_MATH__] (ldexp): Remove inline function.
[__FAST_MATH__ && __USE_ISOC99] (ldexpf): Likewise.
[__FAST_MATH__ && __USE_ISOC99] (ldexpl): Likewise.
[__FAST_MATH__ && __USE_ISOC99] (rint): Likewise.
[__USE_ISOC99] (__lrint_code): Remove macro.
[__USE_ISOC99] (__llrint_code): Likewise.
[__USE_ISOC99] (lrintf): Remove inline function.
[__USE_ISOC99] (lrint): Likewise.
[__USE_ISOC99] (lrintl): Likewise.
[__USE_ISOC99] (llrint): Likewise.
[__USE_ISOC99] (llrintf): Likewise.
[__USE_ISOC99] (llrintl): Likewise.
In accordance with the general principle of preferring to let the
compiler optimize function calls based on their standard semantics
rather than putting inline definitions of such functions in installed
headers, this patch removes various such inline definitions in the x86
bits/mathinline.h that were already disabled for GCC 3.5 or later and
so were only used with very old compilers (for which good optimization
is particularly unimportant); along with those inlines, a definition
of __M_SQRT2, which was only used in such inline functions, is also
removed. This is similar to an early step in removing the string.h
inlines; I intend to follow up with further removals of
bits/mathinline.h inline definitions in appropriate logical groups
(with GCC bugs filed in cases where GCC doesn't already support
corresponding optimizations).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [!__GNUC_PREREQ (3, 4)]
(lrintf): Remove definitions used only with old GCC.
[!__GNUC_PREREQ (3, 4)] (lrint): Likewise.
[!__GNUC_PREREQ (3, 4)] (llrintf): Likewise.
[!__GNUC_PREREQ (3, 4)] (llrint): Likewise.
[!__GNUC_PREREQ (3, 4)] (fmaxf): Likewise.
[!__GNUC_PREREQ (3, 4)] (fmax): Likewise.
[!__GNUC_PREREQ (3, 4)] (fminf): Likewise.
[!__GNUC_PREREQ (3, 4)] (fmin): Likewise.
[!__GNUC_PREREQ (3, 4)] (rint): Likewise.
[!__GNUC_PREREQ (3, 4)] (rintf): Likewise.
[!__GNUC_PREREQ (3, 4)] (nearbyint): Likewise.
[!__GNUC_PREREQ (3, 4)] (nearbyintf): Likewise.
[!__GNUC_PREREQ (3, 4)] (ceil): Likewise.
[!__GNUC_PREREQ (3, 4)] (ceilf): Likewise.
[!__GNUC_PREREQ (3, 4)] (floor): Likewise.
[!__GNUC_PREREQ (3, 4)] (floorf): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (tan): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (fmod): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 4)] (sin): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 4)] (cos): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (log10): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (asin): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (acos): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 4)] (atan): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (log1p): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (logb): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (log2): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (drem): Likewise.
[__FAST_MATH__] (__M_SQRT2): Remove macro.
The mutually misaligned inputs on aarch64 are compared with a simple
byte copy, which is not very efficient. Enhance the comparison
similar to strcmp by loading a double-word at a time. The peak
performance improvement (i.e. 4k maxlen comparisons) due to this on
the strncmp microbenchmark is as follows:
falkor: 3.5x (up to 72% time reduction)
cortex-a73: 3.5x (up to 71% time reduction)
cortex-a53: 3.5x (up to 71% time reduction)
All mutually misaligned inputs from 16 bytes maxlen onwards show
upwards of 15% improvement and there is no measurable effect on the
performance of aligned/mutually aligned inputs.
* sysdeps/aarch64/strncmp.S (count): New macro.
(strncmp): Store misaligned length in SRC1 in COUNT.
(mutual_align): Adjust.
(misaligned8): Load dword at a time when it is safe.
* sysdeps/mach/hurd/reboot.c: Include <hurd/paths.h>
(reboot): Lookup _SERVERS_STARTUP instead of calling proc_getmsgport to get a
port to the startup server.
Jeff Law noticed that native PowerPC builds were broken by my having
made math_ldbl_opt.h not include math.h. nldbl-compat.c formerly got
math.h via libioP.h and math_ldbl_opt.h, *without* __NO_LONG_DOUBLE_MATH;
after my change it got it via nldbl-compat.h *with* __NO_LONG_DOUBLE_MATH,
but __NO_LONG_DOUBLE_MATH mode is forbidden on hosts that define
__HAVE_DISTINCT_FLOAT128, so the build breaks. This is the quick fix.
* sysdeps/ieee754/ldbl-opt/nldbl-compat.c: Include math.h
before nldbl-compat.h.
The sysdeps/ieee754/ldbl-opt version of math_ldbl_opt.h includes
math.h and math_private.h, despite not having any need for those
headers itself; the sysdeps/generic version doesn't. About 20 files
are relying on math_ldbl_opt.h to include math.h and/or math_private.h
for them, even though none of them necessarily used on a platform that
needs ldbl-opt support.
* sysdeps/ieee754/ldbl-opt/math_ldbl_opt.h: Don't include
math.h or math_private.h.
* sysdeps/alpha/fpu/s_isnan.c
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c
* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c
* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c
* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c
* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/e_hypot.c
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/e_hypotf.c:
* sysdeps/powerpc/powerpc64/fpu/multiarch/e_expf.c
* sysdeps/powerpc/powerpc64/fpu/multiarch/e_hypot.c
* sysdeps/powerpc/powerpc64/fpu/multiarch/e_hypotf.c:
Include math_private.h.
* sysdeps/ieee754/ldbl-64-128/s_finitel.c
* sysdeps/ieee754/ldbl-64-128/s_fpclassifyl.c
* sysdeps/ieee754/ldbl-64-128/s_isinfl.c
* sysdeps/ieee754/ldbl-64-128/s_isnanl.c
* sysdeps/ieee754/ldbl-64-128/s_signbitl.c
* sysdeps/powerpc/power7/fpu/s_logb.c:
Include math.h and math_private.h.
On Alpha, the register $at is, by default, reserved for use by the
assembler, in the expansion of pseudo-instructions. It's also used
by the special calling convention for _mcount. We get warnings from
Alpha clone.S because the code to call _mcount isn't properly marked
up to tell the assembler not to use $at itself.
* sysdeps/unix/sysv/linux/alpha/clone.s (__clone): Wrap manual
uses of $at in .set noat / .set at.
Since __libc_longjmp is a private interface for cancellation implementation
in libpthread, there is no need to provide hidden __libc_longjmp in libc.
Tested with build-many-glibcs.py.
* include/setjmp.h (__libc_longjmp): Remove libc_hidden_proto.
* setjmp/longjmp.c (__libc_longjmp): Remove libc_hidden_def.
* sysdeps/s390/longjmp.c (__libc_longjmp): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/longjmp.S (__libc_longjmp):
Likewise.
On sparc32 tst-makecontext fails, as backtrace called within a context
created by makecontext to yield infinite backtrace.
Fix that the same way than nios2 by adding a nop just before
__startcontext. This is needed as otherwise FDE lookup just repeatedly
finds __setcontext's FDE in an infinite loop, due to the convention of
using 'address - 1' for FDE lookup.
Changelog:
[BZ #22919]
* sysdeps/unix/sysv/linux/sparc/sparc32/setcontext.S (__startcontext):
Add nop before __startcontext, add explaining comments.
Some SPE opcodes clashes with some recent PowerISA opcodes and
until recently gas did not complain about it. However binutils
recently changed it and now VLE configured gas does not support to
assembler some instruction that might class with VLE (HTM for
instance). It also does not help that glibc build hardware lock
elision support as default (regardless of assembler support).
Although runtime will not actually enables TLE on SPE hardware
(since kernel will not advertise it), I see little advantage on
adding HTM support on SPE built glibc. SPE uses an incompatible
ABI which does not allow share the same build with default
powerpc and HTM code slows down SPE without any benefict.
This patch fixes it by only building HTM when SPE configuration
is not used.
Checked with a powerpc-linux-gnuspe build. I also did some sniff
tests on a e500 hardware without any issue.
[BZ #22926]
* sysdeps/powerpc/powerpc32/sysdep.h (ABORT_TRANSACTION_IMPL): Define
empty for __SPE__.
* sysdeps/powerpc/sysdep.h (ABORT_TRANSACTION): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-lock.c (__lll_lock_elision):
Do not build hardware transactional code for __SPE__.
* sysdeps/unix/sysv/linux/powerpc/elision-trylock.c
(__lll_trylock_elision): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-unlock.c
(__lll_unlock_elision): Likewise.
This patch refactors the ARCH_FORK macro and the required architecture
specific header to simplify the required architecture definitions
to provide the fork syscall semantic and proper document current
Linux clone ABI variant.
Instead of require the reimplementation of arch-fork.h header, this
patch changes the ARCH_FORK to an inline function with clone ABI
defined by kernel-features.h define. The generic kernel ABI meant
for newer ports is used as default and redefine if the architecture
requires.
Checked on x86_64-linux-gnu and i686-linux-gnu. Also with a build
for all the afected ABIs.
* sysdeps/nptl/fork.c (ARCH_FORK): Replace by auch_fork.
* sysdeps/unix/sysv/linux/alpha/arch-fork.h: Remove file.
* sysdeps/unix/sysv/linux/riscv/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/aarch64/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/arm/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/i386/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/mips/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/s390/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/sh/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/tile/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/arch-fork.h (arch_fork): New function.
* sysdeps/unix/sysv/linux/aarch64/kernel-features.h: New file.
* sysdeps/unix/sysv/linux/riscv/kernel-features.h: Likewise.
* sysdeps/unix/sysv/linux/arm/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Define.
* sysdeps/unix/sysv/linux/createthread.c (ARCH_CLONE): Define to
__clone2 if __NR_clone2 is defined.
* sysdeps/unix/sysv/linux/hppa/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/i386/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/ia64/kernel-features.h
(__ASSUME_CLONE2): Likewise.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
(__ASSUME_CLONE_BACKWARDS3): Likewise.
* sysdeps/unix/sysv/linux/kernel-features.h: Document possible clone
variants and the define architecture can use.
(__ASSUME_CLONE_DEFAULT): Define as default.
* sysdeps/unix/sysv/linux/mips/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/s390/kernel-features.h
(__ASSUME_CLONE_BACKWARDS2): Likewise.
I goofed up when changing the loop8 name to loop16 and missed on out
the branch instance. Fixed and actually build tested this time.
* sysdeps/aarch64/memcmp.S (more16): Fix branch target loop16.
This improved memcmp provides a fast path for compares up to 16 bytes
and then compares 16 bytes at a time, thus optimizing loads from both
sources. The glibc memcmp microbenchmark retains performance (with an
error of ~1ns) for smaller compare sizes and reduces up to 31% of
execution time for compares up to 4K on the APM Mustang. On Qualcomm
Falkor this improves to almost 48%, i.e. it is almost 2x improvement
for sizes of 2K and above.
* sysdeps/aarch64/memcmp.S: Widen comparison to 16 bytes at a
time.
* sysdeps/mach/hurd/bits/stat.h [__USE_ATFILE] (UTIME_NOW,
UTIME_OMIT): New macros.
* sysdeps/mach/hurd/futimens.c (__futimens): Try to use __file_utimens
before reverting to converting time spec to time value and calling
__file_utimes.
* sysdeps/mach/hurd/utime-helper.c: New file.
* sysdeps/mach/hurd/futimes.c: Include "utime-helper.c".
(__futimes): Try to use utime_ts_from_tval and __file_utimens before
reverting to utime_tvalue_from_tval and __file_utimes.
* sysdeps/mach/hurd/lutimes.c: Include "utime-helper.c".
(__lutimes): Just call hurd_futimens after lookup.
* sysdeps/mach/hurd/utimes.c: Likewise.
Building glibc for s390 with -Os (32-bit only, with GCC 7) fails with:
In file included from ../sysdeps/s390/multiarch/8bit-generic.c:370:0,
from ebcdic-at-de.c:28:
../iconv/loop.c: In function '__to_generic_vx':
../iconv/loop.c:264:22: error: 'ch' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if (((Character) >> 7) == (0xe0000 >> 7)) \
^~
In file included from ebcdic-at-de.c:28:0:
../sysdeps/s390/multiarch/8bit-generic.c:340:15: note: 'ch' was declared here
uint32_t ch; \
^
../iconv/loop.c:325:7: note: in expansion of macro 'BODY'
BODY
^~~~
It's fairly easy to see, looking at the (long) expansion of the BODY
macro, that this is a false positive and the relevant variable 'ch' is
always initialized before use, in one of two possible places. As
such, disabling the warning for -Os with the DIAG_* macros is the
natural approach to fix this build failure. However, because of the
location at which the warning is reported, the disabling needs to go
in iconv/loop.c, around the definition of UNICODE_TAG_HANDLER (not
inside the definition), as that macro definition is where the
uninitialized use is reported, whereas the code that needs to be
reasoned about to see that the warning is a false positive is in the
definition of BODY elsewhere.
Thus, the patch adds such disabling in iconv/loop.c, with a comment
pointing to the s390-specific code and a comment in the s390-specific
code pointing to the generic file to alert people to the possible need
to update one place when changing the other. It would be possible if
desired to use #ifdef __s390__ around the disabling, though in general
we try to avoid that sort of thing in generic files. (Or some
extremely specialized macros for "disable -Wmaybe-uninitialized in
this particular place" could be specified, defined to 0 in a lot of
different files that include iconv/loop.c and to 1 in that particular
s390 file.)
Tested that this fixed -Os compilation for s390-linux-gnu with
build-many-glibcs.py.
* iconv/loop.c (UNICODE_TAG_HANDLER): Disable
-Wmaybe-uninitialized for -Os.
* sysdeps/s390/multiarch/8bit-generic.c (BODY): Add comment about
this disabling.
This patch defines _DIRENT_MATCHES_DIRENT64 to either 0 or 1 and adjust its
usage from checking its definition to its value.
Checked on a build for major Linux abis.
* bits/dirent.h (__INO_T_MATCHES_INO64_T): Define regardless whether
__INO_T_MATCHES_INO64_T is defined.
* sysdeps/unix/sysv/linux/bits/dirent.h: Likewise.
* dirent/alphasort.c: Check _DIRENT_MATCHES_DIRENT64 value instead
of definition.
* dirent/alphasort64.c: Likewise.
* dirent/scandir.c: Likewise.
* dirent/scandir64-tail.c: Likewise.
* dirent/scandir64.c: Likewise.
* dirent/scandirat.c: Likewise.
* dirent/scandirat64.c: Likewise.
* dirent/versionsort.c: Likewise.
* dirent/versionsort64.c: Likewise.
* include/dirent.h: Likewise.
Now that send might be implemented calling sendto syscall on Linux,
I am seeing some issue in some kernel configurations where tst-cancel4
sendto do not block as expected.
The socket used to force the syscall blocking is used with default
system configuration for buffer sending size, which might not be
suffice to force blocking. This patch fixes it by explicit setting
buffer socket lower than the buffer size used. It also enables sendto
cancellation tests to work in both ways (since internally send is
implemented routing to sendto on Linux kernel).
The patch also removes unrequired make rules on some archictures
for send/recv. The generic nptl Makefile already set the compiler flags
required on some architectures for correct unwinding and libc object
are not strictly required to support unwind (since pthread_cancel
requires linking against libpthread).
Checked on aarch64-linux-gnu and x86_64-linux-gnu. I also did a
sniff test with tst-cancel{4,5} on a simulated mips64-linux-gnu.
* nptl/tst-cancel4-common.h (set_socket_buffer): New function.
* nptl/tst-cancel4-common.c (do_test): Call set_socket_buffer
for socketpair endpoint.
* nptl/tst-cancel4.c (tf_send): Call set_socket_buffer and use
WRITE_BUFFER_SIZE as buffer size for sending socket.
(tf_sendto): Use SOCK_STREAM instead of SOCK_DGRAM and fix an
issue on system where send is implemented with sendto syscall.
* sysdeps/unix/sysv/linux/mips/mips64/Makefile [$(subdir) = socket]
(CFLAGS-recv.c, CFLAGS-send.c): Remove rules.
[$(subdir) = nptl] (CFLAGS-recv.c, CFLAGS-send.c): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/Makefile: Remove file.
This patch fixes the i386 sa_restorer field initialization for sigaction
syscall for kernel with vDSO. As described in bug report, i386 Linux
(and compat on x86_64) interprets SA_RESTORER clear with nonzero
sa_restorer as a request for stack switching if the SS segment is 'funny'.
This means that anything that tries to mix glibc's signal handling with
segmentation (for instance through modify_ldt syscall) is randomly broken
depending on what values lands in sa_restorer.
The testcase added is based on Linux test tools/testing/selftests/x86/ldt_gdt.c,
more specifically in do_multicpu_tests function. The main changes are:
- C11 atomics instead of plain access.
- Remove x86_64 support which simplifies the syscall handling and fallbacks.
- Replicate only the test required to trigger the issue.
Checked on i686-linux-gnu.
[BZ #21269]
* sysdeps/unix/sysv/linux/i386/Makefile (tests): Add tst-bz21269.
* sysdeps/unix/sysv/linux/i386/sigaction.c (SET_SA_RESTORER): Clear
sa_restorer for vDSO case.
* sysdeps/unix/sysv/linux/i386/tst-bz21269.c: New file.
so interfaces needing it can get it.
* stdlib/errno.h (error_t): Move definition to...
* bits/types/error_t.h: ... new header.
* stdlib/Makefile (headers): Add bits/types/error_t.h.
* sysdeps/mach/hurd/bits/errno.h (error_t): Move definition to...
* sysdeps/mach/hurd/bits/types/error_t.h: ... new header.
* sysdeps/mach/hurd/errnos.awk (error_t): Likewise.
* hurd/hurd.h: Include <bits/types/error_t.h>
* hurd/hurd/fd.h: Include <bits/types/error_t.h>
* hurd/hurd/id.h: Include <errno.h> and <bits/types/error_t.h>
* hurd/hurd/lookup.h: Include <errno.h> and <bits/types/error_t.h>
* hurd/hurd/resource.h: Include <bits/types/error_t.h>
* hurd/hurd/signal.h: Include <bits/types/error_t.h>
* hurd/hurd/sigpreempt.h: Include <bits/types/error_t.h>
Compiling the testsuite for powerpc (multi-arch configurations) with
-Os with GCC 7 fails with:
In file included from ifuncmod1.c:7:0,
from ifuncdep1.c:3:
../sysdeps/powerpc/ifunc-sel.h: In function 'ifunc_sel':
../sysdeps/powerpc/ifunc-sel.h:12:3: error: asm operand 2 probably doesn't match constraints [-Werror]
__asm__ ("mflr 12\n\t"
^~~~~~~
../sysdeps/powerpc/ifunc-sel.h:12:3: error: asm operand 3 probably doesn't match constraints [-Werror]
../sysdeps/powerpc/ifunc-sel.h:12:3: error: asm operand 4 probably doesn't match constraints [-Werror]
../sysdeps/powerpc/ifunc-sel.h:12:3: error: impossible constraint in 'asm'
The "i" constraints on function pointers require the function call to
be inlined so the compiler can see the constant function pointer
arguments passed to the asm. This patch marks the relevant functions
as always_inline accordingly.
Tested that this fixes the -Os testsuite build for
powerpc-linux-gnu-power4, powerpc64-linux-gnu, powerpc64le-linux-gnu
with build-many-glibcs.py.
* sysdeps/powerpc/ifunc-sel.h (ifunc_sel): Make always_inline.
(ifunc_one): Likewise.
libpthread_nonshared.a is unused after this, so remove it from the
build.
There is no ABI impact because pthread_atfork was implemented using
__register_atfork in libc even before this change.
pthread_atfork has to be a weak alias because pthread_* names are not
reserved in libc.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
As discussed in bug 22902, the i386 fenv_private.h implementation has
problems for float128 for the case of 32-bit glibc built with libgcc
from GCC configured using --with-fpmath=sse.
The optimized floating-point state handling in fenv_private.h needs to
know which floating-point state - x87 or SSE - is used for each
floating-point type, so that only one state needs updating / testing
for libm code using that state internally. On 32-bit x86, the x87
rounding mode is always used for float128, but the x87 exception flags
are only used when libgcc is built using x87 floating-point
arithmetic; if libgcc is built for SSE arithmetic, the SSE exception
flags are used.
The choice of arithmetic with which libgcc is built is independent of
that with which glibc is built. Thus, since glibc cannot tell the
choice used in libgcc, the default implementations of
libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 (which
use the <fenv.h> functions, thus using both x87 and SSE state on
processors that have both) need to be used; this patch updates the
code accordingly.
Tested for 32-bit x86; HJ reports testing in the --with-fpmath=sse
case.
[BZ #22902]
* sysdeps/i386/fpu/fenv_private.h [!__x86_64__]
(libc_feholdexcept_setroundf128): New macro.
[!__x86_64__] (libc_feupdateenv_testf128): Likewise.
On sparc, localplt test failures appear when building with -Os because
of a call to strtoumax from
sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c, and strtoumax
is not inlined when building with -Os. This patch fixes those
failures by using libc_hidden_proto and libc_hidden_def for strtoumax.
Tested with build-many-glibcs.py for
sparc64-linux-gnu-disable-multi-arch, sparc64-linux-gnu,
sparcv9-linux-gnu-disable-multi-arch, sparcv9-linux-gnu that this
fixes that test failure with -Os.
[BZ #15105]
* sysdeps/wordsize-32/strtoumax.c (strtoumax): Use
libc_hidden_def.
* sysdeps/wordsize-64/strtoumax.c (strtoumax): Likewise.
* include/inttypes.h: New file.
* sysdeps/pthread/timer_routines.c: Include <timer_routines.h> instead
of <nptl/pthreadP.h>
(thread_attr_compare): Move function to...
* sysdeps/nptl/timer_routines.h: ... new header.
Linux ptrace headers define macros whose tokens conflict with the
constants of enum __ptrace_request causing build errors when
asm/ptrace.h or linux/ptrace.h are included before sys/ptrace.h.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h: Undefine Linux
macros used in __ptrace_request.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
Glibc build generates header files to define constants from special .sym
files. If a .sym file includes the same header file which it generates,
it leads to circular dependency which may lead to build hang on a
many-core machine. Define GEN_AS_CONST_HEADERS when generating header
files to avoid circular dependency.
<tcb-offsets.h> is needed for i686 and it isn't needed for x86-64 at
least since glibc 2.23.
Tested on i686 and x86-64.
[BZ #22792]
* Makerules ($(common-objpfx)%.h): Pass -DGEN_AS_CONST_HEADERS
to $(CC).
* sysdeps/unix/sysv/linux/i386/lowlevellock.h: Include
<tcb-offsets.h> only if GEN_AS_CONST_HEADERS isn't defined.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h: Don't include
<tcb-offsets.h>.
Current implementation (sysdeps/nptl/fork.c) replicates the atfork
handlers list backward to invoke the child handlers after fork/clone
syscall.
The internal atfork handlers is implemented as a single-linked list
so a lock-free algorithm can be used, trading fork mulithread call
performance for some code complexity and dynamic stack allocation
(since the backwards list should not fail).
This patch refactor it to use a dynarary instead of a linked list.
It simplifies the external variables need to be exported and also
the internal atfork handler member definition.
The downside is a serialization of fork call in multithread, since to
operate on the dynarray the internal lock should be used. However
as noted by Florian, it already acquires external locks for malloc
and libio so it is already hitting some lock contention. Besides,
posix_spawn should be faster and more scalable to run external programs
in multithread environments.
Checked on x86_64-linux-gnu.
* nptl/Makefile (routines): Remove unregister-atfork.
* nptl/register-atfork.c (fork_handler_pool): Remove variable.
(fork_handler_alloc): Remove function.
(fork_handlers, fork_handler_init): New variables.
(__fork_lock): Rename to atfork_lock.
(__register_atfork, __unregister_atfork, libc_freeres_fn): Rewrite
to use a dynamic array to add/remove atfork handlers.
* sysdeps/nptl/fork.c (__libc_fork): Likewise.
* sysdeps/nptl/fork.h (__fork_lock, __fork_handlers, __linkin_atfork):
Remove declaration.
(fork_handler): Remove next, refcntr, and need_signal member.
(__run_fork_handler_type): New enum.
(__run_fork_handlers): New prototype.
* sysdeps/nptl/libc-lockP.h (__libc_atfork): Remove declaration.
This patch renames the nptl-signals.h header to internal-signals.h.
On Linux the definitions and functions are not only NPTL related, but
used for other POSIX definitions as well (for instance SIGTIMER for
posix times, SIGSETXID for id functions, and signal block/restore
helpers) and since generic functions will be places and used in generic
implementation it makes more sense to decouple it from NPTL.
Checked on x86_64-linux-gnu.
* sysdeps/nptl/nptl-signals.h: Move to ...
* sysdeps/generic/internal-signals.h: ... here. Adjust internal
comments.
* sysdeps/unix/sysv/linux/internal-signals.h: Add include guards.
(__nptl_is_internal_signal): Rename to __is_internal_signal.
(__nptl_clear_internal_signals): Rename to __clear_internal_signals.
* sysdeps/unix/sysv/linux/raise.c: Adjust nptl-signal.h to
include-signals.h rename.
* nptl/pthreadP.h: Likewise.
* sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Call
__is_internal_signal instead of __nptl_is_internal_signal.
I accidentally set the loop jump back label as misaligned8 instead of
do_misaligned. The typo is harmless but it's always nice to not have
to unnecessarily execute those two instructions.
* sysdeps/aarch64/strcmp.S (do_misaligned): Jump back to
do_misaligned, not misaligned8.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines):
Add memcpy_thunderx2.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c (MAX_IFUNC):
Increment to 4.
(__libc_ifunc_impl_list): Add __memcpy_thunderx2.
* sysdeps/aarch64/multiarch/memcpy.c (libc_ifunc): Add IS_THUNDERX2
and IS_THUNDERX2PA checks.
* sysdeps/aarch64/multiarch/memcpy_thunderx.S (USE_THUNDERX2):
Use macro to set name appropriately.
(memcpy): Use USE_THUNDERX2 macro to modify prefetches.
* sysdeps/aarch64/multiarch/memcpy_thunderx2.S: New file.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_THUNDERX2PA):
New macro.
(IS_THUNDERX2): New macro.
After regenerating ULPs from scratch in
commit 8e7196c875, I've missed
to test it with multiple gcc versions. Hence, here is a further update.
ChangeLog:
* sysdeps/s390/fpu/libm-test-ulps: Regenerated.
This patch mechanically removes all remaining uses, and the
definitions, of the following libio name aliases:
name replaced with
---- -------------
_IO_FILE FILE
_IO_fpos_t __fpos_t
_IO_fpos64_t __fpos64_t
_IO_size_t size_t
_IO_ssize_t ssize_t or __ssize_t
_IO_off_t off_t
_IO_off64_t off64_t
_IO_pid_t pid_t
_IO_uid_t uid_t
_IO_wint_t wint_t
_IO_va_list va_list or __gnuc_va_list
_IO_BUFSIZ BUFSIZ
_IO_cookie_io_functions_t cookie_io_functions_t
__io_read_fn cookie_read_function_t
__io_write_fn cookie_write_function_t
__io_seek_fn cookie_seek_function_t
__io_close_fn cookie_close_function_t
I used __fpos_t and __fpos64_t instead of fpos_t and fpos64_t because
the definitions of fpos_t and fpos64_t depend on the largefile mode.
I used __ssize_t and __gnuc_va_list in a handful of headers where
namespace cleanliness might be relevant even though they're
internal-use-only. In all other cases, I used the public-namespace
name.
There are a tiny handful of places where I left a use of 'struct _IO_FILE'
alone, because it was being used together with 'struct _IO_FILE_plus'
or 'struct _IO_FILE_complete' in the same arithmetic expression.
Because this patch was almost entirely done with search and replace, I
may have introduced indentation botches. I did proofread the diff,
but I may have missed something.
The ChangeLog below calls out all of the places where this was not a
pure search-and-replace change.
Installed stripped libraries and executables are unchanged by this patch,
except that some assertions in vfscanf.c change line numbers.
* libio/libio.h (_IO_FILE): Delete; all uses changed to FILE.
(_IO_fpos_t): Delete; all uses changed to __fpos_t.
(_IO_fpos64_t): Delete; all uses changed to __fpos64_t.
(_IO_size_t): Delete; all uses changed to size_t.
(_IO_ssize_t): Delete; all uses changed to ssize_t or __ssize_t.
(_IO_off_t): Delete; all uses changed to off_t.
(_IO_off64_t): Delete; all uses changed to off64_t.
(_IO_pid_t): Delete; all uses changed to pid_t.
(_IO_uid_t): Delete; all uses changed to uid_t.
(_IO_wint_t): Delete; all uses changed to wint_t.
(_IO_va_list): Delete; all uses changed to va_list or __gnuc_va_list.
(_IO_BUFSIZ): Delete; all uses changed to BUFSIZ.
(_IO_cookie_io_functions_t): Delete; all uses changed to
cookie_io_functions_t.
(__io_read_fn): Delete; all uses changed to cookie_read_function_t.
(__io_write_fn): Delete; all uses changed to cookie_write_function_t.
(__io_seek_fn): Delete; all uses changed to cookie_seek_function_t.
(__io_close_fn): Delete: all uses changed to cookie_close_function_t.
* libio/iofopncook.c: Remove unnecessary forward declarations.
* libio/iolibio.h: Correct outdated commentary.
* malloc/malloc.c (__malloc_stats): Remove unnecessary casts.
* stdio-common/fxprintf.c (__fxprintf_nocancel):
Remove unnecessary casts.
* stdio-common/getline.c: Use _IO_getdelim directly.
Don't redefine ssize_t.
* stdio-common/printf_fp.c, stdio_common/printf_fphex.c
* stdio-common/printf_size.c: Don't redefine size_t or FILE.
Remove outdated comments.
* stdio-common/vfscanf.c: Don't redefine va_list.
This looks like a post-exploitation hardening measure: If an attacker is
able to redirect execution flow, they could use that to load a DSO which
contains additional code (or perhaps make the stack executable).
However, the checks are not in the correct place to be effective: If
they are performed before the critical operation, an attacker with
sufficient control over execution flow could simply jump directly to
the code which performs the operation, bypassing the check. The check
would have to be executed unconditionally after the operation and
terminate the process in case a caller violation was detected.
Furthermore, in _dl_check_caller, there was a fallback reading global
writable data (GL(dl_rtld_map).l_map_start and
GL(dl_rtld_map).l_text_end), which could conceivably be targeted by an
attacker to disable the check, too.
Other critical functions (such as system) remain completely
unprotected, so the value of these additional checks does not appear
that large. Therefore this commit removes this functionality.
When adding/updating localplt.data for various architectures to get
the compilation tests passing everywhere, I generally made it reflect
the existing state of what local PLT entries were actually seen,
rather than an ideal state with as few as possible such entries,
mainly for functions that are intended to be interposable.
This patch eliminates some local PLT entries for hppa by using
__sigprocmask instead of sigprocmask in getcontext and setcontext.
The specific case of sigprocmask called by setcontext is the third of
four items in bug 18124 (the other three have already been fixed for
2.26 or earlier releases). Note that hppa-specific localplt.data
entries for __sigsetjmp, _IO_funlockfile and __errno_location remain,
but the causes / fixes are less immediately obvious from source
inspection.
Tested (compilation tests only) with build-many-glibcs.py for
hppa-linux-gnu.
[BZ #18124]
* sysdeps/hppa/bsd-setjmp.S: Include <sysdep.h>.
(setjmp): Use HIDDEN_JUMPTARGET with __sigsetjmp.
* sysdeps/unix/sysv/linux/hppa/getcontext.S (__getcontext): Call
__sigprocmask instead of sigprocmask.
* sysdeps/unix/sysv/linux/hppa/setcontext.S (__setcontext):
Likewise.
* sysdeps/unix/sysv/linux/hppa/localplt.data: Remove entries for
__sigsetjmp and sigprocmask.
Among other localplt test failures when building with -Os, there are
libc.so PLT references for __cmsg_nxthdr. This is a simple case of a
function that is inlined for -O2 but not for -Os; this patch adds
libc_hidden_proto / libc_hidden_def for it to avoid a localplt failure
even when it is not inlined.
Tested for x86_64 (both that it removes this particular localplt
failure for -Os - but other such failures remain so the bug can't yet
be closed - and that the testsuite continues to pass without -Os).
[BZ #15105]
* include/sys/socket.h [!_ISOMAC] (__cmsg_nxthdr): Use
libc_hidden_proto.
* sysdeps/unix/sysv/linux/cmsg_nxthdr.c (__cmsg_nxthdr): Use
libc_hidden_def.
Continuing the fixes for linknamespace and localplt test failures with
-Os that arise from functions not being inlined in that case, this
patch fixes such failures for feof_unlocked.
The usual approach is followed of adding __feof_unlocked (inlined when
feof_unlocked is), making calls use it when required for namespace
reasons, and using libc_hidden_proto / libc_hidden_weak for the
feof_unlocked weak alias when only localplt but not namespace issues
are involved. In the case of getaddrinfo.c, use of __feof_unlocked
needs to be conditional since that code is also used in nscd (where
__feof_unlocked is not available).
Tested for x86_64 (both without -Os to make sure that case continues
to work, and with -Os to make sure all the relevant linknamespace and
localplt test failures are resolved). Because of other such failures
that remain after this patch, neither of the bugs can yet be closed.
[BZ #15105]
[BZ #19463]
* libio/feof_u.c (feof_unlocked): Rename to __feof_unlocked and
define as weak alias of __feof_unlocked. Use libc_hidden_weak.
* include/stdio.h (feof_unlocked): Use libc_hidden_proto.
(__feof_unlocked): New declaration, and inline function if
[__USE_EXTERN_INLINES].
* iconv/gconv_conf.c (read_conf_file): Call __feof_unlocked
instead of feof_unlocked.
* intl/localealias.c [_LIBC] (FEOF): Likewise.
* nss/nsswitch.c (nss_parse_file): Likewise.
* sysdeps/unix/sysv/linux/readonly-area.c (__readonly_area):
Likewise.
* time/getdate.c (__getdate_r): Likewise.
* sysdeps/posix/getaddrinfo.c [IS_IN (libc)] (feof_unlocked):
Define as macro to call __feof_unlocked.
* sysdeps/powerpc/fpu/libm-test-ulps (pow): Increase double and
idouble to 1 ULP.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
Remove the slow paths from pow. Like several other double precision math
functions, pow is exactly rounded. This is not required from math functions
and causes major overheads as it requires multiple fallbacks using higher
precision arithmetic if a result is close to 0.5ULP. Ridiculous slowdowns
of up to 100000x have been reported when the highest precision path triggers.
All GLIBC math tests pass on AArch64 and x64 (with ULP of pow set to 1).
The worst case error is ~0.506ULP. A simple test over a few hundred million
values shows pow is 10% faster on average. This fixes BZ #13932.
[BZ #13932]
* sysdeps/ieee754/dbl-64/uexp.h (err_1): Remove.
* benchtests/pow-inputs: Update comment for slow path cases.
* manual/probes.texi (slowpow_p10): Delete removed probe.
(slowpow_p10): Likewise.
* math/Makefile: Remove halfulp.c and slowpow.c.
* sysdeps/aarch64/libm-test-ulps: Set ULP of pow to 1.
* sysdeps/generic/math_private.h (__exp1): Remove error argument.
(__halfulp): Remove.
(__slowpow): Remove.
* sysdeps/i386/fpu/halfulp.c: Delete file.
* sysdeps/i386/fpu/slowpow.c: Likewise.
* sysdeps/ia64/fpu/halfulp.c: Likewise.
* sysdeps/ia64/fpu/slowpow.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove error argument,
improve comments and add error analysis.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Add error analysis.
(power1): Remove function:
(log1): Remove error argument, add error analysis.
(my_log2): Remove function.
* sysdeps/ieee754/dbl-64/halfulp.c: Delete file.
* sysdeps/ieee754/dbl-64/slowpow.c: Likewise.
* sysdeps/m68k/m680x0/fpu/halfulp.c: Likewise.
* sysdeps/m68k/m680x0/fpu/slowpow.c: Likewise.
* sysdeps/powerpc/power4/fpu/Makefile: Remove CPPFLAGS-slowpow.c.
* sysdeps/x86_64/fpu/libm-test-ulps: Set ULP of pow to 1.
* sysdeps/x86_64/fpu/multiarch/Makefile: Remove slowpow-fma.c,
slowpow-fma4.c, halfulp-fma.c, halfulp-fma4.c.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma.c (__slowpow): Remove define.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma4.c (__slowpow): Likewise.
* sysdeps/x86_64/fpu/multiarch/halfulp-fma.c: Delete file.
* sysdeps/x86_64/fpu/multiarch/halfulp-fma4.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/slowpow-fma.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/slowpow-fma4.c: Likewise.
Remove compat-specific constants that were never exported by kernel
headers under these names. Before linux commit v3.7-rc1~16^2~1 they
were exported with COMPAT_ prefix, and since that commit they are not
exported at all.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h (__ptrace_request):
Remove arm-specific PTRACE_GET_THREAD_AREA, PTRACE_GETHBPREGS,
and PTRACE_SETHBPREGS.
This patch adds the narrowing add functions from TS 18661-1 to glibc's
libm: fadd, faddl, daddl, f32addf64, f32addf32x, f32xaddf64 for all
configurations; f32addf64x, f32addf128, f64addf64x, f64addf128,
f32xaddf64x, f32xaddf128, f64xaddf128 for configurations with
_Float64x and _Float128; __nldbl_daddl for ldbl-opt. As discussed for
the build infrastructure patch, tgmath.h support is deliberately
deferred, and FP_FAST_* macros are not applicable without optimized
function implementations.
Function implementations are added for all relevant pairs of formats
(including certain cases of a format and itself where more than one
type has that format). The main implementations use round-to-odd, or
a trivial computation in the case where both formats are the same or
where the wider format is IBM long double (in which case we don't
attempt to be correctly rounding). The sysdeps/ieee754/soft-fp
implementations use soft-fp, and are used automatically for
configurations without exceptions and rounding modes by virtue of
existing Implies files. As previously discussed, optimized versions
for particular architectures are possible, but not included.
i386 gets a special version of f32xaddf64 to avoid problems with
double rounding (similar to the existing fdim version), since this
function must round just once without an intermediate rounding to long
double. (No such special version is needed for any other function,
because the nontrivial functions use round-to-odd, which does the
intermediate computation with the rounding mode set to round-to-zero,
and double rounding is OK except in round-to-nearest mode, so is OK
for that intermediate round-to-zero computation.) mul and div will
need slightly different special versions for i386 (using round-to-odd
on long double instead of precision control) because of the
possibility of inexact intermediate results in the subnormal range for
double.
To reduce duplication among the different function implementations,
math-narrow.h gets macros CHECK_NARROW_ADD, NARROW_ADD_ROUND_TO_ODD
and NARROW_ADD_TRIVIAL.
In the trivial cases and for any architecture-specific optimized
implementations, the overhead of the errno setting might be
significant, but I think that's best handled through compiler built-in
functions rather than providing separate no-errno versions in glibc
(and likewise there are no __*_finite entry points for these function
provided, __*_finite effectively being no-errno versions at present in
most cases).
Tested for x86_64 and x86, with both GCC 6 and GCC 7. Tested for
mips64 (all three ABIs, both hard and soft float) and powerpc with GCC
7. Tested with build-many-glibcs.py with both GCC 6 and GCC 7.
* math/Makefile (libm-narrow-fns): Add add.
(libm-test-funcs-narrow): Likewise.
* math/Versions (GLIBC_2.28): Add narrowing add functions.
* math/bits/mathcalls-narrow.h (add): Use __MATHCALL_NARROW .
* math/gen-auto-libm-tests.c (test_functions): Add add.
* math/math-narrow.h (CHECK_NARROW_ADD): New macro.
(NARROW_ADD_ROUND_TO_ODD): Likewise.
(NARROW_ADD_TRIVIAL): Likewise.
* sysdeps/ieee754/float128/float128_private.h (__faddl): New
macro.
(__daddl): Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fadd and
dadd.
(CFLAGS-nldbl-dadd.c): New variable.
(CFLAGS-nldbl-fadd.c): Likewise.
* sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add
__nldbl_daddl.
* sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_daddl): New
prototype.
* manual/arith.texi (Misc FP Arithmetic): Document fadd, faddl,
daddl, fMaddfN, fMaddfNx, fMxaddfN and fMxaddfNx.
* math/auto-libm-test-in: Add tests of add.
* math/auto-libm-test-out-narrow-add: New generated file.
* math/libm-test-narrow-add.inc: New file.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/ieee754/dbl-64/s_f32xaddf64.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fadd.c: Likewise.
* sysdeps/ieee754/float128/s_f32addf128.c: Likewise.
* sysdeps/ieee754/float128/s_f64addf128.c: Likewise.
* sysdeps/ieee754/float128/s_f64xaddf128.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_daddl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_f64xaddf128.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_faddl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_daddl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_faddl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_daddl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_faddl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-dadd.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-fadd.c: Likewise.
* sysdeps/ieee754/soft-fp/s_daddl.c: Likewise.
* sysdeps/ieee754/soft-fp/s_fadd.c: Likewise.
* sysdeps/ieee754/soft-fp/s_faddl.c: Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps: Update.
* sysdeps/mach/hurd/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Testing narrowing functions with build-many-glibcs.py showed up a
further testsuite fix needed to enable building such functions for
powerpc64le: tests test-<narrower-type>-float128-<function> (and
likewise for float64x) needed the same special handling for
powerpc64le as test-float128-* and test-float64x-*. This patch adds
that special handling.
Tested with build-many-glibcs.py for powerpc64le in conjunction with
the main patch adding narrowing add functions.
* sysdeps/powerpc/powerpc64le/Makefile [$(subdir) = math]
(f128-pairs): New variable.
[$(subdir) = math] ($(foreach suf,$(all-object-suffixes),$(foreach
pair,$(f128-pairs),$(objpfx)test-$(pair)%$(suf)))): Add -mfloat128
to CFLAGS.
[$(subdir) = math] ($(foreach pair,$(f128-pairs),test-$(pair)%)):
Also make tests add $(f128-loader-link) to gnulib-tests.
When ldconfig reads Elf64 files to determine the ABI, it used the
Elf32 type, so read the wrong location, and stored the wrong ABI
type in the cache, making the cache useless. This patch uses
an Elf64 type for Elf64 objects instead.
Note that pre-patch caches might need to be manually removed and
regenerated to get the correct ABIs stored.
[BZ #22827]
* sysdeps/unix/sysv/linux/riscv/readelflib.c (process_elf_file): Use
64-bit ELF type for 64-bit ELF objects.
This patch continues preparations for adding TS 18661-1 narrowing libm
functions by adding the required testsuite infrastructure to test such
functions through the libm-test infrastructure.
That infrastructure is based around testing for a single type, FLOAT.
For the narrowing functions, FLOAT, the "main" type for testing, is
the function return type; the argument type is ARG_FLOAT. This is
consistent with how the code built once for each type,
libm-test-support.c, depends on FLOAT for such things as calculating
ulps errors in results but can already handle different argument types
(pointers, integers, long double for nexttoward).
Makefile machinery is added to handle building tests for all pairs of
types for which there are narrowing functions (as with non-narrowing
functions, aliases are tested just the same as the functions they
alias). gen-auto-libm-tests gains a --narrow option for building
outputs for narrowing functions (so narrowing sqrt and fma will share
the same inputs as non-narrowing, but gen-auto-libm-tests will be run
with and without that option to generate different output files). In
the narrowing case, the auto-libm-test-out-narrow-* files include
annotations for each test about what properties ARG_FLOAT must have to
be able to represent all the inputs for that test; those annotations
result in calls to the TEST_COND_arg_fmt macro.
gen-libm-test.pl has some minor updates to handle narrowing tests (for
example, arguments in such tests must be surrounded by ARG_LIT calls
instead of LIT calls). Various new macros are added to the C test
support code (for example, sNaN initializers need to be properly
typed, so arg_snan_value is added; other such arg_* macros are added
as it seems cleanest to do so, though some are not strictly required).
Special-casing of the ibm128 format to allow for its limitations is
adjusted to handle it as the argument format as well as as the result
format; thus, the tests of the new functions allow nonzero ulps only
in the case where ibm128 is the argument format, as otherwise the
functions correspond to fully-defined IEEE operations. The ulps in
question appear as e.g. 'Function: "add_ldouble"' in libm-test-ulps
(with 1ulp errors then listed for double and float for that function
in powerpc); no support is added to generate corresponding faddl /
daddl ulps listings in the ulps table in the manual.
For the previous patch, I noted the need to avoid spurious macro
expansions of identifiers such as "add". A test test-narrow-macros.c
is added to verify such macro expansions are successfully avoided, and
there is also a -mlong-double-64 version of that test for ldbl-opt.
This test is set up to cover the full set of relevant identifiers from
the start rather than adding functions one at a time as each function
group is added.
Tested for x86_64 (this patch in isolation, as well as testing for
various configurations in conjunction with the actual addition of
"add" functions).
* math/Makefile (test-type-pairs): New variable.
(test-type-pairs-f64xf128-yes): Likewise.
(tests): Add test-narrow-macros.
(libm-test-funcs-narrow): New variable.
(libm-test-c-narrow): Likewise.
(generated): Add $(libm-test-c-narrow).
(libm-tests-base-narrow): New variable.
(libm-tests-narrow): Likewise.
(libm-tests): Add $(libm-tests-narrow).
(libm-tests-for-type): Handle $(libm-tests-narrow).
(libm-test-c-narrow-obj): New variable.
($(libm-test-c-narrow-obj)): New rule.
($(foreach t,$(libm-tests-narrow),$(objpfx)$(t).c)): Likewise.
($(foreach f,$(libm-test-funcs-narrow),$(objpfx)$(o)-$(f).o)): Use
$(o-iterator) to set dependencies and CFLAGS.
* math/gen-auto-libm-tests.c: Document use for narrowing
functions.
(output_for_one_input_case): Take argument NARROW.
(generate_output): Likewise. Update call to
output_for_one_input_case.
(main): Take --narrow option. Update call to generate_output.
* math/gen-libm-test.pl (_apply_lit): Take macro name as argument.
(apply_lit): Update call to _apply_lit.
(apply_arglit): New function.
(parse_args): Handle "a" arguments.
(parse_auto_input): Handle format names using ":".
* math/README.libm-test: Document "a" parameter type.
* math/libm-test-support.h (ARG_TYPE_MIN): New macro.
(ARG_TYPE_TRUE_MIN): Likewise.
(ARG_TYPE_MAX): Likwise.
(ARG_MIN_EXP): Likewise.
(ARG_MAX_EXP): Likewise.
(ARG_MANT_DIG): Likewise.
(TEST_COND_arg_ibm128): Likewise.
(TEST_COND_ibm128_libgcc): Define conditional on [ARG_FLOAT].
(TEST_COND_arg_fmt): New macro.
(init_max_error): Update prototype.
* math/libm-test-support.c (test_ibm128): New variable.
(init_max_error): Take argument testing_ibm128 and set test_ibm128
instead of using [TEST_COND_ibm128] conditional.
(test_exceptions): Use test_ibm128 instead of TEST_COND_ibm128.
* math/libm-test-driver.c (STR_ARG_FLOAT): New macro.
[TEST_NARROW] (TEST_MSG): New definition.
(arg_plus_zero): New macro.
(arg_minus_zero): Likewise.
(arg_plus_infty): Likewise.
(arg_minus_infty): Likewise.
(arg_qnan_value_pl): Likewise.
(arg_qnan_value): Likewise.
(arg_snan_value_pl): Likewise.
(arg_snan_value): Likewise.
(arg_max_value): Likewise.
(arg_min_value): Likewise.
(arg_min_subnorm_value): Likewise.
[ARG_FLOAT] (struct test_aa_f_data): New struct type.
(RUN_TEST_LOOP_aa_f): New macro.
(TEST_SUFF): New macro.
(TEST_SUFF_STR): Likewise.
[!TEST_MATHVEC] (VEC_SUFF): Don't define.
(TEST_COND_any_ibm128): New macro.
(START): Use TEST_SUFF and TEST_SUFF_STR in initializer for
this_func. Update call to init_max_error.
* math/test-double.h (FUNC_NARROW_PREFIX): New macro.
* math/test-float.h (FUNC_NARROW_PREFIX): Likewise.
* math/test-float128.h (FUNC_NARROW_PREFIX): Likewise.
* math/test-float32.h (FUNC_NARROW_PREFIX): Likewise.
* math/test-float32x.h (FUNC_NARROW_PREFIX): Likewise.
* math/test-float64.h (FUNC_NARROW_PREFIX): Likewise.
* math/test-float64x.h (FUNC_NARROW_PREFIX): Likewise.
* math/test-math-scalar.h (TEST_NARROW): Likewise.
* math/test-math-vector.h (TEST_NARROW): Likewise.
* math/test-arg-double.h: New file.
* math/test-arg-float128.h: Likewise.
* math/test-arg-float32x.h: Likewise.
* math/test-arg-float64.h: Likewise.
* math/test-arg-float64x.h: Likewise.
* math/test-arg-ldouble.h: Likewise.
* math/test-math-narrow.h: Likewise.
* math/test-narrow-macros.c: Likewise.
* sysdeps/ieee754/ldbl-opt/test-narrow-macros-ldbl-64.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (tests): Add
test-narrow-macros-ldbl-64.
(CFLAGS-test-narrow-macros-ldbl-64.c): New variable.
TS 18661-1 defines libm functions that carry out an operation (+ - * /
sqrt fma) on their arguments and return a result rounded to a
(usually) narrower type, as if the original result were computed to
infinite precision and then rounded directly to the result type
without any intermediate rounding to the argument type. For example,
fadd, faddl and daddl for addition. These are the last remaining TS
18661-1 functions left to be added to glibc. TS 18661-3 extends this
to corresponding functions for _FloatN and _FloatNx types.
As functions parametrized by two rather than one varying
floating-point types, these functions require infrastructure in glibc
that was not required for previous libm functions. This patch
provides such infrastructure - excluding test support, and actual
function implementations, which will be in subsequent patches.
Declaring the functions uses a header bits/mathcalls-narrow.h, which
is included many times, for each relevant pair of types. This will
end up containing macro calls of the form
__MATHCALL_NARROW (__MATHCALL_NAME (add), __MATHCALL_REDIR_NAME (add), 2);
for each family of narrowing functions. (The structure of this macro
call, with the calls to __MATHCALL_NAME and __MATHCALL_REDIR_NAME
there rather than in the definition of __MATHCALL_NARROW, arises from
the names such as "add" *not* themselves being reserved identifiers -
meaning it's necessary to avoid any indirection that would result in a
user-defined "add" macro being expanded.) Whereas for existing
functions declaring long double functions is disabled if _LIBC in the
case where they alias double functions, to facilitate defining the
long double functions as aliases of the double ones, there is no such
logic for the narrowing functions in this patch. Rather, the files
defining such functions are expected to use #define to hide the
original declarations of the alias names, to avoid errors about
defining aliases with incompatible types.
math/Makefile support is added for building the functions (listed in
libm-narrow-fns, currently empty) for all relevant pairs of types. An
internal header math-narrow.h is added for macros shared between
multiple function implementations - currently a ROUND_TO_ODD macro to
facilitate writing functions using the round-to-odd implementation
approach, and alias macros to create all the required function
aliases. libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128
are added for use when required (only for x86_64). float128_private.h
support is added for ldbl-128 narrowing functions to be used for
_Float128.
Certain things are specifically omitted from this patch and the
immediate followups. tgmath.h support is deferred; there remain
unresolved questions about how the type-generic macros for these
functions are supposed to work, especially in the case of arguments of
integer type. The math.h / bits/mathcalls-narrow.h logic, and the
logic for determining what functions / aliases to define, will need
some adjustments to support the sqrt and fma functions, where
e.g. f32xsqrtf64 can just be an alias for sqrt rather than a separate
function. TS 18661-1 defines FP_FAST_* macros but no support is
included for defining them (they won't in general be true without
architecture-specific optimized function versions).
For each of the function groups (add sub mul div sqrt fma) there are
always six functions present (e.g. fadd, faddl, daddl, f32addf64,
f32addf32x, f32xaddf64). When _Float64x and _Float128 are supported,
there are seven more (e.g. f32addf64x, f32addf128, f64addf64x,
f64addf128, f32xaddf64x, f32xaddf128, f64xaddf128). In addition, in
the ldbl-opt case there are function names such as __nldbl_daddl (an
alias for f32xaddf64, which is not a reserved name in TS 18661-1, only
in TS 18661-3), for calls to daddl to be mapped to in the
-mlong-double-64 case. (Calls to faddl just get mapped to fadd, and
for sqrt and fma there won't be __nldbl_* functions because dsqrtl and
dfmal can just be mapped to sqrt and fma with -mlong-double-64.)
While there are six or thirteen functions present in each group (plus
__nldbl_* names only as an ABI, not an API), not all are distinct;
they fall in various groups of aliases. There are two distinct
versions built if long double has the same format as double; four if
they have distinct formats but there is no _Float64x or _Float128
support; five if long double has binary128 format; seven when
_Float128 is distinct from long double.
Architecture-specific optimized versions are possible, but not
included in my patches. For example, IA64 generally supports
narrowing the result of most floating-point instructions; Power ISA
2.07 (POWER8) supports double values as arguments to float
instructions, with the results narrowed as expected; Power ISA 3
(POWER9) supports round-to-odd for float128 instructions, so meaning
that approach can be used without needing to set and restore the
rounding mode and test "inexact". I intend to leave any such
optimized versions to the architecture maintainers. Generally in such
cases it would also make sense for calls to these functions to be
expanded inline (given -fno-math-errno); I put a suggestion for TS
18661-1 built-in functions at <https://gcc.gnu.org/wiki/SummerOfCode>.
Tested for x86_64 (this patch in isolation, as well as testing for
various configurations in conjunction with further patches).
* math/bits/mathcalls-narrow.h: New file.
* include/bits/mathcalls-narrow.h: Likewise.
* math/math-narrow.h: Likewise.
* math/math.h (__MATHCALL_NARROW_ARGS_1): New macro.
(__MATHCALL_NARROW_ARGS_2): Likewise.
(__MATHCALL_NARROW_ARGS_3): Likewise.
(__MATHCALL_NARROW_NORMAL): Likewise.
(__MATHCALL_NARROW_REDIR): Likewise.
(__MATHCALL_NARROW): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)]: Repeatedly include
<bits/mathcalls-narrow.h> with _Mret_, _Marg_ and __MATHCALL_NAME
defined.
[__GLIBC_USE (IEC_60559_TYPES_EXT)]: Likewise.
* math/Makefile (headers): Add bits/mathcalls-narrow.h.
(libm-narrow-fns): New variable.
(libm-narrow-types-basic): Likewise.
(libm-narrow-types-ldouble-yes): Likewise.
(libm-narrow-types-float128-yes): Likewise.
(libm-narrow-types-float128-alias-yes): Likewise.
(libm-narrow-types): Likewise.
(libm-routines): Add narrowing functions.
* sysdeps/i386/fpu/fenv_private.h [__x86_64__]
(libc_feholdexcept_setroundf128): New macro.
[__x86_64__] (libc_feupdateenv_testf128): Likewise.
* sysdeps/ieee754/float128/float128_private.h: Include
<math/math-narrow.h>.
[libc_feholdexcept_setroundf128] (libc_feholdexcept_setroundl):
Undefine and redefine.
[libc_feupdateenv_testf128] (libc_feupdateenv_testl): Likewise.
(libm_alias_float_ldouble): Undefine and redefine.
(libm_alias_double_ldouble): Likewise.
Since GCC has support for accessing FPSR/FPCR, use them when possible
so that the asm instructions can be removed eventually. Although GCC 5
supports the builtins, it has an optimization bug, so use them from GCC 6
onwards.
* sysdeps/aarch64/fpu/fpu_control.h: Use builtins for accessing
FPCR/FPSR.
As noted in bug 17979 (and as I noted earlier in
<https://sourceware.org/ml/libc-alpha/2012-02/msg00647.html>), uchar.h
has gratuitously complicated code to determine the types for char16_t
and char32_t, and to reject including that header for pre-C11
compilers not defining __CHAR16_TYPE__ and __CHAR32_TYPE__. Since
those types are always required to match uint_least16_t and
uint_least32_t, which glibc knows how to define without reference to
such predefined macros, it's safe just to define those types the same
as the *least* types are defined in stdint.h, so allowing the header
to work with (for example) GCC 4.3.
This patch implements that. bits/types.h is made to define
__int_leastN_t and __uint_leastN_t so the logic for those types can
stay in a single place, and stdint.h is made to use those __*_t to
define the public *_t types. uchar.h is then made to use
__uint_least16_t and __uint_least32_t to define char16_t and char32_t,
so simplifying the logic there. A new test is added that verifies the
types chosen for char16_t and char32_t do indeed match the types the
compiler uses for u"" and U"" string literals.
Tested for x86_64. (I have not tested with any of the older compilers
for which this would actually make a difference to whether you can
include uchar.h.)
[BZ #17979]
* posix/bits/types.h (__int_least8_t): New typedef.
(__uint_least8_t): Likewise.
(__int_least16_t): Likewise.
(__uint_least16_t): Likewise.
(__int_least32_t): Likewise.
(__uint_least32_t): Likewise.
(__int_least64_t): Likewise.
(__uint_least64_t): Likewise.
* sysdeps/generic/stdint.h (int_least8_t): Define using
__int_least8_t.
(int_least16_t): Define using __int_least16_t.
(int_least32_t): Define using __int_least32_t.
(int_least64_t): Define using __int_least64_t.
(uint_least8_t): Define using __uint_least8_t.
(uint_least16_t): Define using __uint_least16_t.
(uint_least32_t): Define using __uint_least32_t.
(uint_least64_t): Define using __uint_least64_t.
* wcsmbs/uchar.h: Include <bits/types.h>.
(char16_t): Define using __uint_least16_t conditional only on
[!__USE_ISOCXX11].
(char32_t): Define using __uint_least32_t conditional only on
[!__USE_ISOCXX11].
* wcsmbs/test-char-types.c: New file.
* wcsmbs/Makefile (tests): Add test-char-types.
Nearly everything in _G_config.h is either junk or more appropriately
defined elsewhere:
* _G_fpos_t, _G_fpos64_t, and _G_BUFSIZ are already completely unused.
* All remaining uses of _G_va_list have been changed to __gnuc_va_list.
* The definition of _G_HAVE_ST_BLKSIZE/_IO_HAVE_ST_BLKSIZE has
been inlined into its sole use.
* The complete definition of _G_iconv_t has been moved to libio.h and
renamed _IO_iconv_t (all actual users used that name).
* _G_IO_IO_FILE_VERSION is vestigial; some code cares whether
_IO_stdin_used exists, but nothing looks at its value. I've
preserved the value as a hardwired constant in csu/init.c.
This means csu/init.c no longer needs to include anything.
* Many of the headers included by _G_config.h were already being
included directly by either either libio.h or stdio.h; the
remaining ones were moved to libio.h.
* _G_HAVE_MREMAP is still relevant, because mremap genuinely is a
Linux extension; it's not in POSIX and as far as I can tell it's
not available on the Hurd either. I also preserved _G_HAVE_MMAP,
since it's conceivable someone would want to port glibc to a
MMU-less, mmap-less environment in the future. Both are now always
defined to 1/0 as is the current convention, instead of the older
1/undef convention. These are the only symbols still defined in
_G_config.h.
* The actual inclusion of _G_config.h moves from libio.h to libioP.h,
as this is where a potential override of _G_HAVE_MMAP happens.
* The #ifdef logic in libioP.h controlling _IO_JUMPS_OFFSET has been
simplified.
After this patch, the only surviving _G_ symbols are the struct tag
names _G_fpos_t and _G_fpos64_t, which are preserved for the sake of
C++ mangled names in applications, and _G_HAVE_MMAP and _G_HAVE_MREMAP,
which do not seem worth renaming.
Installed stripped libraries are unchanged by this patch.
* bits/_G_config.h: Move back to sysdeps/generic/_G_config.h.
Delete all contents except for definitions of _G_HAVE_MMAP and
_G_HAVE_MREMAP. Add commentary explaining those two symbols.
* sysdeps/unix/sysv/linux/bits/_G_config.h: Move back to
sysdeps/unix/sysv/linux/_G_config.h. Make same content
change as above.
* libio/libio.h: Don't include bits/_G_config.h here.
Include stddef.h with __need_wchar_t defined. Include
bits/types/__mbstate_t.h, bits/types/wint_t.h, and gconv.h.
Define _IO_iconv_t here, directly.
Don't define _IO_HAVE_ST_BLKSIZE.
* libio/libioP.h: Include _G_config.h here. Move include of
shlib-compat.h up with rest of includes. Simplify conditionals
controlling definition of _IO_JUMPS_OFFSET.
* csu/init.c: Remove always-true #if around entire file.
Don't include stdio.h. Set _IO_stdin_used to hardwired
constant 0x20001, and update commentary.
* include/stdio.h, sysdeps/ieee754/ldbl-opt/nldbl-compat.h:
Replace all uses of _G_va_list with __gnuc_va_list.
* libio/filedoalloc.c: Use #if defined _STATBUF_ST_BLKSIZE
instead of #if _IO_HAVE_ST_BLKSIZE.
* libio/fileops.c: Test _G_HAVE_MREMAP with #if, not #ifdef.
* libio/iofdopen.c, libio/iofopen.c: Test _G_HAVE_MMAP with #if,
not #ifdef.
We shipped 2.27 with libio.h and _G_config.h still installed but
issuing warnings when used. Let's stop installing them early in 2.28
so that we have plenty of time to think of another plan if there are
problems.
The public stdio.h had a genuine dependency on libio.h for the
complete definitions of FILE and cookie_io_functions_t, and a genuine
dependency on _G_config.h for the complete definitions of fpos_t and
fpos64_t; these are moved to single-type headers.
bits/types/struct_FILE.h also provides a handful of accessor and
bitflags macros so that code is not duplicated between bits/stdio.h
and libio.h. All the other _IO_ and _G_ names used by the public
stdio.h can be replaced with either public names or __-names.
In order to minimize the risk of breaking our own compatibility code,
bits/types/struct_FILE.h preserves the _IO_USE_OLD_IO_FILE mechanism
exactly as it was in libio.h, but you have to define _LIBC to use it,
or it'll error out. Similarly, _IO_lock_t_defined is preserved
exactly, but will error out if used without defining _LIBC.
Internally, include/stdio.h continues to include libio.h, and libio.h
scrupulously provides every _IO_* and _G_* name that it always did,
perhaps now defined in terms of the public names. This is how this
patch avoids touching dozens of files throughout glibc and becoming
entangled with the _IO_MTSAFE_IO mess. The remaining patches in this
series eliminate most of the _G_ names.
Tested on x86_64-linux; in addition to the test suite, I installed the
library in a sysroot and verified that a simple program that uses
stdio.h could be compiled against the installed library, and I also
verified that installed stripped libraries are unchanged.
* libio/bits/types/__fpos_t.h, libio/bits/types/__fpos64_t.h:
New single-type headers split from _G_config.h.
* libio/bits/types/cookie_io_functions_t.h
* libio/bits/types/struct_FILE.h
New single-type headers split from libio.h.
* libio/Makefile: Install the above new headers. Don't install
libio.h, _G_config.h, bits/libio.h, bits/_G_config.h, or
bits/libio-ldbl.h.
* libio/_G_config.h, libio/libio.h: Delete file.
* libio/bits/libio.h: Remove improper-inclusion guard.
Include stdio.h and don't repeat anything that it does.
Define _IO_fpos_t as __fpos_t, _IO_fpos64_t as __fpos64_t,
_IO_BUFSIZ as BUFSIZ, _IO_va_list as __gnuc_va_list,
__io_read_fn as cookie_read_function_t,
__io_write_fn as cookie_write_function_t,
__io_seek_fn as cookie_seek_function_t,
__io_close_fn as cookie_close_function_t,
and _IO_cookie_io_functions_t as cookie_io_functions_t.
Define _STDIO_USES_IOSTREAM, __HAVE_COLUMN, and _IO_file_flags
here, in the "compatibility defines" section. Remove an #if 0
block. Use the "body" macros from bits/types/struct_FILE.h to
define _IO_getc_unlocked, _IO_putc_unlocked, _IO_feof_unlocked,
and _IO_ferror_unlocked.
Move prototypes of __uflow and __overflow...
* libio/stdio.h: ...here. Don't include bits/libio.h.
Don't define _STDIO_USES_IOSTREAM. Get __gnuc_va_list
directly from stdarg.h. Include bits/types/__fpos_t.h,
bits/types/__fpos64_t.h, bits/types/struct_FILE.h,
and, when __USE_GNU, bits/types/cookie_io_functions_t.h.
Use __gnuc_va_list, not _G_va_list; __fpos_t, not _G_fpos_t;
__fpos64_t, not _G_fpos64_t; FILE, not struct _IO_FILE;
cookie_io_functions_t, not _IO_cookie_io_functions_t;
__ssize_t, not _IO_ssize_t. Unconditionally define
BUFSIZ as 8192 and EOF as (-1).
* libio/bits/stdio.h: Add multiple-include guard. Use the "body"
macros from bits/types/struct_FILE.h instead of _IO_* macros
from libio.h; use __gnuc_va_list instead of va_list and __ssize_t
instead of _IO_ssize_t.
* libio/bits/stdio2.h: Similarly.
* libio/iolibio.h: Add multiple-include guard.
Include bits/libio.h after stdio.h.
* libio/libioP.h: Add multiple-include guard.
Include stdio.h and bits/libio.h before iolibio.h.
* include/bits/types/__fpos_t.h, include/bits/types/__fpos64_t.h
* include/bits/types/cookie_io_functions_t.h
* include/bits/types/struct_FILE.h: New wrappers.
* bits/_G_config.h, sysdeps/unix/sysv/linux/_G_config.h:
Get definitions of _G_fpos_t and _G_fpos64_t from
bits/types/__fpos_t.h and bits/types/__fpos64_t.h
respectively. Remove improper-inclusion guards.
* conform/data/stdio.h-data: Update expectations of va_list.
* scripts/check-installed-headers.sh: Remove special case for
libio.h and _G_config.h.
Building with -Os produces linknamespace and localplt failures for,
among other functions, gnu_dev_major, gnu_dev_minor and
gnu_dev_makedev.
The issue is that those functions are not inlined when building with
-Os. While one could force them to be inlined in that case, it seems
more natural to fix this issue similarly to other namespace issues.
Thus, this patch makes gnu_dev_* into weak aliases for hidden symbols
__gnu_dev_*; __gnu_dev_* are then defined as inlines in the internal
include/sys/sysmacros.h, and uses of gnu_dev_* (often via the macros
major, minor and makedev) for which there are namespace issues are
changed to use __gnu_dev_*; where there are no namespace issues, use
of libc_hidden_proto serves to avoid unnecessary local PLT entry use.
Tested for x86_64, (a) without -Os, to verify the testsuite continues
to pass without problems and that the functions called under their new
names continue to be inlined as expected in that case; (b) with -Os,
to verify that the linknamespace and localplt failures in question go
away (but because of other such failures present, neither of the
relevant bugs can yet be closed).
[BZ #15105]
[BZ #19463]
* include/sys/sysmacros.h [!_ISOMAC]
(__SYSMACROS_NEED_IMPLEMENTATION): Define macro.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC]
(_SYS_SYSMACROS_H_WRAPPER): Likewise.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (gnu_dev_major): Use
libc_hidden_proto.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (gnu_dev_minor): Likewise.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (gnu_dev_makedev):
Likewise.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (__SYSMACROS_DECL_TEMPL):
Undefine and redefine to add use __gnu_dev_ prefix.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (__SYSMACROS_IMPL_TEMPL):
Likewise.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (__gnu_dev_major): Declare
and define as hidden inline function.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (__gnu_dev_minor):
Likewise.
[!_SYS_SYSMACROS_H_WRAPPER && !_ISOMAC] (__gnu_dev_makedev):
Likewise.
* misc/makedev.c (OUT_OF_LINE_IMPL_TEMPL): Use __gnu_dev_ prefix.
(gnu_dev_major): Use weak_alias and libc_hidden_weak.
(gnu_dev_minor): Likewise.
(gnu_dev_makedev): Likewise.
* csu/check_fds.c (check_one_fd): Use __gnu_dev_makedev instead of
makedev.
* posix/wordexp.c (exec_comm_child): Likewise.
* sysdeps/mach/hurd/xmknodat.c (__xmknodat): Use __gnu_dev_minor
instead of minor and __gnu_dev_major instead of major.
* sysdeps/unix/sysv/linux/device-nrs.h (DEV_TTY_P): Use
__gnu_dev_major instead of major.
* sysdeps/unix/sysv/linux/pathconf.c (distinguish_extX): Use
__gnu_dev_major instead of gnu_dev_major and __gnu_dev_minor
instead of gnu_dev_minor.
* sysdeps/unix/sysv/linux/ptsname.c (MASTER_P): Likewise.
(SLAVE_P): Likewise.
(__ptsname_internal): Use __gnu_dev_minor instead of minor.
* sysdeps/unix/sysv/linux/ttyname.h (is_pty): Use __gnu_dev_major
instead of major.
Remove the slow paths from log. Like several other double precision math
functions, log is exactly rounded. This is not required from math functions
and causes major overheads as it requires multiple fallbacks using higher
precision arithmetic if a result is close to 0.5ULP. Ridiculous slowdowns
of up to 100000x have been reported when the highest precision path triggers.
Interestingly removing the slow paths makes hardly any difference in practice:
the worst case error is still ~0.502ULP, and exp(log(x)) shows identical results
before/after on many millions of random cases. All GLIBC math tests pass on
AArch64 and x64 with no change in ULP error. A simple test over a few hundred
million values shows log is now 18% faster on average.
* manual/probes.texi (slowlog): Delete documentation of removed probe.
(slowlog_inexact): Likewise
* sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Remove slow paths.
* sysdeps/ieee754/dbl-64/ulog.h: Remove unused declarations.