Work around a GCC behavior with hardware transactional memory built-ins.
GCC doesn't treat the PowerPC transactional built-ins as compiler
barriers, moving instructions past the transaction boundaries and
altering their atomicity.
The skip_lock_out_of_tbegin_retries adaptive parameter was
not being used correctly, nor as described. This prevents
a fallback for all users of the lock if a transient abort
occurs within the accepted number of retries.
[BZ #19174]
* sysdeps/powerpc/nptl/elide.h (__elide_lock): Fix usage of
.skip_lock_out_of_tbegin_retries.
* sysdeps/unix/sysv/linux/powerpc/elision-lock.c
(__lll_lock_elision): Likewise, and respect a value of
try_tbegin <= 0.
The previous code used to evaluate the preprocessor token is_lock_free to
a variable before starting a transaction. This behavior can cause an
error if another thread got the lock (without using a transaction)
between the evaluation of the token and the beginning of the transaction.
This bug can be triggered with the following order of events:
1. The lock accessed by is_lock_free is free.
2. Thread T1 evaluates is_lock_free and stores into register R1 that the
lock is free.
3. Thread T2 acquires the same lock used in is_lock_free.
4. T1 begins the transaction, creating a memory barrier where is_lock_free
is false, but R1 is true.
5. T1 reads R1 and doesn't abort the transaction.
6. T1 calls ELIDE_UNLOCK, which reads false from is_lock_free and decides
to unlock a lock acquired by T2, leading to undefined behavior.
This patch delays the evaluation of is_lock_free to inside a transaction
by moving this part of the code to the macro ELIDE_LOCK.
[BZ #18743]
* sysdeps/powerpc/nptl/elide.h (__elide_lock): Move most of this
code to...
(ELIDE_LOCK): ...here.
(__get_new_count): New function with part of the code from
__elide_lock that updates the value of adapt_count after a
transaction abort.
(__elided_trylock): Moved this code to...
(ELIDE_TRYLOCK): ...here.
This patch adds support for lock elision using ISA 2.07 hardware
transactional memory for rwlocks. The logic is similar to the
one presented in pthread_mutex lock elision.