With arch-syscall.h it can now assumes the existance of either
__NR_clock_nanosleep or __NR_clock_nanosleep_time64. The 32-bit
time_t support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_clock_gettime or __NR_clock_gettime_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
It also uses the time64-support functions to simplify it further.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
With arch-syscall.h it can now assumes the existance of either
__NR_clock_adjtime or __NR_clock_adjtime_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Lukasz Majewski <lukma@denx.de>
These helper functions are used to optimize the 64-bit time_t support on
configurations that requires support for 32-bit time_t fallback
(!__ASSUME_TIME64_SYSCALLS). The idea is once the kernel advertises that
it does not have 64-bit time_t support, glibc will stop to try issue the
64-bit time_t syscall altogether.
For instance:
#ifndef __NR_symbol_time64
# define __NR_symbol_time64 __NR_symbol
#endif
int r;
if (supports_time64 ())
{
r = INLINE_SYSCALL_CALL (symbol, ...);
if (r == 0 || errno != ENOSYS)
return r;
mark_time64_unsupported ();
}
#ifndef __ASSUME_TIME64_SYSCALLS
<32-bit fallback syscall>
#endif
return r;
On configuration with default 64-bit time_t this optimization should be
optimized away by the compiler resulting in no overhead.
Unfortunately some HWCAP names like HWCAP_S390_VX differs between
kernel (see <kernel>/arch/s390/include/asm/elf.h) and glibc.
Therefore, those HWCAP names from kernel are now introduced as alias
This patch updates the kernel version in the test tst-mman-consts.py
to 5.8. (There are no new MAP_* constants covered by this test in 5.8
that need any other header changes.)
Tested with build-many-glibcs.py.
This provides correct AT_EACCESS handling and also takes
Linux security modules into account.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux 5.8 has one new syscall, faccessat2. Update syscall-names.list
and regenerate the arch-syscall.h headers with build-many-glibcs.py
update-syscalls.
Tested with build-many-glibcs.py.
The kernel ABI is not finalized, and there are now various proposals
to change the size of struct rseq, which would make the glibc ABI
dependent on the version of the kernels used for building glibc.
This is of course not acceptable.
This reverts commit 48699da1c4 ("elf:
Support at least 32-byte alignment in static dlopen"), commit
8f4632deb3 ("Linux: rseq registration
tests"), commit 6e29cb3f61 ("Linux: Use
rseq in sched_getcpu if available"), and commit
0c76fc3c2b ("Linux: Perform rseq
registration at C startup and thread creation"), resolving the conflicts
introduced by the ARC port and the TLS static surplus changes.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Sun RPC was removed from glibc. This includes rpcgen program, librpcsvc,
and Sun RPC headers. Also test for bug #20790 was removed
(test for rpcgen).
Backward compatibility for old programs is kept only for architectures
and ABIs that have been added in or before version 2.28.
libtirpc is mature enough, librpcsvc and rpcgen are provided in
rpcsvc-proto project.
NOTE: libnsl code depends on Sun RPC (installed libnsl headers use
installed Sun RPC headers), thus --enable-obsolete-rpc was a dependency
for --enable-obsolete-nsl (removed in a previous commit).
The arc ABI list file has to be updated because the port was added
with the sunrpc symbols
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Support usable check for all CPU features with the following changes:
1. Change struct cpu_features to
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
unsigned int preferred[PREFERRED_FEATURE_INDEX_MAX];
...
};
so that there is a usable bit for each cpuid bit.
2. After the cpuid bits have been initialized, copy the known bits to the
usable bits. EAX/EBX from INDEX_1 and EAX from INDEX_7 aren't used for
CPU feature detection.
3. Clear the usable bits which require OS support.
4. If the feature is supported by OS, copy its cpuid bit to its usable
bit.
5. Replace HAS_CPU_FEATURE and CPU_FEATURES_CPU_P with CPU_FEATURE_USABLE
and CPU_FEATURE_USABLE_P to check if a feature is usable.
6. Add DEPR_FPU_CS_DS for INDEX_7_EBX_13.
7. Unset MPX feature since it has been deprecated.
The results are
1. If the feature is known and doesn't requre OS support, its usable bit
is copied from the cpuid bit.
2. Otherwise, its usable bit is copied from the cpuid bit only if the
feature is known to supported by OS.
3. CPU_FEATURE_USABLE/CPU_FEATURE_USABLE_P are used to check if the
feature can be used.
4. HAS_CPU_FEATURE/CPU_FEATURE_CPU_P are used to check if CPU supports
the feature.
A big shoutout to Cupertino Miranda <cmiranda@synopsys.com> for his
valuable contribution in initial bringup and debugging on Linux and
later in solving pesky unwinding/cancelation failures in testsuite.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Teach the linker that __mcount_internal, __sigjmp_save_symbol,
__syscall_error and __GI_exit do not use r2, so that it does not need to
recover r2 after the call.
Test at configure time if the assembler supports @notoc and define
USE_PPC64_NOTOC.
Make the instructions for syscall list generation match Makefile and
refer to `update-syscall-lists'; there has been no `update-arch-syscall'
target. Also use single quotes around the command to stick to the ASCII
character set.
Fixes 4cf0d22305 ("Linux: Add tables with system call numbers").
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
To provide a y2038 safe interface a new symbol __shmctl64 is added
and __shmctl is change to call it instead (it adds some extra buffer
copying for the 32 bit time_t implementation).
Two new structures are added:
1. kernel_shmid64_ds: used internally only on 32-bit architectures
to issue the syscall. A handful of architectures (hppa, i386,
mips, powerpc32, and sparc32) require specific implementations
due to their kernel ABI.
2. shmid_ds64: this is only for __TIMESIZE != 64 to use along with
the 64-bit shmctl. It is different than the kernel struct because
the exported 64-bit time_t might require different alignment
depending on the architecture ABI.
So the resulting implementation does:
1. For 64-bit architectures it assumes shmid_ds already contains
64-bit time_t fields and will result in just the __shmctl symbol
using the __shmctl64 code. The shmid_ds argument is passed as-is
to the syscall.
2. For 32-bit architectures with default 64-bit time_t (newer ABIs
such riscv32 or arc), it will also result in only one exported
symbol but with the required high/low time handling.
3. Finally for 32-bit architecture with both 32-bit and 64-bit time_t
support we follow the already set way to provide one symbol with
64-bit time_t support and implement the 32-bit time_t support
using of the 64-bit one.
The default 32-bit symbol will allocate and copy the shmid_ds
over multiple buffers, but this should be deprecated in favor
of the __shmctl64 anyway.
Checked on i686-linux-gnu and x86_64-linux-gnu. I also did some sniff
tests on powerpc, powerpc64, mips, mips64, armhf, sparcv9, and
sparc64.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Each architecture overrides the struct msqid_ds which its required
kernel ABI one.
Checked on x86_64-linux-gnu and some bases sysvipc tests on hppa,
mips, mipsle, mips64, mips64le, sparc64, sparcv9, powerpc64le,
powerpc64, and powerpc.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This will allow us to have architectures specify their own version.
Not semantic changes expected. Checked with a build against the
all affected ABIs.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
To provide a y2038 safe interface a new symbol __msgctl64 is added
and __msgctl is change to call it instead (it adds some extra buffer
coping for the 32 bit time_t implementation).
Two new structures are added:
1. kernel_msqid64_ds: used internally only on 32-bit architectures
to issue the syscall. A handful of architectures (hppa, i386, mips,
powerpc32, and sparc32) require specific implementations due to
their kernel ABI.
2. msqid_ds64: this is only for __TIMESIZE != 64 to use along with
the 64-bit msgctl. It is different than the kernel struct because
the exported 64-bit time_t might require different alignment
depending on the architecture ABI.
So the resulting implementation does:
1. For 64-bit architectures it assumes msqid_ds already contains
64-bit time_t fields and will result in just the __msgctl symbol
using the __msgctl64 code. The msgid_ds argument is passed as-is
to the syscall.
2. For 32-bit architectures with default 64-bit time_t (newer ABIs
such riscv32 or arc), it will also result in only one exported
symbol but with the required high/low time handling.
3. Finally for 32-bit architecture with both 32-bit and 64-bit time_t
support we follow the already set way to provide one symbol with
64-bit time_t support and implement the 32-bit time_t support using
the 64-bit time_t.
The default 32-bit symbol will allocate and copy the msqid_ds
over multiple buffers, but this should be deprecated in favor
of the __msgctl64 anyway.
Checked on i686-linux-gnu and x86_64-linux-gnu. I also did some sniff
tests on powerpc, powerpc64, mips, mips64, armhf, sparcv9, and
sparc64.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Each architecture overrides the struct msqid_ds which its required
kernel ABI one.
Checked on x86_64-linux-gnu and some bases sysvipc tests on hppa,
mips, mipsle, mips64, mips64le, sparc64, sparcv9, powerpc64le,
powerpc64, and powerpc.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
This will allow us to have architectures specify their own version.
Not semantic changes expected. Checked with a build against the
all affected ABIs.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Different than others 64-bit time_t syscalls, the SysIPC interface
does not provide a new set of syscall for y2038 safeness. Instead it
uses unused fields in semid_ds structure to return the high bits for
the timestamps.
To provide a y2038 safe interface a new symbol __semctl64 is added
and __semctl is change to call it instead (it adds some extra buffer
copying for the 32 bit time_t implementation).
Two new structures are added:
1. kernel_semid64_ds: used internally only on 32-bit architectures
to issue the syscall. A handful of architectures (hppa, i386,
mips, powerpc32, sparc32) require specific implementations due
their kernel ABI.
2. semid_ds64: this is only for __TIMESIZE != 64 to use along with
the 64-bit semctl. It is different than the kernel struct because
the exported 64-bit time_t might require different alignment
depending on the architecture ABI.
So the resulting implementation does:
1. For 64-bit architectures it assumes semid_ds already contains
64-bit time_t fields and will result in just the __semctl symbol
using the __semctl64 code. The semid_ds argument is passed as-is
to the syscall.
2. For 32-bit architectures with default 64-bit time_t (newer ABIs
such riscv32 or arc), it will also result in only one exported
symbol but with the required high/low handling.
It might be possible to optimize it further to avoid the
kernel_semid64_ds to semun transformation if the exported ABI
for the architectures matches the expected kernel ABI, but the
implementation is already complex enough and don't think this
should be a hotspot in any case.
3. Finally for 32-bit architecture with both 32-bit and 64-bit time_t
support we follow the already set way to provide one symbol with
64-bit time_t support and implement the 32-bit time_t support
using the 64-bit one.
The default 32-bit symbol will allocate and copy the semid_ds
over multiple buffers, but this should be deprecated in favor
of the __semctl64 anyway.
Checked on i686-linux-gnu and x86_64-linux-gnu. I also did some sniff
tests on powerpc, powerpc64, mips, mips64, armhf, sparcv9, and
sparc64.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Vineet Gupta <vgupta@synopsys.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
this means that *always* libnsl is only built as shared library for
backward compatibility and the NSS modules libnss_nis and libnss_nisplus
are not built at all, libnsl's headers aren't installed.
This compatibility is kept only for architectures and ABIs that have
been added in or before version 2.28.
Replacement implementations based on TIRPC, which additionally support
IPv6, are available from <https://github.com/thkukuk/>.
This change does not affect libnss_compat which does not depended
on libnsl since 2.27 and thus can be used without NIS.
libnsl code depends on Sun RPC, e.g. on --enable-obsolete-rpc (installed
libnsl headers use installed Sun RPC headers), which will be removed in
the following commit.
Binaries can opt-in to using BTI via an ELF object file marking.
The dynamic linker has to then mprotect the executable segments
with PROT_BTI. In case of static linked executables or in case
of the dynamic linker itself, PROT_BTI protection is done by the
operating system.
On AArch64 glibc uses PT_GNU_PROPERTY instead of PT_NOTE to check
the properties of a binary because PT_NOTE can be unreliable with
old linkers (old linkers just append the notes of input objects
together and add them to the output without checking them for
consistency which means multiple incompatible GNU property notes
can be present in PT_NOTE).
BTI property is handled in the loader even if glibc is not built
with BTI support, so in theory user code can be BTI protected
independently of glibc. In practice though user binaries are not
marked with the BTI property if glibc has no support because the
static linked libc objects (crt files, libc_nonshared.a) are
unmarked.
This patch relies on Linux userspace API that is not yet in a
linux release but in v5.8-rc1 so scheduled to be in Linux 5.8.
Co-authored-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
setcontext returns to the specified context via an indirect jump,
so there should be a BTI j.
In case of getcontext (and all other returns_twice functions) the
compiler adds BTI j at the call site, but swapcontext is a normal
c call that is currently not handled specially by the compiler.
So we change swapcontext such that the saved context returns to a
local address that has BTI j and then swapcontext returns to the
caller via a normal RET. For this we save the original return
address in the slot for x1 of the context because x1 need not be
preserved by swapcontext but it is restored when the context saved
by swapcontext is resumed.
The alternative fix (which is done on x86) would make swapcontext
special in the compiler so BTI j is emitted at call sites, on
x86 there is an indirect_return attribute for this, on AArch64
we would have to use returns_twice. It was decided against because
such fix may need user code updates: the attribute has to be added
when swapcontext is called via a function pointer and it breaks
always_inline functions with swapcontext.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The strerrorname_np returns error number name (e.g. "EINVAL" for EINVAL)
while strerrordesc_np returns string describing error number (e.g
"Invalid argument" for EINVAL). Different than strerror,
strerrordesc_np does not attempt to translate the return description,
both functions return NULL for an invalid error number.
They should be used instead of sys_errlist and sys_nerr, both are
thread and async-signal safe. These functions are GNU extensions.
Checked on x86-64-linux-gnu, i686-linux-gnu, powerpc64le-linux-gnu,
and s390x-linux-gnu.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The sigabbrev_np returns the abbreviated signal name (e.g. "HUP" for
SIGHUP) while sigdescr_np returns the string describing the error
number (e.g "Hangup" for SIGHUP). Different than strsignal,
sigdescr_np does not attempt to translate the return description and
both functions return NULL for an invalid signal number.
They should be used instead of sys_siglist or sys_sigabbrev and they
are both thread and async-signal safe. They are added as GNU
extensions on string.h header (same as strsignal).
Checked on x86-64-linux-gnu, i686-linux-gnu, powerpc64le-linux-gnu,
and s390x-linux-gnu.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The buffer allocation uses the same strategy of strsignal.
Checked on x86-64-linux-gnu, i686-linux-gnu, powerpc64le-linux-gnu,
and s390x-linux-gnu.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The per-thread state is refactored two use two strategies:
1. The default one uses a TLS structure, which will be placed in the
static TLS space (using __thread keyword).
2. Linux allocates via struct pthread and access it through THREAD_*
macros.
The default strategy has the disadvantage of increasing libc.so static
TLS consumption and thus decreasing the possible surplus used in
some scenarios (which might be mitigated by BZ#25051 fix).
It is used only on Hurd, where accessing the thread storage in the in
single thread case is not straightforward (afaiu, Hurd developers could
correct me here).
The fallback static allocation used for allocation failure is also
removed: defining its size is problematic without synchronizing with
translated messages (to avoid partial translation) and the resulting
usage is not thread-safe.
Checked on x86-64-linux-gnu, i686-linux-gnu, powerpc64le-linux-gnu,
and s390x-linux-gnu.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The __NSIG_WORDS value is based on minimum number of words to hold
the maximum number of signals supported by the architecture.
This patch also adds __NSIG_BYTES, which is the number of bytes
required to represent the supported number of signals. It is used in
syscalls which takes a sigset_t.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The symbol is deprecated by strerror since its usage imposes some issues
such as copy relocations.
Its internal name is also changed to _sys_errlist_internal to avoid
static linking usage. The compat code is also refactored by removing
the over enginered errlist-compat.c generation from manual entried and
extra comment token in linker script file. It disantangle the code
generation from manual and simplify both Linux and Hurd compat code.
The definitions from errlist.c are moved to errlist.h and a new test
is added to avoid a new errno entry without an associated one in manual.
Checked on x86_64-linux-gnu and i686-linux-gnu. I also run a check-abi
on all affected platforms.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The symbol was deprecated by strsignal and its usage imposes issues
such as copy relocations.
Its internal name is changed to __sys_siglist and __sys_sigabbrev to
avoid static linking usage. The compat code is also refactored, since
both Linux and Hurd usage the same strategy: export the same array with
different object sizes.
The libSegfault change avoids calling strsignal on the SIGFAULT signal
handler (the current usage is already sketchy, adding a call that
potentially issue locale internal function is even sketchier).
Checked on x86_64-linux-gnu and i686-linux-gnu. I also run a check-abi
on all affected platforms.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
It refactor how signals are defined by each architecture. Instead of
include a generic header (bits/signum-generic.h) and undef non-default
values in an arch specific header (bits/signum.h) the new scheme uses a
common definition (bits/signum-generic.h) and each architectures add
its specific definitions on a new header (bits/signum-arch.h).
For Linux it requires copy some system default definitions to alpha,
hppa, and sparc. They are historical values and newer ports uses
the generic Linux signum-arch.h.
For Hurd the BSD signum is removed and moved to a new header (it is
used currently only on Hurd).
Checked on a build against all affected ABIs.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
The variable is placed in libc.so, and it can be true only in
an outer libc, not libcs loaded via dlmopen or static dlopen.
Since thread creation from inner namespaces does not work,
pthread_create can update __libc_single_threaded directly.
Using __libc_early_init and its initial flag, implementation of this
variable is very straightforward. A future version may reset the flag
during fork (but not in an inner namespace), or after joining all
threads except one.
Reviewed-by: DJ Delorie <dj@redhat.com>
These tests validate that rseq is registered from various execution
contexts (main thread, destructor, other threads, other threads created
from destructor, forked process (without exec), pthread_atfork handlers,
pthread setspecific destructors, signal handlers, atexit handlers).
tst-rseq.c only links against libc.so, testing registration of rseq in
a non-multithreaded environment.
tst-rseq-nptl.c also links against libpthread.so, testing registration
of rseq in a multithreaded environment.
See the Linux kernel selftests for extensive rseq stress-tests.
When available, use the cpu_id field from __rseq_abi on Linux to
implement sched_getcpu(). Fall-back on the vgetcpu vDSO if unavailable.
Benchmarks:
x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
glibc sched_getcpu(): 13.7 ns (baseline)
glibc sched_getcpu() using rseq: 2.5 ns (speedup: 5.5x)
inline load cpuid from __rseq_abi TLS: 0.8 ns (speedup: 17.1x)
Register rseq TLS for each thread (including main), and unregister for
each thread (excluding main). "rseq" stands for Restartable Sequences.
See the rseq(2) man page proposed here:
https://lkml.org/lkml/2018/9/19/647
Those are based on glibc master branch commit 3ee1e0ec5c.
The rseq system call was merged into Linux 4.18.
The TLS_STATIC_SURPLUS define is increased to leave additional room for
dlopen'd initial-exec TLS, which keeps elf/tst-auditmany working.
The increase (76 bytes) is larger than 32 bytes because it has not been
increased in quite a while. The cost in terms of additional TLS storage
is quite significant, but it will also obscure some initial-exec-related
dlopen failures.
The time argument is NULL in this case, and attempt to convert it
leads to a null pointer dereference.
This fixes commit d2e3b697da
("y2038: linux: Provide __settimeofday64 implementation").
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch updates the kernel version in the test tst-mman-consts.py
to 5.7. (There are no new constants covered by this test in 5.7 that
need any other header changes; there's a new MREMAP_DONTUNMAP, but
this test doesn't yet cover MREMAP_*.)
Tested with build-many-glibcs.py.
1. Divide architecture features into the usable features and the preferred
features. The usable features are for correctness and can be exported in
a stable ABI. The preferred features are for performance and only for
glibc internal use.
2. Change struct cpu_features to
struct cpu_features
{
struct cpu_features_basic basic;
unsigned int *usable_p;
struct cpuid_registers cpuid[COMMON_CPUID_INDEX_MAX];
unsigned int usable[USABLE_FEATURE_INDEX_MAX];
unsigned int preferred[PREFERRED_FEATURE_INDEX_MAX];
...
};
and initialize usable_p to pointer to the usable arary so that
struct cpu_features
{
struct cpu_features_basic basic;
unsigned int *usable_p;
struct cpuid_registers cpuid[COMMON_CPUID_INDEX_MAX];
};
can be exported via a stable ABI. The cpuid and usable arrays can be
expanded with backward binary compatibility for both .o and .so files.
3. Add COMMON_CPUID_INDEX_7_ECX_1 for AVX512_BF16.
4. Detect ENQCMD, PKS, AVX512_VP2INTERSECT, MD_CLEAR, SERIALIZE, HYBRID,
TSXLDTRK, L1D_FLUSH, CORE_CAPABILITIES and AVX512_BF16.
5. Rename CAPABILITIES to ARCH_CAPABILITIES.
6. Check if AVX512_VP2INTERSECT, AVX512_BF16 and PKU are usable.
7. Update CPU feature detection test.
This patch changes the exp10f error handling semantics to only set
errno according to POSIX rules. New symbol version is introduced at
GLIBC_2.32. The old wrappers are kept for compat symbols.
There are some outliers that need special handling:
- ia64 provides an optimized implementation of exp10f that uses ia64
specific routines to set SVID compatibility. The new symbol version
is aliased to the exp10f one.
- m68k also provides an optimized implementation, and the new version
uses it instead of the sysdeps/ieee754/flt32 one.
- riscv and csky uses the generic template implementation that
does not provide SVID support. For both cases a new exp10f
version is not added, but rather the symbols version of the
generic sysdeps/ieee754/flt32 is adjusted instead.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
powerpc64le-linux-gnu.
Linux 5.7 has no new syscalls. Update the version number in
syscall-names.list to reflect that it is still current for 5.7.
Tested with build-many-glibcs.py.
timer_create needs to create threads with all signals blocked,
including SIGTIMER (which happens to equal SIGCANCEL).
Fixes commit b3cae39dcb ("nptl: Start
new threads with all signals blocked [BZ #25098]").
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This introduces the function __pthread_attr_extension to allocate the
extension space, which is freed by pthread_attr_destroy.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
Use __getline instead of __getdelim to avoid a localplt failure.
Likewise for __getrlimit/getrlimit.
The abilist updates were performed by:
git ls-files 'sysdeps/unix/sysv/linux/**/libc.abilist' \
| while read x ; do
echo "GLIBC_2.32 pthread_getattr_np F" >> $x
done
python3 scripts/move-symbol-to-libc.py --only-linux pthread_getattr_np
The private export of __pthread_getaffinity_np is no longer needed, but
the hidden alias still necessary so that the symbol can be exported with
versioned_symbol.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
The abilist updates were performed by:
git ls-files 'sysdeps/unix/sysv/linux/**/libc.abilist' \
| while read x ; do
echo "GLIBC_2.32 pthread_getaffinity_np F" >> $x
done
python3 scripts/move-symbol-to-libc.py pthread_getaffinity_np
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
The symbol did not previously exist in libc, so a new GLIBC_2.32
symbol is needed, to get correct dependency for binaries which
use the symbol but no longer link against libpthread.
The abilist updates were performed by:
git ls-files 'sysdeps/unix/sysv/linux/**/libc.abilist' \
| while read x ; do
echo "GLIBC_2.32 pthread_attr_setaffinity_np F" >> $x
done
python3 scripts/move-symbol-to-libc.py pthread_attr_setaffinity_np
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
The stubs for pthread_getaffinity_np, pthread_getname_np,
pthread_setaffinity_np, pthread_setname_np are replaced, and corresponding
tests are moved.
After the removal of the NaCl port, nptl is Linux-specific, and the stubs
are no longer needed. This effectively reverts commit
c76d1ff514 ("NPTL: Add stubs for Linux-only
extension functions.").
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This fixes a build error:
../sysdeps/unix/sysv/linux/ntp_gettime.c: In function ‘__ntp_gettime’:
../sysdeps/unix/sysv/linux/ntp_gettime.c:56:10: error: ‘ntv64.tai’ is used uninitialized in this function [-Werror=uninitialized]
56 | *ntv = valid_ntptimeval64_to_ntptimeval (ntv64);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The __clock_gettime internal function is not supporting 64 bit time on
architectures with __WORDSIZE == 32 and __TIMESIZE != 64 (like e.g. ARM 32
bit).
The __clock_gettime64 function shall be used instead in the glibc itself as
it supports 64 bit time on those systems.
This patch does not bring any changes to systems with __WORDSIZE == 64 as
for them the __clock_gettime64 is aliased to __clock_gettime (in
./include/time.h).
This patch provides new __ntp_gettimex64 explicit 64 bit function for getting
time parameters via NTP interface.
The call to __adjtimex in __ntp_gettime64 function has been replaced with
direct call to __clock_adjtime64 syscall, to simplify the code.
Moreover, a 32 bit version - __ntp_gettimex has been refactored to internally
use __ntp_gettimex64.
The __ntp_gettimex is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversions between struct
ntptimeval and 64 bit struct __ntptimeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without to
test the proper usage of both __ntp_gettimex64 and __ntp_gettimex.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __ntp_gettime64 explicit 64 bit function for getting
time parameters via NTP interface.
Internally, the __clock_adjtime64 syscall is used instead of __adjtimex. This
patch is necessary for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __ntp_gettime has been refactored to internally
use __ntp_gettime64.
The __ntp_gettime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversions between struct
ntptimeval and 64 bit struct __ntptimeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without to
test the proper usage of both __ntp_gettime64 and __ntp_gettime.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Those functions allow easy conversion between Y2038 safe, glibc internal
struct __ntptimeval64 and struct ntptimeval.
The reserved fields (i.e. __glibc_reserved{1234}) during conversion are
zeroed as well, to provide behavior similar to one in ntp_gettimex function
(where those are cleared before the struct ntptimeval is returned).
Those functions are put in Linux specific sys/timex.h file, as putting
them into glibc's local include/time.h would cause build break on HURD as
it doesn't support struct timex related syscalls.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This type is a glibc's "internal" type to get time parameters data from
Linux kernel (NTP daemon interface). It stores time in struct __timeval64
rather than struct timeval, which makes it Y2038-proof.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __adjtime64 explicit 64 bit function for adjusting
Linux kernel clock.
Internally, the __clock_adjtime64 syscall is used instead of __adjtimex. This
patch is necessary for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __adjtime has been refactored to internally use
__adjtime64.
The __adjtime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversions between struct
timeval and 64 bit struct __timeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without to
test the proper usage of both __adjtime64 and __adjtime.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new ___adjtimex64 explicit 64 bit function for adjusting
Linux kernel clock.
Internally, the __clock_adjtime64 syscall is used. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - ___adjtimex has been refactored to internally
use ___adjtimex64.
The ___adjtimex is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversions between struct
timex and 64 bit struct __timex64.
Last but not least, in ___adjtimex64 function the __clock_adjtime syscall has
been replaced with __clock_adjtime64 to support 64 bit time on architectures
with __WORDSIZE == 32 and __TIMESIZE != 64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without to
test the proper usage of both ___adjtimex64 and ___adjtimex.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for clock_adjtime with one which adds
extra support for reading 64 bit time values on machines with __TIMESIZE != 64.
To achieve this goal new __clock_adjtime64 explicit 64 bit function for
adjusting Linux clock has been added.
Moreover, a 32 bit version - __clock_adjtime has been refactored to internally
use __clock_adjtime64.
The __clock_adjtime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversions between 64 bit
struct __timespec64 and struct timespec.
The new __clock_adjtime64 syscall available from Linux 5.1+ has been used, when
applicable.
Up till v5.4 in the Linux kernel there was a bug preventing this call from
obtaining correct struct's timex time.tv_sec time after time_t overflow
(i.e. not being Y2038 safe).
Build tests:
- ./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Linux kernel, headers and minimal kernel version for glibc build test matrix:
- Linux v5.1 (with clock_adjtime64) and glibc build with v5.1 as
minimal kernel version (--enable-kernel="5.1.0")
The __ASSUME_TIME64_SYSCALLS flag defined.
- Linux v5.1 and default minimal kernel version
The __ASSUME_TIME64_SYSCALLS not defined, but kernel supports clock_adjtime64
syscall.
- Linux v4.19 (no clock_adjtime64 support) with default minimal kernel version
for contemporary glibc (3.2.0)
This kernel doesn't support clock_adjtime64 syscall, so the fallback to
clock_adjtime is tested.
Above tests were performed with Y2038 redirection applied as well as without
(so the __TIMESIZE != 64 execution path is checked as well).
No regressions were observed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
When CET is enabled, it is an error to dlopen a non CET enabled shared
library in CET enabled application. It may be desirable to make CET
permissive, that is disable CET when dlopening a non CET enabled shared
library. With the new --enable-cet=permissive configure option, CET is
disabled when dlopening a non CET enabled shared library.
Add DEFAULT_DL_X86_CET_CONTROL to config.h.in:
/* The default value of x86 CET control. */
#define DEFAULT_DL_X86_CET_CONTROL cet_elf_property
which enables CET features based on ELF property note.
--enable-cet=permissive it to
/* The default value of x86 CET control. */
#define DEFAULT_DL_X86_CET_CONTROL cet_permissive
which enables CET features permissively.
Update tst-cet-legacy-5a, tst-cet-legacy-5b, tst-cet-legacy-6a and
tst-cet-legacy-6b to check --enable-cet and --enable-cet=permissive.
1. Include <dl-procruntime.c> to get architecture specific initializer in
rtld_global.
2. Change _dl_x86_feature_1[2] to _dl_x86_feature_1.
3. Add _dl_x86_feature_control after _dl_x86_feature_1, which is a
struct of 2 bitfields for IBT and SHSTK control
This fixes [BZ #25887].
The getcpu cache was removed from the kernel in Linux 2.6.24. glibc
support from the sched_getcpu implementation was removed in commit
dd26c44403 ("Consolidate sched_getcpu").
When using outline atomics (-moutline-atomics, the default for ARMv8-A
starting with GCC 10), libgcc contains an ELF constructor which calls
__getauxval. This code is built outside of glibc, so none of its
internal PLT avoidance schemes can be applied to it. This change
suppresses the elf/check-localplt failure.
The script can now be called to query the definition status of
system call numbers across all architectures, like this:
$ python3 sysdeps/unix/sysv/linux/glibcsyscalls.py query-syscall sync_file_range sync_file_range2
sync_file_range:
defined: aarch64 alpha csky hppa i386 ia64 m68k microblaze mips/mips32 mips/mips64/n32 mips/mips64/n64 nios2 riscv/rv64 s390/s390-32 s390/s390-64 sh sparc/sparc32 sparc/sparc64 x86_64/64 x86_64/x32
undefined: arm powerpc/powerpc32 powerpc/powerpc64
sync_file_range2:
defined: arm powerpc/powerpc32 powerpc/powerpc64
undefined: aarch64 alpha csky hppa i386 ia64 m68k microblaze mips/mips32 mips/mips64/n32 mips/mips64/n64 nios2 riscv/rv64 s390/s390-32 s390/s390-64 sh sparc/sparc32 sparc/sparc64 x86_64/64 x86_64/x32
This command lists the headers containing the system call numbers:
$ python3 sysdeps/unix/sysv/linux/glibcsyscalls.py list-headers
The argument parser code is based on a suggestion from Adhemerval Zanella.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Only alpha and ia64 do not support __NR_umount2 (defined as
__NR_umount), but recent kernel fixes (74cd2184833f for ia64, and
12b57c5c70f39 for alpha) add the required alias.
Checked with a build against all affected ABIs.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
This consolidates the copy-pasted arch specific semaphore header into
single version (based on s390) which suffices 32-bit and and 64-bit
arch/ABI based on the canonical WORDSIZE.
For now I've left out arches which use alternate defines to choose for
32 vs 64-bit builds (aarch64, mips) which in theory can also use the same
header.
Passes build-many for
aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf
riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64
x86_64-linux-gnu microblaze-linux-gnu nios2-linux-gnu
Suggested-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Those functions allow easy conversion between Y2038 safe, glibc internal
struct __timex64 and struct timex.
Those functions are put in Linux specific sys/timex.h file, as putting
them into glibc's local include/time.h would cause build break on HURD as
it doesn't support struct timex related syscalls.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The introduced glibc's 'internal' struct __timex64 is a copy of Linux kernel's
struct __kernel_timex (v5.6) introduced for properly handling data for
clock_adjtime64 syscall.
As the struct's __kernel_timex size is the same as for archs with
__WORDSIZE == 64, proper padding and data types conversion (i.e. long to long
long) had to be added for architectures with __WORDSIZE == 32 &&
__TIMESIZE != 64.
Moreover, it stores time in struct __timeval64 rather than struct
timeval, which makes it Y2038-proof.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add a C wrapper to pass arguments in
/* Control process execution. */
extern int prctl (int __option, ...) __THROW;
to prctl syscall:
extern int prctl (int, unsigned long int, unsigned long int,
unsigned long int, unsigned long int);
On platforms where long double may have two different formats, i.e.: the
same format as double (64-bits) or something else (128-bits), building
with -mlong-double-128 is the default and function calls in the user
program match the name of the function in Glibc. When building with
-mlong-double-64, Glibc installed headers redirect such calls to the
appropriate function.
Likewise, the internals of glibc are now built against IEEE long double.
However, the only (minimally) notable usage of long double is difftime.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Improve the commentary to aid future developers who will stumble
upon this novel, yet not always perfect, mechanism to support
alternative formats for long double.
Likewise, rename __LONG_DOUBLE_USES_FLOAT128 to
__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI now that development work
has settled down. The command used was
git grep -l __LONG_DOUBLE_USES_FLOAT128 ':!./ChangeLog*' | \
xargs sed -i 's/__LONG_DOUBLE_USES_FLOAT128/__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI/g'
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Since the the U marker can only be applied to 2 unsigned long arguments
in syscalls.list files, add a C wrapper for process_vm_readv and
process_vm_writev syscals which have more than 2 unsigned long arguments.
Update the default typesizes.h to match the new kernel sizes for 32-bit
architectures with a 64-bit time_t and friends. This follows the sizes
used for RV32 which is a y2038 safe architecture added after Linux 5.1.
Reviewed-by: Vineet Gupta <vgupta@synopsys.com>
Tested-by: Vineet Gupta <vgupta@synopsys.com>
Remove the sem-pad.h file and instead have architectures override the
struct semid_ds via the bits/types/struct_semid_ds.h file.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Split out the struct semid_ds into it's own file. This will allow us to
have architectures specify their own version.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Mark unsigned long arguments in mmap, read, recv, recvfrom, send, sendto,
write, ioperm, sendfile64, setxattr, lsetxattr, fsetxattr, getxattr,
lgetxattr, fgetxattr, listxattr, llistxattr and flistxattr with U in
syscalls.list files.
X32 has 32-bit long and pointer with 64-bit off_t. Since x32 psABI
requires that pointers passed in registers must be zero-extended to
64bit, x32 can share many syscall interfaces with LP64. When a LP64
syscall with long and unsigned long int arguments is used for x32, these
arguments must be properly extended to 64-bit. Otherwise if the upper
32 bits of the register have undefined value, such a syscall will be
rejected by kernel.
For syscalls implemented in assembly codes, 'U' is added to syscall
signature key letters for unsigned long, which is zero-extended to
64-bit types. SYSCALL_ULONG_ARG_1 and SYSCALL_ULONG_ARG_2 are passed
to syscall-template.S for the first and the second unsigned long int
arguments if PSEUDOS_HAVE_ULONG_INDICES is defined. They are used by
x32 to zero-extend 32-bit arguments to 64 bits.
Tested on i386, x86-64 and x32 as well as with build-many-glibcs.py.
The upper bits of the sigset_t s not fully initialized in the signal
mask calls that return information from kernel (sigprocmask,
sigpending, and pthread_sigmask), since the exported sigset_t size
(1024 bits) is larger than Linux support one (64 or 128 bits).
It might make sigisemptyset/sigorset/sigandset fail if the mask
is filled prior the call.
This patch changes the internal signal function to handle up to
supported Linux signal number (_NSIG), the remaining bits are
untouched.
Checked on x86_64-linux-gnu and i686-linux-gnu.
It is required because __libc_unwind_longjmp (used on thread
cancellation) calls __sigprocmask. Replace with a direct call.
They are required because __libc_unwind_longjmp (used for thread
cancellation) calls __sigprocmask. Replace this with a direct call.
The sigblock function is not exported and is not used internally, so
it can be removed.
Checked on cross build for ia64-linux-gnu.
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
A new symbol version is added on libc to force loading failure
instead of lazy binding one for newly binaries with old loaders.
Checked with a build against all affected ABIs.
These will be used by upcoming RV32 and ARC ports and any future ports.
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
It is required for i686 BZ#12683 support when building with -Os
or -fno-omit-frame-pointer on some gcc versions. It is not used
on current code.
Check on i686-linux-gnu.
Linux 5.5 remove the system call in commit
61a47c1ad3a4dc6882f01ebdc88138ac62d0df03 ("Linux: Remove
<sys/sysctl.h>"). Therefore, the compat function is just a stub that
sets ENOSYS.
Due to SHLIB_COMPAT, new ports will not add the sysctl function anymore
automatically.
x32 already lacks the sysctl function, so an empty sysctl.c file is
used to suppress it. Otherwise, a new compat symbol would be added.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Patch 600f00b "linux: Use long time_t for wait4/getrusage" introduced
two bugs:
- The usage32 struct was set if the wait4 syscall had an error.
- For 32-bit systems the usage struct was set even if it was specified
as NULL.
This patch fixes the two issues.
X32 has 32-bit long and pointer with 64-bit off_t. Since x32 psABI
requires that pointers passed in registers must be zero-extended to
64bit, x32 can share many syscall interfaces with LP64. When a LP64
syscall with long and unsigned long arguments is used for x32, these
arguments must be properly extended to 64-bit. Otherwise if the upper
32 bits of the register have undefined value, such a syscall will be
rejected by kernel.
Enforce zero-extension for pointers and array system call arguments.
For integer types, extend to int64_t (the full register) using a
regular cast, resulting in zero or sign extension based on the
signedness of the original type.
For
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);
we now generate
0: 41 f7 c1 ff 0f 00 00 test $0xfff,%r9d
7: 75 1f jne 28 <__mmap64+0x28>
9: 48 63 d2 movslq %edx,%rdx
c: 89 f6 mov %esi,%esi
e: 4d 63 c0 movslq %r8d,%r8
11: 4c 63 d1 movslq %ecx,%r10
14: b8 09 00 00 40 mov $0x40000009,%eax
19: 0f 05 syscall
That is
1. addr is unchanged.
2. length is zero-extend to 64 bits.
3. prot is sign-extend to 64 bits.
4. flags is sign-extend to 64 bits.
5. fd is sign-extend to 64 bits.
6. offset is unchanged.
For int arguments, since kernel uses only the lower 32 bits and ignores
the upper 32 bits in 64-bit registers, these work correctly.
Tested on x86-64 and x32. There are no code changes on x86-64.
This patch updates the kernel version in the test tst-mman-consts.py
to 5.6. (There are no new constants covered by this test in 5.6 that
need any other header changes.)
Tested with build-many-glibcs.py.
Since GCC 6.2 or later is required to build glibc, remove build support
for GCC older than GCC 6.
Testd with GCC 6.4 and GCC 9.3.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __mq_timedreceive_time64 explicit 64 bit function for
receiving messages with absolute timeout.
Moreover, a 32 bit version - __mq_timedreceive has been refactored to
internally use __mq_timedreceive_time64.
The __mq_timedreceive is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion to 64 bit struct
__timespec64 from struct timespec.
The new mq_timedsend_time64 syscall available from Linux 5.1+ has been used,
when applicable.
As this wrapper function is also used internally in the glibc, to e.g. provide
mq_receive implementation, an explicit check for abs_timeout being NULL has been
added due to conversions between struct timespec and struct __timespec64.
Before this change the Linux kernel handled this NULL pointer.
Build tests:
- ./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Linux kernel, headers and minimal kernel version for glibc build test matrix:
- Linux v5.1 (with mq_timedreceive_time64) and glibc built with v5.1 as
minimal kernel version (--enable-kernel="5.1.0")
The __ASSUME_TIME64_SYSCALLS flag defined.
- Linux v5.1 and default minimal kernel version
The __ASSUME_TIME64_SYSCALLS not defined, but kernel supports
mq_timedreceive_time64 syscall.
- Linux v4.19 (no mq_timedreceive_time64 support) with default minimal kernel
version for contemporary glibc (3.2.0)
This kernel doesn't support mq_timedreceive_time64 syscall, so the fallback to
mq_timedreceive is tested.
Above tests were performed with Y2038 redirection applied as well as without
(so the __TIMESIZE != 64 execution path is checked as well).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __mq_timedsend_time64 explicit 64 bit function for
sending messages with absolute timeout.
Moreover, a 32 bit version - __mq_timedsend has been refactored to internally
use __mq_timedsend_time64.
The __mq_timedsend is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion to 64 bit struct
__timespec64 from struct timespec.
The new __mq_timedsend_time64 syscall available from Linux 5.1+ has been used,
when applicable.
As this wrapper function is also used internally in the glibc, to e.g. provide
mq_send implementation, an explicit check for abs_timeout being NULL has been
added due to conversions between struct timespec and struct __timespec64.
Before this change the Linux kernel handled this NULL pointer.
Build tests:
- ./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Linux kernel, headers and minimal kernel version for glibc build test matrix:
- Linux v5.1 (with mq_timedsend_time64) and glibc built with v5.1 as a
minimal kernel version (--enable-kernel="5.1.0")
The __ASSUME_TIME64_SYSCALLS flag defined.
- Linux v5.1 and default minimal kernel version
The __ASSUME_TIME64_SYSCALLS not defined, but kernel supports
mq_timedsend_time64 syscall.
- Linux v4.19 (no mq_timedsend_time64 support) with default minimal kernel
version for contemporary glibc (3.2.0)
This kernel doesn't support mq_timedsend_time64 syscall, so the fallback to
mq_timedsend is tested.
Above tests were performed with Y2038 redirection applied as well as without
(so the __TIMESIZE != 64 execution path is checked as well).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
check_consistency should be disabled for GCC 5 and above since there is
no fixed PIC register in GCC 5 and above. Check __GNUC_PREREQ (5,0)
instead OPTIMIZE_FOR_GCC_5 since OPTIMIZE_FOR_GCC_5 is false with
-fno-omit-frame-pointer.
Linux 5.6 has new openat2 and pidfd_getfd syscalls. This patch adds
them to syscall-names.list and regenerates the arch-syscall.h files.
Tested with build-many-glibcs.py.
All cancellable syscalls are done by C implementations, so there is no
no need to use a specialized implementation to optimize register usage.
It fixes BZ #25765.
Checked on x86_64-linux-gnu.
Now there is a generic __timeval32 and helpers we can use them for Alpha
instead of the Alpha specific ones.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The Linux kernel expects rusage to use a 32-bit time_t, even on archs
with a 64-bit time_t (like RV32). To address this let's convert
rusage to/from 32-bit and 64-bit to ensure the kernel always gets
a 32-bit time_t.
While we are converting these functions let's also convert them to be
the y2038 safe versions. This means there is a *64 function that is
called by a backwards compatible wrapper.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The Linux kernel expects itimerval to use a 32-bit time_t, even on archs
with a 64-bit time_t (like RV32). To address this let's convert
itimerval to/from 32-bit and 64-bit to ensure the kernel always gets
a 32-bit time_t.
While we are converting these functions let's also convert them to be
the y2038 safe versions. This means there is a *64 function that is
called by a backwards compatible wrapper.
Tested-by: Lukasz Majewski <lukma@denx.de>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
On y2038 safe 32-bit systems the Linux kernel expects itimerval
and rusage to use a 32-bit time_t, even though the other time_t's
are 64-bit. There are currently no plans to make 64-bit time_t versions
of these structs.
There are also other occurrences where the time passed to the kernel via
timeval doesn't match the wordsize.
To handle these cases let's define a new macro
__KERNEL_OLD_TIMEVAL_MATCHES_TIMEVAL64. This macro specifies if the
kernel's old_timeval matches the new timeval64. This should be 1 for
64-bit architectures except for Alpha's osf syscalls. The define should
be 0 for 32-bit architectures and Alpha's osf syscalls.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This addresses an issue that is present mainly on SMP machines running
threaded code. In a typical indirect call or PLT import stub, the
target address is loaded first. Then the global pointer is loaded into
the PIC register in the delay slot of a branch to the target address.
During lazy binding, the target address is a trampoline which transfers
to _dl_runtime_resolve().
_dl_runtime_resolve() uses the relocation offset stored in the global
pointer and the linkage map stored in the trampoline to find the
relocation. Then, the function descriptor is updated.
In a multi-threaded application, it is possible for the global pointer
to be updated between the load of the target address and the global
pointer. When this happens, the relocation offset has been replaced
by the new global pointer. The function pointer has probably been
updated as well but there is no way to find the address of the function
descriptor and to transfer to the target. So, _dl_runtime_resolve()
typically crashes.
HP-UX addressed this problem by adding an extra pc-relative branch to
the trampoline. The descriptor is initially setup to point to the
branch. The branch then transfers to the trampoline. This allowed
the trampoline code to figure out which descriptor was being used
without any modification to user code. I didn't use this approach
as it is more complex and changes function pointer canonicalization.
The order of loading the target address and global pointer in
indirect calls was not consistent with the order used in import stubs.
In particular, $$dyncall and some inline versions of it loaded the
global pointer first. This was inconsistent with the global pointer
being updated first in dl-machine.h. Assuming the accesses are
ordered, we want elf_machine_fixup_plt() to store the global pointer
first and calls to load it last. Then, the global pointer will be
correct when the target function is entered.
However, just to make things more fun, HP added support for
out-of-order execution of accesses in PA 2.0. The accesses used by
calls are weakly ordered. So, it's possibly under some circumstances
that a function might be entered with the wrong global pointer.
However, HP uses weakly ordered accesses in 64-bit HP-UX, so I assume
that loading the global pointer in the delay slot of the branch must
work consistently.
The basic fix for the race is a combination of modifying user code to
preserve the address of the function descriptor in register %r22 and
setting the least-significant bit in the relocation offset. The
latter was suggested by Carlos as a way to distinguish relocation
offsets from global pointer values. Conventionally, %r22 is used
as the address of the function descriptor in calls to $$dyncall.
So, it wasn't hard to preserve the address in %r22.
I have updated gcc trunk and gcc-9 branch to not clobber %r22 in
$$dyncall and inline indirect calls. I have also modified the import
stubs in binutils trunk and the 2.33 branch to preserve %r22. This
required making the stubs one instruction longer but we save one
relocation. I also modified binutils to align the .plt section on
a 8-byte boundary. This allows descriptors to be updated atomically
with a floting-point store.
With these changes, _dl_runtime_resolve() can fallback to an alternate
mechanism to find the relocation offset when it has been clobbered.
There's just one additional instruction in the fast path. I tested
the fallback function, _dl_fix_reloc_arg(), by changing the branch to
always use the fallback. Old code still runs as it did before.
Fixes bug 23296.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
These functions are alpha specifc, rename them to be clear.
Let's also rename the header file from tv32-compat.h to
alpha-tv32-compat.h. This is to avoid conflicts with the one we will
introduce later.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
During the conversion to support 64 bit time on some architectures with
__WORDSIZE == 32 && __TIMESIZE != 64 the libc_hidden_def attribute for
eligible functions was by mistake omitted.
This patch fixes this issue and exports (and allows using) those
functions when Y2038 support is enabled in glibc.
Since legacy bitmap doesn't cover jitted code generated by legacy JIT
engine, it isn't very useful. This patch removes ARCH_CET_LEGACY_BITMAP
and treats indirect branch tracking similar to shadow stack by removing
legacy bitmap support.
Tested on CET Linux/x86-64 and non-CET Linux/x86-64.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This conversion patch for supporting 64 bit time for futimesat only differs
from the work performed for futimes (when providing __futimes64) with passing
also the file name (and path) to utimensat.
All the design and conversion decisions are exactly the same as for futimens
conversion.
This conversion patch for supporting 64 bit time for lutimes mostly differs from
the work performed for futimes (when providing __futimes64) with adding the
AT_SYMLINK_NOFOLLOW flag to utimensat.
It also supports passing file name instead of file descriptor number, but this
is not relevant for utimensat used to implement it.
All the design and conversion decisions are exactly the same as for futimens
conversion.
This patch provides new __futimes64 explicit 64 bit function for setting file's
64 bit attributes for access and modification time (by specifying file
descriptor number).
Internally, the __utimensat64_helper function is used. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __futimes has been refactored to internally use
__futimes64.
The __futimes is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion of struct timeval
to 64 bit struct __timeval64.
The check if struct timevals' usec fields are in the range between 0 and 1000000
has been removed as Linux kernel performs it internally in the implementation
of utimensat (the conversion between struct __timeval64 and __timespec64 is not
relevant for this particular check).
Last but not least, checks for tvp{64} not being NULL have been preserved from
the original code as some legacy user space programs may rely on it.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without to
test the proper usage of both __futimes64 and __futimes.
It seems that some gcc versions might generates a stack frame for the
sigreturn stub requires on sparc signal handling. For instance:
$ cat test.c
#define _GNU_SOURCE
#include <sys/syscall.h>
__attribute__ ((__optimize__ ("-fno-stack-protector")))
void
__sigreturn_stub (void)
{
__asm__ ("mov %0, %%g1\n\t"
"ta 0x10\n\t"
: /* no outputs */
: "i" (SYS_rt_sigreturn));
}
$ gcc -v
[...]
gcc version 9.2.1 20200224 (Debian 9.2.1-30)
$ gcc -O2 -m64 test.c -S -o -
[...]
__sigreturn_stub:
save %sp, -176, %sp
#APP
! 9 "t.c" 1
mov 101, %g1
ta 0x10
! 0 "" 2
#NO_APP
.size __sigreturn_stub, .-__sigreturn_stub
As indicated by kernel developers [1], the sigreturn stub can not change
the register window or the stack pointer since the kernel has setup the
restore frame at a precise location relative to the stack pointer when
the stub is invoked.
I tried to play with some compiler flags and even with _Noreturn and
__builtin_unreachable after the asm does not help (and Sparc does not
support naked functions).
To avoid similar issues, as the stack-protector support also have
stumbled, this patch moves the implementation of the sigreturn stubs to
assembly.
Checked on sparcv9-linux-gnu and sparc64-linux-gnu with gcc 9.2.1
and gcc 7.5.0.
[1] https://lkml.org/lkml/2016/5/27/465
The kernel might not clear the padding value for the ipc_perm mode
fields in compat mode (32 bit running on a 64 bit kernel). It was
fixed on v4.14 when the ipc compat code was refactored to move
(commits 553f770ef71b, 469391684626, c0ebccb6fa1e).
Although it is most likely a kernel issue, it was shown only due
BZ#18231 fix which made all the SysVIPC mode_t 32-bit regardless of
the kABI.
This patch fixes it by explicitly zeroing the upper bits for such
cases. The __ASSUME_SYSVIPC_BROKEN_MODE_T case already handles
it with the shift.
(The aarch64 ipc_priv.h is superflous since
__ASSUME_SYSVIPC_DEFAULT_IPC_64 is now defined as default).
Checked on i686-linux-gnu on 3.10 and on 4.15 kernel.
fstatat64 depends on inlining to produce the desired __fxstatat64
call, which does not happen with -Os, leading to a link failure
with an undefined reference to fstatat64. __fxstatat64 has a macro
definition in include/sys/stat.h and thus avoids the problem.
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for utime with one which adds extra
support for setting file's access and modification 64 bit time on machines
with __TIMESIZE != 64.
Internally, the __utimensat_time64 helper function is used. This patch is
necessary for having architectures with __WORDSIZE == 32 && __TIMESIZE != 64
Y2038 safe.
Moreover, a 32 bit version - __utime has been refactored to internally use
__utime64.
The __utime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion between struct
utimbuf and struct __utimbuf64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as
without to test proper usage of both __utime64 and __utime.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __utimes64 explicit 64 bit function for setting file's
64 bit attributes for access and modification time.
Internally, the __utimensat64_helper function is used. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __utimes has been refactored to internally use
__utimes64.
The __utimes is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion of struct
timeval to 64 bit struct __timeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __utimes64 and __utimes.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_vfork is always defined, so the
fork-based fallback code is never used.
(It appears that the vfork system call was wired up when the port was
contributed to the kernel.)
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_getdents64 is always defined,
although it may not be supported at run time.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
With the built-in tables __NR_preadv2 and __NR_pwritev2 are always
defined.
The kernel has never defined __NR_preadv64v2 and __NR_pwritev64v2
and is unlikely to do so, given that the preadv2 and pwritev2 system
calls themselves are 64-bit.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_rt_sigqueueinfo is always defined.
sysdeps/pthread/time_routines.c is not updated because it is shared with
Hurd.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The names __NR_preadv64, __NR_pwritev64 appear to be a glibc invention.
With the built-in tables, __NR_preadv and __NR_pwritev are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux removed the last definitions of __NR_pread and __NR_pwrite
in commit 4ba66a9760722ccbb691b8f7116cad2f791cca7b, the removal
of the blackfin port. All architectures now define __NR_pread64 and
__NR_pwrite64 only.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_mq_getsetattr, __NR_mq_notify,
__NR_mq_open, __NR_mq_timedreceive, __NR_mq_timedsend, __NR_mq_unlink
are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Writable, executable segments defeat security hardening. The
existing check for DT_TEXTREL does not catch this.
hppa and SPARC currently keep the PLT in an RWX load segment.
It is necessary to export __pthread_cond_init from libc because
the C11 condition variable needs it and is still left in libpthread.
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
It is necessary to export __pthread_cond_destroy from libc because
the C11 condition variable needs it and is still left in libpthread.
This is part of the libpthread removal project:
<https://sourceware.org/ml/libc-alpha/2019-10/msg00080.html>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The behavior of the signal mask on threads created by timer_create
for SIGEV_THREAD timers are implementation-defined and glibc explicit
unblocks all signals before calling the user-defined function.
This behavior, although not incorrect standard-wise, opens a race if a
program using a blocked rt-signal plus sigwaitinfo (and without an
installed signal handler for the rt-signal) receives a signal while
executing the used-defined function for SIGEV_THREAD.
A better alternative discussed in bug report is to rather block all
signals (besides the internal ones not available to application
usage).
This patch fixes this issue by only unblocking SIGSETXID (used on
set*uid function) and SIGCANCEL (used for thread cancellation).
Checked on x86_64-linux-gnu and i686-linux-gnu.
From the GNU C Library manual, the pkey_set can receive a combination of
PKEY_DISABLE_WRITE and PKEY_DISABLE_ACCESS. However PKEY_DISABLE_ACCESS
is more restrictive than PKEY_DISABLE_WRITE and includes its behavior.
The test expects that after setting
(PKEY_DISABLE_WRITE|PKEY_DISABLE_ACCESS) pkey_get should return the
same. This may not be true as PKEY_DISABLE_ACCESS will succeed in
describing the state of the key in this case.
The pkey behavior during signal handling is different between x86 and
POWER. This change make the test compatible with both architectures.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
In the glibc the gettimeofday can use vDSO (on power and x86 the
USE_IFUNC_GETTIMEOFDAY is defined), gettimeofday syscall or 'default'
___gettimeofday() from ./time/gettime.c (as a fallback).
In this patch the last function (___gettimeofday) has been refactored and
moved to ./sysdeps/unix/sysv/linux/gettimeofday.c to be Linux specific.
The new __gettimeofday64 explicit 64 bit function for getting 64 bit time from
the kernel (by internally calling __clock_gettime64) has been introduced.
Moreover, a 32 bit version - __gettimeofday has been refactored to internally
use __gettimeofday64.
The __gettimeofday is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary check for time_t potential
overflow and conversion of struct __timeval64 to 32 bit struct timespec.
The iFUNC vDSO direct call optimization has been removed from both i686 and
powerpc32 (USE_IFUNC_GETTIMEOFDAY is not defined for those architectures
anymore). The Linux kernel does not provide a y2038 safe implementation of
gettimeofday neither it plans to provide it in the future, clock_gettime64
should be used instead. Keeping support for this optimization would require
to handle another build permutation (!__ASSUME_TIME64_SYSCALLS &&
USE_IFUNC_GETTIMEOFDAY) which adds more complexity and has limited use
(since the idea is to eventually have a y2038 safe glibc build).
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __gettimeofday64 and __gettimeofday.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
[Including some commit message improvement]
It appears that the ability to change symbolic link modes through such
paths is unintended. On several file systems, the operation fails with
EOPNOTSUPP, even though the symbolic link permissions are updated.
The expected behavior is a failure to update the permissions, without
file system changes.
Reviewed-by: Matheus Castanho <msc@linux.ibm.com>
MIPS fallback code handle a frame where its FDE can not be obtained
(for instance a signal frame) by reading the kernel allocated signal frame
and adding '2' to the value of 'sc_pc' [1]. The added value is used to
recognize an end of an EH region on mips16 [2].
The fix adjust the obtained signal frame value and remove the libgcc added
value by checking if the previous frame is a signal frame one.
Checked with backtrace and tst-sigcontext-get_pc tests on mips-linux-gnu
and mips64-linux-gnu.
[1] libgcc/config/mips/linux-unwind.h from gcc code.
[2] gcc/config/mips/mips.h from gcc code. */
The new type struct fd_to_filename makes the allocation of the
backing storage explicit.
Hurd uses /dev/fd, not /proc/self/fd.
Co-Authored-By: Paul Eggert <eggert@cs.ucla.edu>
Exporting functions and relying on symbol interposition from libc.so
makes the choice of implementation dependent on DT_NEEDED order, which
is not what some compiler drivers expect.
This commit replaces one magic mechanism (symbol interposition) with
another one (preprocessor-/compiler-based redirection). This makes
the hand-over from the minimal malloc to the full malloc more
explicit.
Removing the ABI symbols is backwards-compatible because libc.so is
always in scope, and the dynamic loader will find the malloc-related
symbols there since commit f0b2132b35
("ld.so: Support moving versioned symbols between sonames
[BZ #24741]").
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
With all Linux ABIs using the expected Linux kABI to indicate
syscalls errors, the INTERNAL_SYSCALL_DECL is an empty declaration
on all ports.
This patch removes the 'err' argument on INTERNAL_SYSCALL* macro
and remove the INTERNAL_SYSCALL_DECL usage.
Checked with a build against all affected ABIs.
With all Linux ABIs using the expected Linux kABI to indicate
syscalls errors, there is no need to replicate the INLINE_SYSCALL.
The generic Linux sysdep.h includes errno.h even for !__ASSEMBLER__,
which is ok now and it allows cleanup some archaic code that assume
otherwise.
Checked with a build against all affected ABIs.
The riscv INTERNAL_SYSCALL macro might clobber the register
parameter if the argument itself might clobber any register (a function
call for instance).
This patch fixes it by using temporary variables for the expressions
between the register assignments (as indicated by GCC documentation,
6.47.5.2 Specifying Registers for Local Variables).
It is similar to the fix done for MIPS (bug 25523).
Checked with riscv64-linux-gnu-rv64imafdc-lp64d build.
The microblaze INTERNAL_SYSCALL macro might clobber the register
parameter if the argument itself might clobber any register (a function
call for instance).
This patch fixes it by using temporary variables for the expressions
between the register assignments (as indicated by GCC documentation,
6.47.5.2 Specifying Registers for Local Variables).
It is similar to the fix done for MIPS (bug 25523).
Checked with microblaze-linux-gnu and microblazeel-linux-gnu build.
It changes the nios INTERNAL_SYSCALL_RAW macro to return a negative
value instead of the 'r2' register value on the 'err' macro argument.
The macro INTERNAL_SYSCALL_DECL is no longer required, and the
INTERNAL_SYSCALL_ERROR_P macro follows the other Linux kABIs.
Checked with a build against nios2-linux-gnu.
It changes the mips INTERNAL_SYSCALL* and internal_syscall* macros
to return a negative value instead of the 'a3' register value on then
'err' macro argument.
The macro INTERNAL_SYSCALL_DECL is no longer required, and the
INTERNAL_SYSCALL_ERROR_P macro follows the other Linux kABIs.
The redefinition of INTERNAL_VSYSCALL_CALL is also no longer
required.
Checked on mips64-linux-gnu, mips64n32-linux-gnu, and mips-linux-gnu.
The mips64 Linux syscall macros only differs argument type and
the requirement of sign-extending values on n32. The headers
are consolidate by parameterizing the arguments with a new type,
__syscall_arg_t, and by defining the ARGIFY for n64.
Also, the generic unix mips64 sysdep is essentially the same,
only the load instruction need to be adjusted depending of the
ABI.
Checked on mips64-linux-gnu and mips64n32-linux-gnu.
It changes the ia64 INTERNAL_SYSCALL_NCS macro to return a negative
value instead of the 'r10' register value on the 'err' macro argument.
The macro INTERNAL_SYSCALL_DECL is no longer required, and the
INTERNAL_SYSCALL_ERROR_P macro follows the other Linux kABIs.
Checked on ia64-linux-gnu.
It highly unlikely that alpha will be ported to anything else than
Linux, so this patch moves the generic unix syscall definition to
Linux and adapt it to Linux kernel ABI.
It changes the internal_syscall* macros to return a negative value
instead of the '$19' register value on the 'err' macro argument.
The macro INTERNAL_SYSCALL_DECL is no longer required, and the
INTERNAL_SYSCALL_ERROR_P macro follows the other Linux kABIs.
Checked on alpha-linux-gnu.
The sparc INTERNAL_SYSCALL macro might clobber the register
parameter if the argument itself might clobber any register (a function
call for instance).
This patch fixes it by using temporary variables for the expressions
between the register assignments (as indicated by GCC documentation,
6.47.5.2 Specifying Registers for Local Variables).
It is similar to the fix done for MIPS (bug 25523).
Checked on sparc64-linux-gnu and sparcv9-linux-gnu.
It changes the sparc internal_syscall* macros to return a negative
value instead of the 'g1' register value in the 'err' macro argument.
The __SYSCALL_STRING macro is also changed to no set the 'g1'
value, since 'o1' already holds all the required information
to check if syscall has failed.
The macro INTERNAL_SYSCALL_DECL is no longer required, and the
INTERNAL_SYSCALL_ERROR_P macro follows the other Linux kABIs.
The redefinition of INTERNAL_VSYSCALL_CALL is also no longer
required.
Checked on sparc64-linux-gnu and sparcv9-linux-gnu. It fixes
the sporadic issues on sparc32 where clock_nanosleep does not
act as cancellation entrypoint.
It changes the powerpc INTERNAL_VSYSCALL_CALL and INTERNAL_SYSCALL_NCS
to return a negative value instead of the returning the CR value in
the 'err' macro argument.
The macro INTERNAL_SYSCALL_DECL is no longer required, and the
INTERNAL_SYSCALL_ERROR_P macro follows the other Linux kABIs.
Checked on powerpc64-linux-gnu, powerpc64le-linux-gnu, and
powerpc-linux-gnu-power4.
The diferences between powerpc64{le} and powerpc32 Linux sysdep.h
are:
1. On both vDSO and syscall macros the volatile registers r9, r10,
r11, and r12 are used as input operands on powerpc32 and as
clobber registers on powerpc64. However the outcome is essentially
the same, it advertise the register might be clobbered by the
kernel (although Linux won't leak register information to userland
in such case).
2. The LOADARGS* macros uses a different size to check for invalid
types.
3. The pointer mangling support guard pointer loading uses ABI
specific instruction and register.
This patch consolidates on only one sysdep by using the the powerpc64
version as default and add the adjustments required for powerpc32.
Checked on powerpc64-linux-gnu, powerpc64le-linux-gnu, and
powerpc-linux-gnu-power4.
1. getcontext and swapcontext are updated to save the caller's shadow
stack pointer and return address.
2. setcontext and swapcontext are updated to restore shadow stack and
jump to new context directly.
3. makecontext is updated to allocate a new shadow stack and set the
caller's return address to the helper code, L(exitcode).
4. Since we no longer save and restore EAX, ECX and EDX in getcontext,
setcontext and swapcontext, we can use them as scratch register slots
to enable CET in ucontext functions.
Since makecontext allocates a new shadow stack when making a new
context and kernel allocates a new shadow stack for clone/fork/vfork
syscalls, we track the current shadow stack base. In setcontext and
swapcontext, if the target shadow stack base is the same as the current
shadow stack base, we unwind the shadow stack. Otherwise it is a stack
switch and we look for a restore token.
We enable shadow stack at run-time only if program and all used shared
objects, including dlopened ones, are shadow stack enabled, which means
that they must be compiled with GCC 8 or above and glibc 2.28 or above.
We need to save and restore shadow stack only if shadow stack is enabled.
When caller of getcontext, setcontext, swapcontext and makecontext is
compiled with smaller ucontext_t, shadow stack won't be enabled at
run-time. We check if shadow stack is enabled before accessing the
extended field in ucontext_t.
Tested on i386 CET/non-CET machines.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
We can't include sysdep.h in the test case (it introduces lots of
strange failures) so __NR_futex isn't redifined to __NR_futex_time64 by
64-bit time_t 32-bit archs (y2038 safe).
To allow the test to pass let's just do the __NR_futex_time64 syscall if
we don't have __NR_futex defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The 32-bit protection key behavior is somewhat unclear on 32-bit powerpc,
so this change is restricted to the 64-bit variants.
Flag translation is needed because of hardware differences between the
POWER implementation (read and write flags) and the Intel implementation
(write and read+write flags).
A non-ascii character in the installed headers leads now to:
error: failure to convert ascii to UTF-8
Such a finding in s390 specific fenv.h leads to fails in GCC testsuite.
See glibc commit 08aea89ef6.
Adding this gcc option also to our tests was proposed by Florian Weimer.
This change also found a hit in resource.h where now "microseconds" is used.
I've adjusted all the resource.h files.
I've used the following command to check for further hits in headers.
LC_ALL=C find -name "*.h" -exec grep -PHn "[\x80-\xFF]" {} \;
Tested on s390x and x86_64.
Reviewed-by: Zack Weinberg <zackw@panix.com>
By undef strong_alias on alpha implementation, the
default_symbol_version macro becomes an empty macro on static build.
It fixes the issue introduced at c953219420.
Checked on alpha-linux-gnu with a 'make check run-built-tests=no'.
According to [gcc documentation][1], temporary variables must be used for
the desired content to not be call-clobbered.
Fix the Linux inline syscall templates by adding temporary variables,
much like what x86 did before
(commit 381a0c26d7).
Tested with gcc 9.2.0, both cross-compiled and natively on Loongson
3A4000.
[1]: https://gcc.gnu.org/onlinedocs/gcc/Local-Register-Variables.html
It makes alpha no longer reports information about a system-wide
time zone and moves the version logic on the alpha implementation.
Checked on a build and check-abi for alpha-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Linux 5.5 renames RWF_WRITE_LIFE_NOT_SET to RWH_WRITE_LIFE_NOT_SET,
with the old name kept as an alias. This patch makes the
corresponding change in glibc.
Tested for x86_64.
The O_PATH-based fchmodat emulation will rely on the fact that closing
an O_PATH descriptor never releases POSIX advisory locks, so this
commit adds a test case for this behavior.
This patch provides new __settimeofday64 explicit 64 bit function for setting
64 bit time in the kernel (by internally calling __clock_settime64).
Moreover, a 32 bit version - __settimeofday has been refactored to internally
use __settimeofday64.
The __settimeofday is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion of struct
timeval to 64 bit struct __timespec64.
Internally the settimeofday uses __settimeofday64. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __settimeofday64 and __settimeofday.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The name 'valid_timeval64_to_timeval' suggest conversion of struct
__timeval64 to struct timeval (as in ./include/time.h).
As on the alpha the struct timeval supports 64 bit time, it seems more
feasible to emphasis struct timeval32 in the conversion function name.
Hence the helper function naming change to 'valid_timeval_to_timeval32'.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Without this patch the naming convention for functions to convert
struct timeval32 to struct timeval (which supports 64 bit time on Alpha) was
a bit misleading. The name 'valid_timeval_to_timeval64' suggest conversion
of struct timeval to struct __timeval64 (as in ./include/time.h).
As on alpha the struct timeval supports 64 bit time it seems more readable
to emphasis struct timeval32 in the conversion function name.
Hence the helper function naming change to 'valid_timeval32_to_timeval'.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The __suseconds64_t type is supposed to be the 64 bit type across all
architectures.
It would be mostly used internally in the glibc - however, when passed to
Linux kernel (very unlikely), if necessary, it shall be converted to 32
bit type (i.e. __suseconds_t)
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch updates the kernel version in the test tst-mman-consts.py
to 5.5. (There are no new constants covered by this test in 5.5 that
need any other header changes.)
Tested with build-many-glibcs.py.