Remove unnecessary variant_pcs field: the dynamic tag can be checked
directly.
* sysdeps/aarch64/dl-machine.h (elf_machine_runtime_setup): Remove the
DT_AARCH64_VARIANT_PCS check.
(elf_machine_lazy_rel): Use l_info[DT_AARCH64 (VARIANT_PCS)].
* sysdeps/aarch64/linkmap.h (struct link_map_machine): Remove
variant_pcs.
Using __builtin_cpu_supports() requires support in GCC and Glibc.
My recent patch to fenv_libc.h added an unprotected use of
__builtin_cpu_supports(). Compilation of Glibc itself will fail
with a sufficiently new GCC and sufficiently old Glibc:
../sysdeps/powerpc/fpu/fegetexcept.c: In function ‘__fegetexcept’:
../sysdeps/powerpc/fpu/fenv_libc.h:52:20: error: builtin ‘__builtin_cpu_supports’ needs GLIBC (2.23 and newer) that exports hardware capability bits [-Werror]
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Fixes 3db85a9814.
The power7 logb implementation does not show a performance gain on
ISA 2.07+ chips with faster floating-point to GRP instructions
(currently POWER8 and POWER9).
This patch moves the POWER7 implementation to generic one and enables
it for POWER7. It also add some cleanup to use inline floating-point
number instead of define them using static const.
The performance difference is for POWER9:
- Without patch:
"logb": {
"subnormal": {
"duration": 4.99202e+09,
"iterations": 8.83662e+08,
"max": 75.194,
"min": 5.501,
"mean": 5.64925
},
"normal": {
"duration": 4.97063e+09,
"iterations": 9.97094e+08,
"max": 46.489,
"min": 4.956,
"mean": 4.98512
}
}
- With patch:
"logb": {
"subnormal": {
"duration": 4.97226e+09,
"iterations": 9.92036e+08,
"max": 77.209,
"min": 4.892,
"mean": 5.01218
},
"normal": {
"duration": 4.96192e+09,
"iterations": 1.07545e+09,
"max": 12.361,
"min": 4.593,
"mean": 4.61382
}
}
The ifunc implementation is also enabled only for powerpc64.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/power7/fpu/s_logb.c: Move to ...
* sysdeps/powerpc/fpu/s_logb.c: ... here. Use inline FP constants.
* sysdeps/powerpc/power7/fpu/s_logbf.c: Move to ...
* sysdeps/powerpc/fpu/s_logbf.c: ... here. Use inline FP constants.
* sysdeps/powerpc/power7/fpu/s_logbl.c: Move to ...
* sysdeps/powerpc/fpu/s_logbl.c: ... here. Use inline FP constants.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_logb-power7.c:
Adjust implementation path.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_logbf-power7.c:
Adjust implementation path.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_logbl-power7.c:
Adjust implementation path.
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/Makefile
(libm-sysdep_routines): Add s_log* objects.
(CFLAGS-s_logbf-power7.c, CFLAGS-s_logbl-power7.c,
CFLAGS-s_logb-power7.c): New fule.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logb-power7.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logb-power7.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logb-ppc64.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logb-ppc64.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logb.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logb.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbf-power7.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbf-power7.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbf-ppc64.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbf-ppc64.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbf.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbf.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbl-power7.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbl-power7.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbl-ppc64.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbl-ppc64.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbl.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbl.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile: Remove file.
* sysdeps/powerpc/powerpc64/power7/fpu/s_logb.c: Remove file.
* sysdeps/powerpc/powerpc64/power7/fpu/s_logbf.c: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_logbl.c: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- The resulting binary difference on 32 bits architecture is
minimum. On i686-linux-gnu (with architecture optimization
routine removed) there is no different using logb benchtests
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_logb.c: Move to ...
* sysdeps/ieee754/dbl-64/s_logb.c: ... here. Add work around for
powerpc32 integer 0 converting to -0.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Passing a second argument to the ifunc resolver allows accessing
AT_HWCAP2 values from the resolver. AArch64 will start using AT_HWCAP2
on linux because for ilp32 to remain compatible with lp64 ABI no more
than 32bit hwcap flags can be in AT_HWCAP which is already used up.
Currently the relocation ordering logic does not guarantee that ifunc
resolvers can call libc apis or access libc objects, so only the
resolver arguments and runtime environment dependent instructions can
be used to do the dispatch (this affects ifunc resolvers outside of
the libc).
Since ifunc resolver is target specific and only supposed to be
called by the dynamic linker, the call ABI can be changed in a
backward compatible way:
Old call ABI passed hwcap as uint64_t, new abi sets the
_IFUNC_ARG_HWCAP flag in the hwcap and passes a second argument
that's a pointer to an extendible struct. A resolver has to check
the _IFUNC_ARG_HWCAP flag before accessing the second argument.
The new sys/ifunc.h installed header has the definitions for the
new ABI, everything is in the implementation reserved namespace.
An alternative approach is to try to support extern calls from ifunc
resolvers such as getauxval, but that seems non-trivial
https://sourceware.org/ml/libc-alpha/2017-01/msg00468.html
* sysdeps/aarch64/Makefile: Install sys/ifunc.h and add tests.
* sysdeps/aarch64/dl-irel.h (elf_ifunc_invoke): Update to new ABI.
* sysdeps/aarch64/sys/ifunc.h: New file.
* sysdeps/aarch64/tst-ifunc-arg-1.c: New file.
* sysdeps/aarch64/tst-ifunc-arg-2.c: New file.
With commit f0b2132b35 ("ld.so:
Support moving versioned symbols between sonames [BZ #24741]"), the
dynamic linker will find the definition of vfork in libc and binds
a vfork reference to that symbol, even if the soname in the version
reference says that the symbol should be located in libpthread.
As a result, the forwarder (whether it's IFUNC-based or a duplicate
of the libc implementation) is no longer necessary.
On older architectures, a placeholder symbol is required, to make sure
that the GLIBC_2.1.2 symbol version does not go away, or is turned in
to a weak symbol definition by the link editor. (The symbol version
needs to preserved so that the symbol coverage check in
elf/dl-version.c does not fail for old binaries.)
mips32 is an outlier: It defined __vfork@@GLIBC_2.2, but the
baseline is GLIBC_2.0. Since there are other @@GLIBC_2.2 symbols,
the placeholder symbol is not needed there.
Using 'mffs' instruction to read the Floating Point Status Control Register
(FPSCR) can force a processor flush in some cases, with undesirable
performance impact. If the values of the bits in the FPSCR which force the
flush are not needed, an instruction that is new to POWER9 (ISA version 3.0),
'mffsl' can be used instead.
Cases included: get_rounding_mode, fegetround, fegetmode, fegetexcept.
* sysdeps/powerpc/bits/fenvinline.h (__fegetround): Use
__fegetround_ISA300() or __fegetround_ISA2() as appropriate.
(__fegetround_ISA300) New.
(__fegetround_ISA2) New.
* sysdeps/powerpc/fpu_control.h (IS_ISA300): New.
(_FPU_MFFS): Move implementation...
(_FPU_GETCW): Here.
(_FPU_MFFSL): Move implementation....
(_FPU_GET_RC_ISA300): Here. New.
(_FPU_GET_RC): Use _FPU_GET_RC_ISA300() or _FPU_GETCW() as appropriate.
* sysdeps/powerpc/fpu/fenv_libc.h (fegetenv_status_ISA300): New.
(fegetenv_status): New.
* sysdeps/powerpc/fpu/fegetmode.c (fegetmode): Use fegetenv_status()
instead of fegetenv_register().
* sysdeps/powerpc/fpu/fegetexcept.c (__fegetexcept): Likewise.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The kernel is evolving this interface (e.g., removal of the
restriction on cross-device copies), and keeping up with that
is difficult. Applications which need the function should
run kernels which support the system call instead of relying on
the imperfect glibc emulation.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The kernel interface uses type unsigned int, but there is an
internal conversion to int, so INT_MAX is the correct limit.
Part of the buffer will always be unused, but this is not a
problem. Such huge buffers do not occur in practice anyway.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Since sysdeps/i386/dl-lookupcfg.h and sysdeps/x86_64/dl-lookupcfg.h are
identical, we can replace them with sysdeps/x86/dl-lookupcfg.h.
* sysdeps/i386/dl-lookupcfg.h: Moved to ...
* sysdeps/x86/dl-lookupcfg.h: Here.
* sysdeps/x86_64/dl-lookupcfg.h: Removed.
The nds32 creates two specific syscalls, udftrap and fp_udfiex_crtl, in
kernel v5.0 and v5.2, respectively. Add these two syscalls to
syscall-names.list.
Define all currently used Linux versions used for
PREPARE_VERSION{,_KNOWN} in sysdeps/unix/sysv/linux/dl-vdso.h and use
them instead of duplicating the versions and precomputed hashes across
architecture specific files.
* sysdeps/unix/sysv/linux/aarch64/gettimeofday.c (INIT_ARCH): Use
PREPARE_VERSION_KNOWN.
* sysdeps/unix/sysv/linux/aarch64/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/dl-vdso.h (VDSO_NAME_LINUX_2_6_39): New
define.
(VDSO_HASH_LINUX_2_6_39): Likewise.
(VDSO_NAME_LINUX_4_9): Likewise.
(VDSO_HASH_LINUX_4_9): Likewise.
* sysdeps/unix/sysv/linux/powerpc/gettimeofday.c (INIT_ARCH): Likewise.
* sysdeps/unix/sysv/linux/powerpc/init-first.c
(_libc_vdso_platform_setup): Likewise.
* sysdeps/unix/sysv/linux/powerpc/time.c (INIT_ARCH): Likewise.
* sysdeps/unix/sysv/linux/s390/init-first.c (_libc_vdso_platform_setup):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/init-first.c (__vdso_platform_setup):
Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add 'volatile' keyword to a few asm statements, to force the compiler
to generate the instructions therein.
Some instances were implicitly volatile, but adding keyword for consistency.
2019-06-19 Paul A. Clarke <pc@us.ibm.com>
* sysdeps/powerpc/fpu/fenv_libc.h (relax_fenv_state): Add 'volatile'.
* sysdeps/powerpc/fpu/fpu_control.h (__FPU_MFFS): Likewise.
(__FPU_MFFSL): Likewise.
(_FPU_SETCW): Likewise.
__ppc_get_timebase_freq() always return 0 when using static linked
glibc.
This is a minimal example.c to reproduce:
/******************************/
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/platform/ppc.h>
int main() {
uint64_t freq = __ppc_get_timebase_freq();
printf("Time Base frequency = %"PRIu64" Hz\n", freq);
if (freq == 0)
return -1;
return 0;
}
/******************************/
Compile command: gcc -static example.c
This bug has been reproduced, fixed and tested on all powerpc platforms
(ppc32, ppc64 and ppc64le).
The underlying code of __ppc_get_timebase_freq uses __get_timebase_freq
that has a different implementation for shared and static version of
glibc. In the static version, there is an incorrect sense in the if
check for the fd returned when opening /proc/cpuinfo.
This solution is mostly a cherry-pick from:
commit 4791e4f773d060c1a37b27aac5b03cdfa9327afc
Author: Stan Shebs <stanshebs@google.com>
Date: Fri May 17 12:25:19 2019 -0700
Subject: Fix sense of a test in the static-linking version of ppc get_clockfreq
That is in branch glibc/google/grte/v5-2.27/master and was mentioned for
inclusion on master here:
https://www.sourceware.org/ml/libc-alpha/2019-05/msg00409.html
Adapted from original fix for get_clockfreq. That code was moved to
get_timebase_freq.
Also added a static-build testcase for __ppc_get_timebase_freq since the
underlying function has different implementations for shared and static
build.
[BZ #24640]
* sysdeps/unix/sysv/linux/powerpc/get_timebase_freq.c
[!SHARED] (__get_timebase_freq): Fix sense of a test in the
static-linking version.
* sysdeps/unix/sysv/linux/powerpc/Makefile
(tests-static): Add test-gettimebasefreq-static.
(tests): Likewise.
* sysdeps/unix/sysv/linux/powerpc/test-gettimebasefreq-static.c:
New file.
Although defined in initial TLS/NPTL ABI for m68k and ColdFire [1], kernel
support was never pushed upstream. This patch removes the unused m68k
vDSO support.
Checked with a build against m68k and m68k-coldfire and some basic
tests on ARAnyM.
* sysdeps/unix/sysv/linux/m68k/Makefile (sysdep_routines,
sysdep-rtld-routines): Remove rules.
* sysdeps/unix/sysv/linux/m68k/Versions (libc) [GLIBC_PRIVATE]:
Remove __vdso_atomic_cmpxchg_32 and __vdso_atomic_barrier.
(ld) [GLIBC_PRIVATE]: __rtld___vdso_read_tp,
__rtld___vdso_atomic_cmpxchg_32, and __rtld___vdso_atomic_barrier.
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h
(atomic_compare_and_exchange_val_acq, atomic_full_barrier): Remove
vDSO path for SHARED.
* sysdeps/unix/sysv/linux/m68k/init-first.c: Remove file.
* sysdeps/unix/sysv/linux/m68k/libc-m68k-vdso.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-helpers.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-vdso.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-helpers.c: New file.
[1] https://lists.debian.org/debian-68k/2007/11/msg00071.html
This patches consolidates all the powerpc llrint{f} implementations on
the generic sysdeps/powerpc/fpu/s_llrint{f}.
The IFUNC support is also moved only to powerpc64 only, since for
powerpc64le generic implementation resulting in optimized code.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/Makefile
(libm-sysdep_routines): Add s_llrint-power8, s_llrint-power6x, and
s_llrint-ppc64.
(CFLAGS-s_llrint-power8.c, CFLAGS-s_llrint-power6x.c): New rule.
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_llrint-power6x.c: New
file.
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_llrint-power8.c:
Likewise.
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_llrint-ppc64.c:
Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_lrint.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_lrint.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_llrint.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_llrint.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_llrintf.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_llrintf.c: ... here.
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_lrint.c: New file.
* sysdeps/powerpc/powerpc64/fpu/Makefile: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile
(libm-sysdep_routines): Remove s_llrint-* objects.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_llrint-power6x.S: Remove
file.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_llrint-power8.S:
Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_llrint-ppc64.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_llrint.c: New file.
* sysdeps/powerpc/powerpc64/fpu/s_llrintf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_lrint.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_lrintf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_llrint.S: Remove file.
* sysdeps/powerpc/powerpc64/fpu/s_llrintf.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_lrint.S: Likewise.
* sysdeps/powerpc/powerpc64/power6x/fpu/s_llrint.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_llrint.S: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
The identifier linux is used as a predefined macro, so the actually
used path is 1/stat.h or 1/stat64.h. Using the quote-based version
triggers a file lookup for /usr/include/bits/linux/stat.h (or whatever
directory is used to store bits/statx.h), but since bits/ is pretty
much reserved by glibc, this appears to be acceptable.
This is related to GCC PR 80005: incorrect macro expansion of the
argument of __has_include.
Suggested by Zack Weinberg.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch adds the new constant IPV6_ROUTER_ALERT_ISOLATE from Linux
5.1 to sysdeps/unix/sysv/linux/bits/in.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/in.h (IPV6_ROUTER_ALERT_ISOLATE):
New macro.
Some recent change on GCC mainline resulted in the localplt test
failing for powerpc soft-float (not sure exactly when, as the failure
appeared when there were other build test failures as well;
<https://sourceware.org/ml/libc-testresults/2019-q2/msg00261.html>
shows it remaining when other failures went away). The problem is a
call to memset that GCC now generates in the libgcc long double code.
Since memset is documented as a function GCC may always implicitly
generate calls to, it seems reasonable to allow that local PLT
reference (just like those for libgcc functions that GCC implicitly
generates calls to and that are also exported from libc.so), which
this patch does.
Tested for powerpc soft-float with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/localplt.data:
Allow memset in libc.so.
Avoid lazy binding of symbols that may follow a variant PCS with different
register usage convention from the base PCS.
Currently the lazy binding entry code does not preserve all the registers
required for AdvSIMD and SVE vector calls. Saving and restoring all
registers unconditionally may break existing binaries, even if they never
use vector calls, because of the larger stack requirement for lazy
resolution, which can be significant on an SVE system.
The solution is to mark all symbols in the symbol table that may follow
a variant PCS so the dynamic linker can handle them specially. In this
patch such symbols are always resolved at load time, not lazily.
So currently LD_AUDIT for variant PCS symbols are not supported, for that
the _dl_runtime_profile entry needs to be changed e.g. to unconditionally
save/restore all registers (but pass down arg and retval registers to
pltentry/exit callbacks according to the base PCS).
This patch also removes a __builtin_expect from the modified code because
the branch prediction hint did not seem useful.
* sysdeps/aarch64/dl-dtprocnum.h: New file.
* sysdeps/aarch64/dl-machine.h (DT_AARCH64): Define.
(elf_machine_runtime_setup): Handle DT_AARCH64_VARIANT_PCS.
(elf_machine_lazy_rel): Check STO_AARCH64_VARIANT_PCS and bind such
symbols at load time.
* sysdeps/aarch64/linkmap.h (struct link_map_machine): Add variant_pcs.
The powerpc finite optimization do not show much gain:
- GCC will call libm iff -fsignaling-nans is used. This usage pattern
is usually not performance oriented and for such calls PLT overhead
should dominate execution time.
- The power7 uses ftdiv to optimize for some input patterns, but at
cost of others. Comparing against generic C implementation built
for powerpc64-linux-gnu-power7 (--with-cpu=power7):
- Generic sysdeps/ieee754 implementation:
"isfinite": {
"": {
"duration": 5.0082e+09,
"iterations": 2.45299e+09,
"max": 43.824,
"min": 2.008,
"mean": 2.04167
},
"INF": {
"duration": 4.66554e+09,
"iterations": 2.28288e+09,
"max": 35.73,
"min": 2.008,
"mean": 2.04371
},
"NAN": {
"duration": 4.66274e+09,
"iterations": 2.28716e+09,
"max": 34.161,
"min": 2.009,
"mean": 2.03866
}
}
- power7 optimized one:
"isfinite": {
"": {
"duration": 4.99111e+09,
"iterations": 2.65566e+09,
"max": 25.015,
"min": 1.716,
"mean": 1.87942
},
"INF": {
"duration": 4.6783e+09,
"iterations": 2.0999e+09,
"max": 35.264,
"min": 1.868,
"mean": 2.22787
},
"NAN": {
"duration": 4.67915e+09,
"iterations": 2.08678e+09,
"max": 38.099,
"min": 1.869,
"mean": 2.24228
}
}
So it basically optimizes marginally for normal numbers while
increasing the latency for other kind of FP.
- The power8 implementation is just the generic implementation using
ISA 2.07 mfvsrd instruction (which GCC uses for generic implementation).
So generic implementation is the best option for powerpc64le.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/Makefile
(sysdeps_routines, libm-sysdep_routines): Remove s_finite*
objects.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_finite-power7.S:
Remove file.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_finite-ppc32.c:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_finite.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_finitef-ppc32.c:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_finitef.c: Likewise.
* sysdeps/powerpc/powerpc32/power7/fpu/s_finite.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/fpu/s_finitef.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile (sysdep_call):
Remove s_finite* objects.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_finite-power7.S: Remove file.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_finite-power8.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_finite-ppc64.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_finite.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_finitef-ppc64.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_finitef.c: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_finite.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_finitef.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_finite.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_finitef.S: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra finite
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c: Move to ...
* sysdeps/ieee754/dbl-64/s_finite.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
The powerpc isinf optimizations onyl adds complexity:
- GCC will call libm iff -fsignaling-nans is used. This usage pattern
is usually not performance oriented and for such calls PLT overhead
should dominate execution time.
- The power7 uses ftdiv to optimize for some input pattern and branch
implementation for INF and denormal that does:
return (ix & UINT64_C (0x7fffffffffffffff)) == UINT64_C (0x7ff0000000000000)
Although it does show slight better latency than generic algorithm
(as below), it is only for power7 and requires it to override it
for power8.
- The power8 implementation is just the generic implementation using
ISA 2.07 mfvsrd instruction (which GCC uses for generic implementation).
So generic implementation is the best option for powerpc64le.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/Makefile
(sysdeps_routines, libm-sysdep_routines): Remove s_isinf* and s_isinf*
objects.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isinf-power7.S:
Remove file.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isinf-ppc32.c:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isinf.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isinff-ppc32.c:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isinff.c: Likewise.
* sysdeps/powerpc/powerpc32/power7/fpu/s_isinf.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/fpu/s_isinff.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile (sysdep_call):
Remove s_isinf* and s_isinf* objects.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinf-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinf-power8.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinf-ppc64.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinff-ppc64.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinff.c: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_isinf.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_isinff.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_isinf.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_isinff.S: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra isinf
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_isinf.c: Move to ...
* sysdeps/ieee754/dbl-64/s_isinf.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
The powerpc isnan optimizations are not really a gain:
- GCC will call libm iff -fsignaling-nans is used. This usage pattern
is usually not performance oriented and for such calls PLT overhead
should dominate execution time.
- The power5, power6, and power6x are just micro-optimization to
improve the Load-Hit-Store hazards from floating-point to general
register transfer, and current GCC already has support to minimize
it by inserting either extra nops or group dispatch instructions.
- The power7 uses ftdiv to optimize for some input patterns, but at
cost of others. Comparing against generic C implementation built
for powerpc-linux-gnu-power4 (which uses the hp-timing support on
benchtests):
- Generic sysdeps/ieee754 implementation:
"isnan": {
"": {
"duration": 4.98415e+09,
"iterations": 2.34516e+09,
"max": 45.925,
"min": 2.052,
"mean": 2.12529
},
"INF": {
"duration": 4.74057e+09,
"iterations": 1.69761e+09,
"max": 91.01,
"min": 2.052,
"mean": 2.79249
},
"NAN": {
"duration": 4.74071e+09,
"iterations": 1.68768e+09,
"max": 282.343,
"min": 2.052,
"mean": 2.809
}
}
- power7 optimized one:
$ ./testrun.sh benchtests/bench-isnan
"isnan": {
"": {
"duration": 4.96842e+09,
"iterations": 2.56297e+09,
"max": 50.048,
"min": 1.872,
"mean": 1.93854
},
"INF": {
"duration": 4.76648e+09,
"iterations": 1.54213e+09,
"max": 373.408,
"min": 2.661,
"mean": 3.09084
},
"NAN": {
"duration": 4.76845e+09,
"iterations": 1.54515e+09,
"max": 51.016,
"min": 2.736,
"mean": 3.08607
}
}
So it basically optimizes marginally for normal numbers while
increasing the latency for other kind of FP.
- The generic implementation requires getting the floating point
status, disable the invalid operation bit, and restore the
floating-point status. Each operation is costly and requires
flushing the FP pipeline.
Using the same scenarion for the previous analysis:
"isnan": {
"": {
"duration": 5.08284e+09,
"iterations": 6.2898e+08,
"max": 41.844,
"min": 8.057,
"mean": 8.08108
},
"INF": {
"duration": 4.97904e+09,
"iterations": 6.16176e+08,
"max": 39.661,
"min": 8.057,
"mean": 8.08055
},
"NAN": {
"duration": 4.98695e+09,
"iterations": 5.95866e+08,
"max": 29.728,
"min": 8.345,
"mean": 8.36925
}
}
- The power8 implementation is just the generic implementation using
ISA 2.07 mfvsrd instruction (which GCC uses for generic implementation).
So generic implementation is the best option for powerpc64le.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/fpu/s_isnan.c: Remove file.
* sysdeps/powerpc/fpu/s_isnanf.S: Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/Makefile
(sysdeps_routines, libm-sysdep_routines): Remove s_isnan-* and
s_isnanf-* objects.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnan-power5.S:
Remove file
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnan-power6.S:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnan-power7.S:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnan-ppc32.S:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnan.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnanf-power5.S:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnanf-power6.S:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnanf.c: Likewise.
* sysdeps/powerpc/powerpc32/power5/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc32/power5/fpu/s_isnanf.S: Likewise.
* sysdeps/powerpc/powerpc32/power6/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc32/power6/fpu/s_isnanf.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/fpu/s_isnanf.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile (sysdep_calls):
Remove s_isnan-* and s_isnanf-* objects.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan-power5.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan-power6.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan-power6x.S:
Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan-power8.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan-ppc64.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnanf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_isnanf.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_isnan.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/fpu/s_isnanf.S: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra isnan
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_isnan.c: Move to ...
* sysdeps/ieee754/dbl-64/s_isnan.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
GCC always expand copysign{f} for all possible cpus, so calling the libm
is only done if user explicitly states to disable the builtin (which is
done usually not for performance reason). So to provide ifunc variant
for copysign is just unrequired complexity, since libm will be called
on non-performance critical code.
This patch removes both powerpc32 and powerpc64 ifunc variants and
consolidates the powerpc implementation on
sysdeps/powerpc/fpu/s_copysign{f}.c using compiler builtins.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/fpu/s_copysign.c: New file.
* sysdeps/powerpc/fpu/s_copysignf.c: Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_copysign.S: Remove file.
* sysdeps/powerpc/powerpc32/fpu/s_copysignf.S: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/Makefile
(sysdep_routines, libm-sysdep_routines): Remove s_copysign-power6 and
s_copysign-ppc32.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysign-power6.S:
Remove file.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysign-ppc32.S:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysign.c:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysignf.c:
Likewise.
* sysdeps/powerpc/powerpc32/power6/fpu/s_copysign.S: Likewise.
* sysdeps/powerpc/powerpc32/power6/fpu/s_copysignf.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile (sysdeps_calls):
Remove s_copysign-power6 s_copysign-ppc64.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysign-power6.S:
Remove file.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysign-ppc64.S:
Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysign.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysignf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_copysign.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_copysignf.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/fpu/s_copysign.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/fpu/s_copysignf.S: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
This patches consolidates all the powerpc rint{f} implementations on
the generic sysdeps/powerpc/fpu/s_rint{f}.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/fpu/round_to_integer.h (set_fenv_mode,
round_to_integer_float, round_mode): Add RINT handling.
(reset_fenv_mode): New symbol.
* sysdeps/powerpc/fpu/s_rint.c (__rint): Use generic implementation.
* sysdeps/powerpc/fpu/s_rintf.c (__rintf): Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_rint.S: Remove file.
* sysdeps/powerpc/powerpc32/fpu/s_rintf.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_rint.S: Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_rintf.S: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Now that there are no internal users of __sysctl left, it is possible
to add an unconditional deprecation warning to <sys/sysctl.h>.
To avoid a test failure due this warning in check-install-headers,
skip the test for sys/sysctl.h.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
No 32-bit system call wrapper is added because the interface
is problematic because it cannot deal with 64-bit inode numbers
and 64-bit directory hashes.
A future commit will deprecate the undocumented getdirentries
and getdirentries64 functions.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Add support to use 'mffsl' instruction if compiled for POWER9 (or later).
Also, mask the result to avoid bleeding unrelated bits into the result of
_FPU_GET_RC().
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
fegetexcept() included code which exactly duplicates the code in
fenv_reg_to_exceptions(). Replace with a call to that function.
2019-06-05 Paul A. Clarke <pc@us.ibm.com>
* sysdeps/powerpc/fpu/fegetexcept.c (__fegetexcept): Replace code
with call to equivalent function.
Linux only supports the required ISA sysctls on StrongARM devices,
which are armv4 and no longer tested during glibc development
and probably bit-rotted by this point. (No reported test results,
and the last discussion of armv4 support was in the glibc 2.19
release notes.)
<asm/unistd.h> on arm defines the following macros:
#define __ARM_NR_breakpoint (__ARM_NR_BASE+1)
#define __ARM_NR_cacheflush (__ARM_NR_BASE+2)
#define __ARM_NR_usr26 (__ARM_NR_BASE+3)
#define __ARM_NR_usr32 (__ARM_NR_BASE+4)
#define __ARM_NR_set_tls (__ARM_NR_BASE+5)
#define __ARM_NR_get_tls (__ARM_NR_BASE+6)
These do not follow the regular __NR_* naming convention and
have so far been ignored by the syscall-names.list consistency
checks. This commit adds these names to the file, preparing
for the availability of these names in the regular __NR_*
namespace.
Since GCC commit 271500 (svn), also known as the following commit on the
git mirror:
commit 61edec870f9fdfb5df3fa4e40f28cbaede28a5b1
Author: amodra <amodra@138bc75d-0d04-0410-961f-82ee72b054a4>
Date: Wed May 22 04:34:26 2019 +0000
[RS6000] Don't pass -many to the assembler
glibc builds are failing when an assembly implementation does not
declare the correct '.machine' directive, or when no such directive is
declared at all. For example, when a POWER6 instruction is used, but
'.machine power6' is not declared, the assembler will fail with an error
similar to the following:
../sysdeps/powerpc/powerpc64/power8/strcmp.S: Assembler messages:
24 ../sysdeps/powerpc/powerpc64/power8/strcmp.S:55: Error: unrecognized opcode: `cmpb'
This patch adds '.machine powerN' directives where none existed, as well
as it updates '.machine power7' directives on POWER8 files, because the
minimum binutils version required to build glibc (binutils 2.25) now
provides this machine version. It also adds '-many' to the assembler
command used to build tst-set_ppr.c.
Tested for powerpc, powerpc64, and powerpc64le, as well as with
build-many-glibcs.py for powerpc targets.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>