I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Now __thread_gscope_wait (the function behind THREAD_GSCOPE_WAIT,
formerly __wait_lookup_done) can be implemented directly in ld.so,
eliminating the unprotected GL (dl_wait_lookup_done) function
pointer.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This consolidates the copy-pasted arch specific semaphore header into
single version (based on s390) which suffices 32-bit and and 64-bit
arch/ABI based on the canonical WORDSIZE.
For now I've left out arches which use alternate defines to choose for
32 vs 64-bit builds (aarch64, mips) which in theory can also use the same
header.
Passes build-many for
aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf
riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64
x86_64-linux-gnu microblaze-linux-gnu nios2-linux-gnu
Suggested-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch adds a default pthread-offsets.h based on default
thread definitions from struct_mutex.h and struct_rwlock.h.
The idea is to simplify new ports inclusion.
Checked with a build on affected abis.
Change-Id: I7785a9581e651feb80d1413b9e03b5ac0452668a
This patch adds a default pthreadtypes-arch.h, the idea is to simpify
new ports inclusion and an override is required only if the architecture
adds some arch-specific extensions or requirement.
The default values on the new generic header are based on current
architecture define value and they are not optimal compared to current
code requirements as below.
- On 64 bits __SIZEOF_PTHREAD_BARRIER_T is defined as 32 while is
sizeof (struct pthread_barrier) is 20 bytes.
- On 32 bits __SIZEOF_PTHREAD_ATTR_T is defined as 36 while
sizeof (struct pthread_attr) is 32.
The default values are not changed so the generic header could be
used by some architectures.
Checked with a build on affected abis.
Change-Id: Ie0cd586258a2650f715c1af0c9fe4e7063b0409a
This patch adds a new generic __pthread_rwlock_arch_t definition meant
to be used by new ports. Its layout mimics the current usage on some
64 bits ports and it allows some ports to use the generic definition.
The arch __pthread_rwlock_arch_t definition is moved from
pthreadtypes-arch.h to another arch-specific header (struct_rwlock.h).
Also the static intialization macro for pthread_rwlock_t is set to use
an arch defined on (__PTHREAD_RWLOCK_INITIALIZER) which simplifies its
implementation.
The default pthread_rwlock_t layout differs from current ports with:
1. Internal layout is the same for 32 bits and 64 bits.
2. Internal flag is an unsigned short so it should not required
additional padding to align for word boundary (if it is the case
for the ABI).
Checked with a build on affected abis.
Change-Id: I776a6a986c23199929d28a3dcd30272db21cd1d0
The current way of defining the common mutex definition for POSIX and
C11 on pthreadtypes-arch.h (added by commit 06be6368da) is
not really the best options for newer ports. It requires define some
misleading flags that should be always defined as 0
(__PTHREAD_COMPAT_PADDING_MID and __PTHREAD_COMPAT_PADDING_END), it
exposes options used solely for linuxthreads compat mode
(__PTHREAD_MUTEX_USE_UNION and __PTHREAD_MUTEX_NUSERS_AFTER_KIND), and
requires newer ports to explicit define them (adding more boilerplate
code).
This patch adds a new default __pthread_mutex_s definition meant to
be used by newer ports. Its layout mimics the current usage on both
32 and 64 bits ports and it allows most ports to use the generic
definition. Only ports that use some arch-specific definition (such
as hardware lock-elision or linuxthreads compat) requires specific
headers.
For 32 bit, the generic definitions mimic the other 32-bit ports
of using an union to define the fields uses on adaptive and robust
mutexes (thus not allowing both usage at same time) and by using a
single linked-list for robust mutexes. Both decisions seemed to
follow what recent ports have done and make the resulting
pthread_mutex_t/mtx_t object smaller.
Also the static intialization macro for pthread_mutex_t is set to use
a macro __PTHREAD_MUTEX_INITIALIZER where the architecture can redefine
in its struct_mutex.h if it requires additional fields to be
initialized.
Checked with a build on affected abis.
Change-Id: I30a22c3e3497805fd6e52994c5925897cffcfe13
The new rwlock implementation added by cc25c8b4c1 (2.25) removed
support for lock-elision. This patch removes remaining the
arch-specific unused definitions.
Checked with a build against all affected ABIs.
Change-Id: I5dec8af50e3cd56d7351c52ceff4aa3771b53cd6
This patch new build tests to check for internal fields offsets for
internal pthread_rwlock_t definition. Althoug the '__data.__flags'
field layout should be preserved due static initializators, the patch
also adds tests for the futexes that may be used in a shared memory
(although using different libc version in such scenario is not really
supported).
Checked with a build against all affected ABIs.
Change-Id: Iccc103d557de13d17e4a3f59a0cad2f4a640c148
The offsets of pthread_mutex_t __data.__nusers, __data.__spins,
__data.elision, __data.list are not required to be constant over
the releases. Only the __data.__kind is used for static
initializers.
This patch also adds an additional size check for __data.__kind.
Checked with a build against affected ABIs.
Change-Id: I7a4e48cc91b4c4ada57e9a5d1b151fb702bfaa9f
This patch adds two new internal defines to set the internal
pthread_mutex_t layout required by the supported ABIS:
1. __PTHREAD_MUTEX_NUSERS_AFTER_KIND which control whether to define
__nusers fields before or after __kind. The preferred value for
is 0 for new ports and it sets __nusers before __kind.
2. __PTHREAD_MUTEX_USE_UNION which control whether internal __spins and
__list members will be place inside an union for linuxthreads
compatibility. The preferred value is 0 for ports and it sets
to not use an union to define both fields.
It fixes the wrong offsets value for __kind value on x86_64-linux-gnu-x32.
Checked with a make check run-built-tests=no on all afected ABIs.
[BZ #22298]
* nptl/allocatestack.c (allocate_stack): Check if
__PTHREAD_MUTEX_HAVE_PREV is non-zero, instead if
__PTHREAD_MUTEX_HAVE_PREV is defined.
* nptl/descr.h (pthread): Likewise.
* nptl/nptl-init.c (__pthread_initialize_minimal_internal):
Likewise.
* nptl/pthread_create.c (START_THREAD_DEFN): Likewise.
* sysdeps/nptl/fork.c (__libc_fork): Likewise.
* sysdeps/nptl/pthread.h (PTHREAD_MUTEX_INITIALIZER): Likewise.
* sysdeps/nptl/bits/thread-shared-types.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION): New
defines.
(__pthread_internal_list): Check __PTHREAD_MUTEX_USE_UNION instead
of __WORDSIZE for internal layout.
(__pthread_mutex_s): Check __PTHREAD_MUTEX_NUSERS_AFTER_KIND instead
of __WORDSIZE for internal __nusers layout and __PTHREAD_MUTEX_USE_UNION
instead of __WORDSIZE whether to use an union for __spins and __list
fields.
(__PTHREAD_MUTEX_HAVE_PREV): Define also for __PTHREAD_MUTEX_USE_UNION
case.
* sysdeps/aarch64/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION): New
defines.
* sysdeps/alpha/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/arm/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/hppa/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/powerpc/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/sparc/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/x86/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch adds a new build test to check for internal fields
offsets for user visible internal field. Although currently
the only field which is statically initialized to a non zero value
is pthread_mutex_t.__data.__kind value, the tests also check the
offset of __kind, __spins, __elision (if supported), and __list
internal member. A internal header (pthread-offset.h) is added
to each major ABI with the reference value.
Checked on x86_64-linux-gnu and with a build check for all affected
ABIs (aarch64-linux-gnu, alpha-linux-gnu, arm-linux-gnueabihf,
hppa-linux-gnu, i686-linux-gnu, ia64-linux-gnu, m68k-linux-gnu,
microblaze-linux-gnu, mips64-linux-gnu, mips64-n32-linux-gnu,
mips-linux-gnu, powerpc64le-linux-gnu, powerpc-linux-gnu,
s390-linux-gnu, s390x-linux-gnu, sh4-linux-gnu, sparc64-linux-gnu,
sparcv9-linux-gnu, tilegx-linux-gnu, tilegx-linux-gnu-x32,
tilepro-linux-gnu, x86_64-linux-gnu, and x86_64-linux-x32).
* nptl/pthreadP.h (ASSERT_PTHREAD_STRING,
ASSERT_PTHREAD_INTERNAL_OFFSET): New macro.
* nptl/pthread_mutex_init.c (__pthread_mutex_init): Add build time
checks for internal pthread_mutex_t offsets.
* sysdeps/aarch64/nptl/pthread-offsets.h
(__PTHREAD_MUTEX_NUSERS_OFFSET, __PTHREAD_MUTEX_KIND_OFFSET,
__PTHREAD_MUTEX_SPINS_OFFSET, __PTHREAD_MUTEX_ELISION_OFFSET,
__PTHREAD_MUTEX_LIST_OFFSET): New macro.
* sysdeps/alpha/nptl/pthread-offsets.h: Likewise.
* sysdeps/arm/nptl/pthread-offsets.h: Likewise.
* sysdeps/hppa/nptl/pthread-offsets.h: Likewise.
* sysdeps/i386/nptl/pthread-offsets.h: Likewise.
* sysdeps/ia64/nptl/pthread-offsets.h: Likewise.
* sysdeps/m68k/nptl/pthread-offsets.h: Likewise.
* sysdeps/microblaze/nptl/pthread-offsets.h: Likewise.
* sysdeps/mips/nptl/pthread-offsets.h: Likewise.
* sysdeps/nios2/nptl/pthread-offsets.h: Likewise.
* sysdeps/powerpc/nptl/pthread-offsets.h: Likewise.
* sysdeps/s390/nptl/pthread-offsets.h: Likewise.
* sysdeps/sh/nptl/pthread-offsets.h: Likewise.
* sysdeps/sparc/nptl/pthread-offsets.h: Likewise.
* sysdeps/tile/nptl/pthread-offsets.h: Likewise.
* sysdeps/x86_64/nptl/pthread-offsets.h: Likewise.
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch removes all the replicated pthread definition accross the
architectures and consolidates it on shared headers. The new
organization is as follow:
* Architecture specific definition (such as pthread types sizes) are
place in the new pthreadtypes-arch.h header in arch specific path.
* All shared structure definition are moved to a common NPTL header
at sysdeps/nptl/bits/pthreadtypes.h (with now includes the arch
specific one for internal definitions).
* Also, for C11 future thread support, both mutex and condition
definition are placed in a common header at
sysdeps/nptl/bits/thread-shared-types.h.
It is also a refactor patch without expected functional changes.
Checked with a build for all major ABI (aarch64-linux-gnu, alpha-linux-gnu,
arm-linux-gnueabi, i386-linux-gnu, ia64-linux-gnu,
m68k-linux-gnu, microblaze-linux-gnu, mips{64}-linux-gnu, nios2-linux-gnu,
powerpc{64le}-linux-gnu, s390{x}-linux-gnu, sparc{64}-linux-gnu,
tile{pro,gx}-linux-gnu, and x86_64-linux-gnu).
* posix/Makefile (headers): Add pthreadtypes-arch.h and
thread-shared-types.h.
* sysdeps/aarch64/nptl/bits/pthreadtypes-arch.h: New file: arch
specific thread definition.
* sysdeps/alpha/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/arm/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/hppa/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/powerpc/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/sparc/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/x86/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/nptl/bits/thread-shared-types.h: New file: shared
thread definition between POSIX and C11.
* sysdeps/aarch64/nptl/bits/pthreadtypes.h.: Remove file.
* sysdeps/alpha/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/arm/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/hppa/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/powerpc/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/sparc/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/x86/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/nptl/bits/pthreadtypes.h: New file: common thread
definitions shared across all architectures.
This patch remove the PID cache and usage in current GLIBC code. Current
usage is mainly used a performance optimization to avoid the syscall,
however it adds some issues:
- The exposed clone syscall will try to set pid/tid to make the new
thread somewhat compatible with current GLIBC assumptions. This cause
a set of issue with new workloads and usecases (such as BZ#17214 and
[1]) as well for new internal usage of clone to optimize other algorithms
(such as clone plus CLONE_VM for posix_spawn, BZ#19957).
- The caching complexity also added some bugs in the past [2] [3] and
requires more effort of each port to handle such requirements (for
both clone and vfork implementation).
- Caching performance gain in mainly on getpid and some specific
code paths. The getpid performance leverage is questionable [4],
either by the idea of getpid being a hotspot as for the getpid
implementation itself (if it is indeed a justifiable hotspot a
vDSO symbol could let to a much more simpler solution).
Other usage is mainly for non usual code paths, such as pthread
cancellation signal and handling.
For thread creation (on stack allocation) the code simplification in fact
adds some performance gain due the no need of transverse the stack cache
and invalidate each element pid.
Other thread usages will require a direct getpid syscall, such as
cancellation/setxid signal, thread cancellation, thread fail path (at
create_thread), and thread signal (pthread_kill and pthread_sigqueue).
However these are hardly usual hotspots and I think adding a syscall is
justifiable.
It also simplifies both the clone and vfork arch-specific implementation.
And by review each fork implementation there are some discrepancies that
this patch also solves:
- microblaze clone/vfork does not set/reset the pid/tid field
- hppa uses the default vfork implementation that fallback to fork.
Since vfork is deprecated I do not think we should bother with it.
The patch also removes the TID caching in clone. My understanding for
such semantic is try provide some pthread usage after a user program
issue clone directly (as done by thread creation with CLONE_PARENT_SETTID
and pthread tid member). However, as stated before in multiple discussions
threads, GLIBC provides clone syscalls without further supporting all this
semantics.
I ran a full make check on x86_64, x32, i686, armhf, aarch64, and powerpc64le.
For sparc32, sparc64, and mips I ran the basic fork and vfork tests from
posix/ folder (on a qemu system). So it would require further testing
on alpha, hppa, ia64, m68k, nios2, s390, sh, and tile (I excluded microblaze
because it is already implementing the patch semantic regarding clone/vfork).
[1] https://codereview.chromium.org/800183004/
[2] https://sourceware.org/ml/libc-alpha/2006-07/msg00123.html
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=15368
[4] http://yarchive.net/comp/linux/getpid_caching.html
* sysdeps/nptl/fork.c (__libc_fork): Remove pid cache setting.
* nptl/allocatestack.c (allocate_stack): Likewise.
(__reclaim_stacks): Likewise.
(setxid_signal_thread): Obtain pid through syscall.
* nptl/nptl-init.c (sigcancel_handler): Likewise.
(sighandle_setxid): Likewise.
* nptl/pthread_cancel.c (pthread_cancel): Likewise.
* sysdeps/unix/sysv/linux/pthread_kill.c (__pthread_kill): Likewise.
* sysdeps/unix/sysv/linux/pthread_sigqueue.c (pthread_sigqueue):
Likewise.
* sysdeps/unix/sysv/linux/createthread.c (create_thread): Likewise.
* sysdeps/unix/sysv/linux/getpid.c: Remove file.
* nptl/descr.h (struct pthread): Change comment about pid value.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Remove thread
pid assert.
* sysdeps/unix/sysv/linux/pthread-pids.h (__pthread_initialize_pids):
Do not set pid value.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove thread
pid cache check.
* nptl_db/td_thr_validate.c (td_thr_validate): Likewise.
* sysdeps/aarch64/nptl/tcb-offsets.sym: Remove pid offset.
* sysdeps/alpha/nptl/tcb-offsets.sym: Likewise.
* sysdeps/arm/nptl/tcb-offsets.sym: Likewise.
* sysdeps/hppa/nptl/tcb-offsets.sym: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/ia64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/m68k/nptl/tcb-offsets.sym: Likewise.
* sysdeps/microblaze/nptl/tcb-offsets.sym: Likewise.
* sysdeps/mips/nptl/tcb-offsets.sym: Likewise.
* sysdeps/nios2/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/s390/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sparc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/tile/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/unix/sysv/linux/aarch64/clone.S: Remove pid and tid caching.
* sysdeps/unix/sysv/linux/alpha/clone.S: Likewise.
* sysdeps/unix/sysv/linux/arm/clone.S: Likewise.
* sysdeps/unix/sysv/linux/hppa/clone.S: Likewise.
* sysdeps/unix/sysv/linux/i386/clone.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/clone2.S: Likewise.
* sysdeps/unix/sysv/linux/mips/clone.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sh/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/tile/clone.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/aarch64/vfork.S: Remove pid set and reset.
* sysdeps/unix/sysv/linux/alpha/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/arm/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/i386/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/clone.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/mips/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sh/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tile/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tst-clone2.c (f): Remove direct pthread
struct access.
(clone_test): Remove function.
(do_test): Rewrite to take in consideration pid is not cached anymore.
The previous barrier implementation did not fulfill the POSIX requirements
for when a barrier can be destroyed. Specifically, it was possible that
threads that haven't noticed yet that their round is complete still access
the barrier's memory, and that those accesses can happen after the barrier
has been legally destroyed.
The new algorithm does not have this issue, and it avoids using a lock
internally.
This adds new functions for futex operations, starting with wait,
abstimed_wait, reltimed_wait, wake. They add documentation and error
checking according to the current draft of the Linux kernel futex manpage.
Waiting with absolute or relative timeouts is split into separate functions.
This allows for removing a few cases of code duplication in pthreads code,
which uses absolute timeouts; also, it allows us to put platform-specific
code to go from an absolute to a relative timeout into the platform-specific
futex abstractions..
Futex operations that can be canceled are also split out into separate
functions suffixed by "_cancelable".
There are separate versions for both Linux and NaCl; while they currently
differ only slightly, my expectation is that the separate versions of
lowlevellock-futex.h will eventually be merged into futex-internal.h
when we get to move the lll_ functions over to the new futex API.
mq_notify (present in POSIX by 1996) brings in references to
pthread_barrier_init and pthread_barrier_wait (new in the 2001 edition
of POSIX). This patch fixes this by making those functions into weak
aliases of __pthread_barrier_*, exporting the __pthread_barrier_*
names at version GLIBC_PRIVATE and using them in mq_notify.
Tested for x86_64 and x86 (testsuite, and comparison of installed
stripped shared libraries). Changes in addresses from dynamic symbol
table / PLT changes render most comparisons not particularly useful,
but when the addresses of subsequent code don't change there's no sign
of unexpected changes there. This patch does not remove any
linknamespace XFAILs because of other namespace issues remaining with
mqueue.h functions.
[BZ #18544]
* nptl/pthread_barrier_init.c (pthread_barrier_init): Rename to
__pthread_barrier_init and define as weak alias of
__pthread_barrier_init.
* sysdeps/sparc/nptl/pthread_barrier_init.c
(pthread_barrier_init): Likewise.
* nptl/pthread_barrier_wait.c (pthread_barrier_wait): Rename to
__pthread_barrier_wait and define as weak alias of
__pthread_barrier_wait.
* sysdeps/sparc/nptl/pthread_barrier_wait.c
(pthread_barrier_wait): Likewise.
* sysdeps/sparc/sparc32/pthread_barrier_wait.c
(pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_barrier_wait.S
(pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_barrier_wait.S
(pthread_barrier_wait): Likewise.
* nptl/Versions (libpthread): Export __pthread_barrier_init and
__pthread_barrier_wait at version GLIBC_PRIVATE.
* include/pthread.h (__pthread_barrier_init): Declare.
(__pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/mq_notify.c (notification_function):
Call __pthread_barrier_wait instead of pthread_barrier_wait.
(helper_thread): Likewise.
(init_mq_netlink): Call __pthread_barrier_init instead of
pthread_barrier_init.
This patch relies on the C version of the rwlocks posted earlier.
With C rwlocks it is very straight forward to do adaptive elision
using TSX. It is based on the infrastructure added earlier
for mutexes, but uses its own elision macros. The macros
are fairly general purpose and could be used for other
elision purposes too.
This version is much cleaner than the earlier assembler based
version, and in particular implements adaptation which makes
it safer.
I changed the behavior slightly to not require any changes
in the test suite and fully conform to all expected
behaviors (generally at the cost of not eliding in
various situations). In particular this means the timedlock
variants are not elided. Nested trylock aborts.