This patch adds support for HP_TIMING_NOW if we build at least
with -march=z10 -mzarch. Otherwise we are still using the
generic hp-timing.h.
ChangeLog:
* sysdeps/s390/hp-timing.h: New file.
Building glibc for RISC-V with Linux 5.3 kernel headers fails because
<linux/sched.h>, included in vfork.S for CLONE_* constants, contains a
structure definition not safe for inclusion in assembly code.
All other architectures already avoid use of that header in vfork.S,
either defining the CLONE_* constants locally or embedding the
required values directly in the relevant instruction, where they
implement vfork using the clone syscall (see the implementations for
aarch64, ia64, mips and nios2). This patch makes the RISC-V version
define the constants locally like the other architectures.
Tested build for all three RISC-V configurations in
build-many-glibcs.py with Linux 5.3 headers.
* sysdeps/unix/sysv/linux/riscv/vfork.S: Do not include
<linux/sched.h>.
(CLONE_VM): New macro.
(CLONE_VFORK): Likewise.
There is no need to sparc64 provide an arch-specific implementation to
route to POSIX one (which uses gettimeofday). Linux one already handles
the case for architecture that does not have __NR_time.
No semantic changes, checked against a build for sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/sparc/sparc64/time.c: Remove file.
This patch consolidates the mips, mips64, and mips64-n32
INTERNAL_VSYSCALL_CALL on a single implementation.
No semantic changes. I checked against a build for mips-linux-gnu,
mips64-linux-gnu, and mips64-n32-linux-gnu.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h
(INTERNAL_VSYSCALL_CALL): Remove.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h
(INTERNAL_VSYSCALL_CALL): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h
(INTERNAL_VSYSCALL_CALL): Likewise.
* sysdeps/unix/sysv/linux/mips/sysdep.h (INTERNAL_VSYSCALL_CALL):
New macro.
This patch simplifies the powerpc internal macros for vDSO calls
by:
- Removing INTERNAL_VSYSCALL_NO_SYSCALL_FALLBACK, used solely on
get_timebase_freq.
- Adjust INTERNAL_VSYSCALL_CALL_TYPE powerpc32 to follow powerpc64
argument ordering.
- Use HAVE_*_VSYSCALL instead of explicit strings.
- Make powerpc libc-vdso.h include generic implementation.
No semantic change expected, checked on powerpc-linux-gnu-power4,
powerpc64-linux-gnu, and powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/libc-vdso.h (VDSO_IFUNC_RET): Define if not
defined.
* sysdeps/unix/sysv/linux/powerpc/get_timebase_freq.c
(__get_timebase_freq): Remove use of
INTERNAL_VSYSCALL_NO_SYSCALL_FALLBACK.
(get_timebase_freq_fallback): New symbol.
* sysdeps/unix/sysv/linux/powerpc/gettimeofday.c (time): Use
HAVE_GETTIMEOFDAY_VSYSCALL.
* sysdeps/unix/sysv/linux/powerpc/time.c (gettimeofday): Use
HAVE_TIME_VSYSCALL.
* sysdeps/unix/sysv/linux/powerpc/libc-vdso.h: Include generic
implementation.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/sysdep.h
(INTERNAL_VSYSCALL_CALL_TYPE): Make calling convention similar to
powerpc64.
(INTERNAL_VSYSCALL_NO_SYSCALL_FALLBACK): Remove macro.
* .../sysv/linux/powerpc/powerpc64/sysdep.h
(INTERNAL_VSYSCALL_NO_SYSCALL_FALLBACK): Likewise.
* sysdeps/unix/sysv/linux/powerpc/sysdep.h
(HAVE_GETTIMEOFDAY_VSYSCALL): Define.
Linux vDSO initialization code the internal function pointers require a
lot of duplicated boilerplate over different architectures. This patch
aims to simplify not only the code but the required definition to enable
a vDSO symbol.
The changes are:
1. Consolidate all init-first.c on only one implementation and enable
the symbol based on HAVE_*_VSYSCALL existence.
2. Set the HAVE_*_VSYSCALL to the architecture expected names string.
3. Add a new internal implementation, get_vdso_mangle_symbol, which
returns a mangled function pointer.
Currently the clock_gettime, clock_getres, gettimeofday, getcpu, and time
are handled in an arch-independent way, powerpc still uses some
arch-specific vDSO symbol handled in a specific init-first implementation.
Checked on aarch64-linux-gnu, arm-linux-gnueabihf, i386-linux-gnu,
mips64-linux-gnu, powerpc64le-linux-gnu, s390x-linux-gnu,
sparc64-linux-gnu, and x86_64-linux-gnu.
* sysdeps/powerpc/powerpc32/backtrace.c (is_sigtramp_address,
is_sigtramp_address_rt): Use HAVE_SIGTRAMP_{RT}32 instead of SHARED.
* sysdeps/powerpc/powerpc64/backtrace.c (is_sigtramp_address):
Likewise.
* sysdeps/unix/sysv/linux/aarch64/init-first.c: Remove file.
* sysdeps/unix/sysv/linux/aarch64/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/arm/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/arm/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/mips/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/mips/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/i386/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/riscv/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/riscv/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/s390/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/s390/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/x86/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/aarch64/sysdep.h
(HAVE_CLOCK_GETRES_VSYSCALL, HAVE_CLOCK_GETTIME_VSYSCALL,
HAVE_GETTIMEOFDAY_VSYSCALL): Define value based on kernel exported
name.
* sysdeps/unix/sysv/linux/arm/sysdep.h (HAVE_CLOCK_GETTIME_VSYSCALL,
HAVE_GETTIMEOFDAY_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/i386/sysdep.h (HAVE_CLOCK_GETTIME_VSYSCALL,
HAVE_GETTIMEOFDAY_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/mips/sysdep.h (HAVE_CLOCK_GETTIME_VSYSCALL,
HAVE_GETTIMEOFDAY_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/sysdep.h
(HAVE_CLOCK_GETRES_VSYSCALL, HAVE_CLOCK_GETTIME_VSYSCALL,
HAVE_GETCPU_VSYSCALL, HAVE_TIME_VSYSCALL, HAVE_GET_TBFREQ,
HAVE_SIGTRAMP_RT64, HAVE_SIGTRAMP_32, HAVE_SIGTRAMP_RT32i,
HAVE_GETTIMEOFDAY_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/riscv/sysdep.h (HAVE_CLOCK_GETRES_VSYSCALL,
HAVE_CLOCK_GETTIME_VSYSCALL, HAVE_GETTIMEOFDAY_VSYSCALL,
HAVE_GETCPU_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/s390/sysdep.h (HAVE_CLOCK_GETRES_VSYSCALL,
HAVE_CLOCK_GETTIME_VSYSCALL, HAVE_GETTIMEOFDAY_VSYSCALL,
HAVE_GETCPU_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/sysdep.h (HAVE_CLOCK_GETTIME_VSYSCALL,
HAVE_GETTIMEOFDAY_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h
(HAVE_CLOCK_GETTIME_VSYSCALL, HAVE_GETTIMEOFDAY_VSYSCALL,
HAVE_GETCPU_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/dl-vdso.h (VDSO_NAME, VDSO_HASH): Define to
invalid names if architecture does not define them.
(get_vdso_mangle_symbol): New symbol.
* sysdeps/unix/sysv/linux/init-first.c: New file.
* sysdeps/unix/sysv/linux/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/init-first.c (gettimeofday,
clock_gettime, clock_getres, getcpu, time): Remove declaration.
(__libc_vdso_platform_setup_arch): Likewise and use
get_vdso_mangle_symbol to setup vDSO symbols.
(sigtramp_rt64, sigtramp32, sigtramp_rt32, get_tbfreq): Add
attribute_hidden.
* sysdeps/unix/sysv/linux/powerpc/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/sysdep-vdso.h (VDSO_SYMBOL): Remove
definition.
Fix a small error in the HP_TIMING_PRINT trailing zero setting; the '\0'
should be set at MIN(Len,string length), instead of always at the 'Len'
position.
* sysdeps/generic/hp-timing-common.h (HP_TIMING_PRINT): Correct
position of string null termination.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
On alpha, Linux kernel 5.1 added the standard getegid, geteuid and
getppid syscalls (commit ecf7e0a4ad15287). Up to now alpha was using
the corresponding OSF1 syscalls through:
- sysdeps/unix/alpha/getegid.S
- sysdeps/unix/alpha/geteuid.S
- sysdeps/unix/alpha/getppid.S
When building against kernel headers >= 5.1, the glibc now use the new
syscalls through sysdeps/unix/sysv/linux/syscalls.list. When it is then
used with an older kernel, the corresponding 3 functions fail.
A quick fix is to move the OSF1 wrappers under the
sysdeps/unix/sysv/linux/alpha directory so they override the standard
linux ones. A better fix would be to try the new syscalls and fallback
to the old OSF1 in case the new ones fail. This can be implemented in
a later commit.
Changelog:
[BZ #24986]
* sysdeps/unix/alpha/getegid.S: Move to ...
* sysdeps/unix/sysv/linux/alpha/getegid.S: ... here.
* sysdeps/unix/alpha/geteuid.S: Move to ...
* sysdeps/unix/sysv/linux/alpha/geteuid.S: ... here.
* sysdeps/unix/alpha/getppid.S: Move to ...
* sysdeps/unix/sysv/linux/alpha/getppid.S: ... here
Add a macro to linux/kernel-features.h, __ASSUME_TIME64_SYSCALLS, to
indicate whether the kernel can be assumed to provide a set of system
calls that process 64-bit time_t.
__ASSUME_TIME64_SYSCALLS does not indicate whether time_t is actually
64 bits (that's __TIMEBITS) and also does not indicate whether the
64-bit time_t system calls have "time64" suffixes on their names.
Code that uses __ASSUME_TIME64_SYSCALLS will be added in subsequent
patches.
* sysdeps/unix/sysv/linux/kernel-features.h
(__ASSUME_TIME64_SYSCALLS): New macro.
Reviewed-by: Alistair Francis <alistair23@gmail.com>
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Zack Weinberg <zackw@panix.com>
In glibc 2.17, the functions clock_getcpuclockid, clock_getres,
clock_gettime, clock_nanosleep, and clock_settime were moved from
librt.so to libc.so, leaving compatibility stubs behind. Now that the
dynamic linker no longer insists on finding versioned symbols in the
same library that originally defined them, we do not need the stubs
anymore, and this means we don't need GLIBC_PRIVATE __-prefix aliases
for most of the functions anymore either. (clock_gettime still needs
one.) For ports added before 2.17, libc.so needs to provide two
symbol versions for each, the default at GLIBC_2.17 plus a compat
version matching what librt had.
While I'm at it, move the clock_*.c files and their tests from rt/ to
time/.
Use the generic C memset/memcpy/memmove in benchtests since comparing
against a slow byte-oriented implementation makes no sense.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2019-08-29 Wilco Dijkstra <wdijkstr@arm.com>
* benchtests/bench-memcpy.c (simple_memcpy): Remove.
(generic_memcpy): Include generic C memcpy.
* benchtests/bench-memmove.c (simple_memmove): Remove.
(generic_memmove): Include generic C memmove.
* benchtests/bench-memset.c (simple_memset): Remove.
(generic_memset): Include generic C memset.
* benchtests/bench-memset-large.c (simple_memset): Remove.
(generic_memset): Include generic C memset.
* benchtests/bench-memset-walk.c (simple_memset): Remove.
(generic_memset): Include generic C memset.
* string/memcpy.c (MEMCPY): Add defines to enable redirection.
* string/memset.c (MEMSET): Likewise.
* sysdeps/x86_64/memcopy.h: Remove empty file.
* sysdeps/mach/hurd/i386/sigreturn.c (__sigreturn2): New function,
unlocks SS and returns to the saved PC.
(__sigreturn): Do not unlock SS, and "return" into __sigreturn2 on the
thread stack instead of the saved PC.
Optimizing anonymous maps brings bugs, and does not optimize much anyway.
[BZ #19903]
* sysdeps/mach/hurd/mmap.c (__mmap): Remove optimizing anonymous maps
as __vm_allocate.
To be efficient, the remap translator simply returns ports from the underlying
filesystem, and thus the root directory found through browsing '..' is the
underlying root, not the remap root. This should not be a reason for getcwd to
fail.
* sysdeps/mach/hurd/getcwd.c (_hurd_canonicalize_directory_name_internal): Do
not remove the heading slash if we got an unknown root directory.
(__getcwd): Do not fail with EGRATUITOUS if we got an unknown root directory.
The preemptor sigcode doesn't match since the POSIX sigcode SI_TIMER is
used when SIGALRM is sent. In addition, The inline version of
hurd_preempt_signals doesn't update _hurdsig_preempted_set. For these
reasons, the preemptor would be skipped by post_signal.
* sysdeps/mach/hurd/setitimer.c (setitimer_locked): Fix preemptor setup.
This patch is a reimplementation of [1], which was submitted back in
2015. Copyright issue has been sorted [2] last year. It proposed a new
section (.gnu.xhash) and related dynamic tag (GT_GNU_XHASH). The new
section would be virtually identical to the existing .gnu.hash except
for the translation table (xlat) which would contain correct MIPS
.dynsym indexes corresponding to the hashvals in chains. This is because
MIPS ABI imposes a different ordering of the dynsyms than the one
expected by the .gnu.hash section. Another addition would be a leading
word at the beggining of the section, which would contain the number of
entries in the translation table.
In this patch, the new section name and dynamic tag are changed to
reflect the fact that the section should be treated as MIPS specific
(.MIPS.xhash and DT_MIPS_XHASH).
This patch addresses the alignment issue reported in [3] which is caused
by the leading word of the .MIPS.xhash section. Leading word is now
removed in the corresponding binutils patch, and the number of entries
in the translation table is computed using DT_MIPS_SYMTABNO dynamic tag.
Since the MIPS specific dl-lookup.c file was removed following the
initial patch submission, I opted for the definition of three new macros
in the generic ldsodefs.h. ELF_MACHINE_GNU_HASH_ADDRIDX defines the
index of the dynamic tag in the l_info array. ELF_MACHINE_HASH_SYMIDX is
used to calculate the index of a symbol in GNU hash. On MIPS, it is
defined to look up the symbol index in the translation table.
ELF_MACHINE_XHASH_SETUP is defined for MIPS only. It initializes the
.MIPS.xhash pointer in the link_map_machine struct.
The other major change is bumping the highest EI_ABIVERSION value for
MIPS to suggest that the dynamic linker now supports GNU hash.
The patch was tested by running the glibc testsuite for the three MIPS
ABIs (o32, n32 and n64) and for x86_64-linux-gnu.
[1] https://sourceware.org/ml/binutils/2015-10/msg00057.html
[2] https://sourceware.org/ml/binutils/2018-03/msg00025.html
[3] https://sourceware.org/ml/binutils/2016-01/msg00006.html
* elf/dl-addr.c (determine_info): Calculate the symbol index
using the newly defined ELF_MACHINE_HASH_SYMIDX macro.
* elf/dl-lookup.c (do_lookup_x): Ditto.
(_dl_setup_hash): Initialize MIPS xhash translation table.
* elf/elf.h (SHT_MIPS_XHASH): New define.
(DT_MIPS_XHASH): New define.
* sysdeps/generic/ldsodefs.h (ELF_MACHINE_GNU_HASH_ADDRIDX): New
define.
(ELF_MACHINE_HASH_SYMIDX): Ditto.
(ELF_MACHINE_XHASH_SETUP): Ditto.
* sysdeps/mips/ldsodefs.h (ELF_MACHINE_GNU_HASH_ADDRIDX): New
define.
(ELF_MACHINE_HASH_SYMIDX): Ditto.
(ELF_MACHINE_XHASH_SETUP): Ditto.
* sysdeps/mips/linkmap.h (struct link_map_machine): New member.
* sysdeps/unix/sysv/linux/mips/ldsodefs.h: Increment valid ABI
version.
* sysdeps/unix/sysv/linux/mips/libc-abis: New ABI version.
The fix for BZ#18231 requires new symbols only for sh4eb. This patch
adds the required folder and files for both BE and LE abilist. No
semantic changes are expected.
Checked with check-abi for sh4eb-linux-gnu and sh4-linux-gnu.
* sysdeps/sh/preconfigure.ac: New file.
* sysdeps/sh/preconfigure: Regenerate.
* sysdeps/sh/be/sh3/Implies: New file.
* sysdeps/sh/be/sh4/Implies: Likewise.
* sysdeps/sh/le/sh3/Implies: Likewise.
* sysdeps/sh/le/sh4/Implies: Likewise.
* sysdeps/unix/sysv/linux/sh/le/sh3/Implies: Likewise.
* sysdeps/unix/sysv/linux/sh/le/sh4/Implies: Likewise.
* sysdeps/unix/sysv/linux/sh/*.abilist: Move to
sysdeps/unix/sysv/linux/sh/le/*.abilist.
* sysdeps/unix/sysv/linux/sh/be/*.abilist: New files.
The fix for BZ#18231 requires new symbols only for microblaze. This patch
adds the required folder and files for both BE and LE abilist. No semantic
changes are expected.
Checked with check-abi for microblaze-linux-gnueabihf and
microblazeel-linux-gnueabihf.
* sysdeps/microblaze/preconfigure.ac: New file.
* sysdeps/microblaze/preconfigure: Regenerate.
* sysdeps/microblaze/be/implies: New file.
* sysdeps/microblaze/le/implies: Likewise.
* sysdeps/unix/sysv/linux/microblaze/be/implies: Likewise.
* sysdeps/unix/sysv/linux/microblaze/le/implies: Likewise.
* sysdeps/unix/sysv/linux/microblaze/*.abilist. Move to
sysdeps/unix/sysv/linux/microblaze/be/*.abilist.
* sysdeps/unix/sysv/linux/microblaze/le/*.abilist: New files.
The fix for BZ#18231 requires new symbols only for armeb. This patch
adds the required folder and files for both BE and LE abilist. No
semantic changes are expected.
Checked with check-abi for arm-linux-gnueabihf and armeb-linux-gnueabihf.
* sysdeps/arm/preconfigure.ac: Set machine based on endianness.
* sysdeps/arm/preconfigure: Regenerate.
* sysdeps/arm/be/Implies: New file.
* sysdeps/arm/be/armv6/Implies: Likewise.
* sysdeps/arm/be/armv6t2/Implies: Likewise.
* sysdeps/arm/be/armv7/Implies: Likewise.
* sysdeps/arm/le/Implies: Likewise.
* sysdeps/unix/sysv/linux/arm/be/Implies: Likewise.
* sysdeps/unix/sysv/linux/arm/le/Implies: Likewise.
* sysdeps/unix/sysv/linux/arm/*.abilist: Move to
sysdeps/unix/sysv/linux/arm/le/*.abilist.
* sysdeps/unix/sysv/linux/arm/be/l*.abilist: New files.
fegetenv_status() wants to use the lighter weight instruction 'mffsl'
for reading the Floating-Point Status and Control Register (FPSCR).
It currently will use it directly if compiled '-mcpu=power9', and will
perform a runtime check (cpu_supports("arch_3_00")) otherwise.
Nicely, it turns out that the 'mffsl' instruction will decode to
'mffs' on architectures older than "arch_3_00" because the additional
bits set for 'mffsl' are "don't care" for 'mffs'. 'mffs' is a superset
of 'mffsl'.
So, just generate 'mffsl'.
fesetenv() reads the current value of the Floating-Point Status and Control
Register (FPSCR) to determine the difference between the current state of
exception enables and the newly requested state. All of these bits are also
returned by the lighter weight 'mffsl' instruction used by fegetenv_status().
Use that instead.
Also, remove a local macro _FPU_MASK_ALL in favor of a common macro,
FPU_ENABLES_MASK from fenv_libc.h.
Finally, use a local variable ('new') in favor of a pointer dereference
('*envp').
SET_RESTORE_ROUND uses libc_feholdsetround_ppc_ctx and
libc_feresetround_ppc_ctx to bracket a block of code where the floating point
rounding mode must be set to a certain value.
For the *prologue*, libc_feholdsetround_ppc_ctx is used and performs:
1. Read/save FPSCR.
2. Create new value for FPSCR with new rounding mode and enables cleared.
3. If new value is different than current value,
a. If transitioning from a state where some exceptions enabled,
enter "ignore exceptions / non-stop" mode.
b. Write new value to FPSCR.
c. Put a mark on the wall indicating the FPSCR was changed.
(1) uses the 'mffs' instruction. On POWER9, the lighter weight 'mffsl'
instruction can be used, but it doesn't return all of the bits in the FPSCR.
fegetenv_status uses 'mffsl' on POWER9, 'mffs' otherwise, and can thus be
used instead of fegetenv_register.
(3b) uses 'mtfsf 0b11111111' to write the entire FPSCR, so it must
instead use 'mtfsf 0b00000011' to write just the enables and the mode,
because some of the rest of the bits are not valid if 'mffsl' was used.
fesetenv_mode uses 'mtfsf 0b00000011' on POWER9, 'mtfsf 0b11111111'
otherwise.
For the *epilogue*, libc_feresetround_ppc_ctx checks the mark on the wall, then
calls libc_feresetround_ppc, which just calls __libc_femergeenv_ppc with
parameters such that it performs:
1. Retreive saved value of FPSCR, saved in prologue above.
2. Read FPSCR.
3. Create new value of FPSCR where:
- Summary bits and exception indicators = current OR saved.
- Rounding mode and enables = saved.
- Status bits = current.
4. If transitioning from some exceptions enabled to none,
enter "ignore exceptions / non-stop" mode.
5. If transitioning from no exceptions enabled to some,
enter "catch exceptions" mode.
6. Write new value to FPSCR.
The summary bits are hardwired to the exception indicators, so there is no
need to restore any saved summary bits.
The exception indicator bits, which are sticky and remain set unless
explicitly cleared, would only need to be restored if the code block
might explicitly clear any of them. This is certainly not expected.
So, the only bits that need to be restored are the enables and the mode.
If it is the case that only those bits are to be restored, there is no need to
read the FPSCR. Steps (2) and (3) are unnecessary, and step (6) only needs to
write the bits being restored.
We know we are transitioning out of "ignore exceptions" mode, so step (4) is
unnecessary, and in step (6), we only need to check the state we are
entering.
Since fe{en,dis}ableexcept() and fesetmode() read-modify-write just the
"mode" (exception enable and rounding mode) bits of the Floating Point Status
Control Register (FPSCR), the lighter weight 'mffsl' instruction can be used
to read the FPSCR (enables and rounding mode), and 'mtfsf 0b00000011' can be
used to write just those bits back to the FPSCR. The net is better performance.
In addition, fe{en,dis}ableexcept() read the FPSCR again after writing it, or
they determine that it doesn't need to be written because it is not changing.
In either case, the local variable holds the current values of the enable
bits in the FPSCR. This local variable can be used instead of again reading
the FPSCR.
Also, that value of the FPSCR which is read the second time is validated
against the requested enables. Since the write can't fail, this validation
step is unnecessary, and can be removed. Instead, the exceptions to be
enabled (or disabled) are transformed into available bits in the FPSCR,
then validated after being transformed back, to ensure that all requested
bits are actually being set. For example, FE_INVALID_SQRT can be
requested, but cannot actually be set. This bit is not mapped during the
transformations, so a test for that bit being set before and after
transformations will show the bit would not be set, and the function will
return -1 for failure.
Finally, convert the local macros in fesetmode.c to more generally useful
macros in fenv_libc.h.
The exceptions passed to fe{en,dis}ableexcept() are defined in the ABI
as a bitmask, a combination of FE_INVALID, FE_OVERFLOW, etc.
Within the functions, these bits must be translated to/from the corresponding
enable bits in the Floating Point Status Control Register (FPSCR).
This translation is currently done bit-by-bit. The compiler generates
a series of conditional bit operations. Nicely, the "FE" exception
bits are all a uniform offset from the FPSCR enable bits, so the bit-by-bit
operation can instead be performed by a shift with appropriate masking.
Move non-ASCII contributor names from installed headers
into contrib.texi when possible, and when it's not (the
copyright notice in sysdeps/unix/sysv/linux/mips/sys/user.h)
go back to ASCIIfied names. Problem reported by Joseph Myers in:
https://www.sourceware.org/ml/libc-alpha/2019-08/msg00646.html
This bumps the highest valid EI_ABIVERSION value to ABSOLUTE ABI.
New testcase loads the symbol from the GOT with the "lb" instruction
so that the EI_ABIVERSION header field of the shared object is set
to ABSOLUTE (it doesn't actually check the value of the symbol), and
makes sure that the main executable is executed without "ABI version
invalid" error.
Tested for all three ABIs (o32, n32, n64) using both static linker which
handles undefined weak symbols correctly [1] (and sets the EI_ABIVERSION
of the test module) and the one that doesn't (EI_ABIVERSION left as 0).
[1] https://sourceware.org/ml/binutils/2018-07/msg00268.html
[BZ #24916]
* sysdeps/mips/Makefile [$(subdir) = elf] (tests): Add
tst-undefined-weak.
[$(subdir) = elf] (modules-names): Add tst-undefined-weak-lib.
[$(subdir) = elf] ($(objpfx)tst-undefined-weak): Add dependency.
* sysdeps/mips/tst-undefined-weak-lib.S: New file.
* sysdeps/mips/tst-undefined-weak.c: Likewise.
* sysdeps/unix/sysv/linux/mips/ldsodefs.h (VALID_ELF_ABIVERSION):
Increment highest valid ABIVERSION value.
Linux/Mips kernels prior to 4.8 could potentially crash the user
process when doing FPU emulation while running on non-executable
user stack.
Currently, gcc doesn't emit .note.GNU-stack for mips, but that will
change in the future. To ensure that glibc can be used with such
future gcc, without silently resulting in binaries that might crash
in runtime, this patch forces RWX stack for all built objects if
configured to run against minimum kernel version less than 4.8.
* sysdeps/unix/sysv/linux/mips/Makefile
(test-xfail-check-execstack):
Move under mips-has-gnustack != yes.
(CFLAGS-.o*, ASFLAGS-.o*): New rules.
Apply -Wa,-execstack if mips-force-execstack == yes.
* sysdeps/unix/sysv/linux/mips/configure: Regenerated.
* sysdeps/unix/sysv/linux/mips/configure.ac
(mips-force-execstack): New var.
Set to yes for hard-float builds with minimum_kernel < 4.8.0
or minimum_kernel not set at all.
(mips-has-gnustack): New var.
Use value of libc_cv_as_noexecstack
if mips-force-execstack != yes, otherwise set to no.
As indicated by Joseph's comment on BZ#17726, this symbol is most
likely a historical ABI accident. This patch make it on both arm
and sparc ABIs a compat_symbol.
Checked against a build arm-linux-gnueabihf, sparcv9-linux-gnu, adn
sparc64-linux-gnu to see if the symbol is still present.
* gmon/Versions (libc) [GLIBC_2.31]: New entry.
* sysdeps/unix/sysv/linux/arm/profil-counter.h (profil_counter):
Make a compat_symbol.
* sysdeps/unix/sysv/linux/sparc/profil-counter.h
(__profil_counter_global): Likewise.
This patch refactor sigcontextinfo.h header to use SA_SIGINFO as default
for both gmon and debug implementations. This allows simplify
profil-counter.h on Linux to use a single implementation and remove the
requirements for newer ports to redefine __sigaction/sigaction to use
SA_SIGINFO.
The GET_PC macro is also replaced with a function sigcontext_get_pc that
returns an uintptr_t instead of a void pointer. It allows easier convertion
to integer on ILP32 architecture, such as x32, without the need to suppress
compiler warnings.
The patch also requires some refactor of register-dump.h file for some
architectures (to reflect it is now called from a sa_sigaction instead of
sa_handler signal context).
- Alpha, i386, and s390 are straighfoward to take in consideration the
new argument type.
- ia64 takes in consideration the kernel pass a struct sigcontextt
as third argument for sa_sigaction.
- sparc take in consideration the kernel pass a pt_regs struct
as third argument for sa_sigaction.
- m68k dummy function is removed and the FP state is dumped on
register_dump itself.
- For SH the register-dump.h file is consolidate on a common implementation
and the floating-point state is checked based on ownedfp field.
The register_dump does not change its output format in any affected
architecture.
I checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
arm-linux-gnueabihf, sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu,
powerpc64-linux-gnu, and powerpc64le-linux-gnu.
I also checked the libSegFault.so through catchsegv on alpha-linux-gnu,
m68k-linux-gnu and sh4-linux-gnu to confirm the output has not changed.
Adhemerval Zanella <adhemerval.zanella@linaro.org>
Florian Weimer <fweimer@redhat.com>
* debug/segfault.c (install_handler): Use SA_SIGINFO if defined.
* sysdeps/generic/profil-counter.h (__profil_counter): Cast to
uintptr_t.
* sysdeps/generic/sigcontextinfo.h (GET_PC): Rename to
sigcontext_get_pc and return aligned cast to uintptr_t.
* sysdeps/mach/hurd/i386/sigcontextinfo.h (GET_PC): Likewise.
* sysdeps/posix/profil.c (profil_count): Change PC argument to
uintptr_t.
(__profil): Use SA_SIGINFO.
* sysdeps/posix/sprofil.c (profil_count): Change PCP argument to
uintptr_t.
(__sprofil): Use SA_SIGINFO.
* sysdeps/unix/sysv/linux/profil-counter.h: New file.
* sysdeps/unix/sysv/linux/aarch64/profil-counter.h: Remove file.
* sysdeps/unix/sysv/linux/csky/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/i386/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/mips/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/profil-counter.h: Likewise.
* sysdeps/sysv/linux/s390/s390-32/profil-counter.h: Likewise.
* sysdeps/sysv/linux/s390/s390-64/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/sh/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/arm/profil-counter.h (__profil_counter):
Assume SA_SIGINFO and use sigcontext_get_pc instead of GET_PC.
* sysdeps/unix/sysv/linux/sparc/profil-counter.h: New file.
* sysdeps/unix/sysv/linux/sparc/sparc64/profil-counter.h: Remove file.
* sysdeps/unix/sysv/linux/sparc/sparc32/profil-counter.h: Likewise.
* sysdpes/unix/sysv/linux/aarch64/sigcontextinfo.h (SIGCONTEXT,
GET_PC, __sigaction, sigaction): Remove defines.
(sigcontext_get_pc): New function.
* sysdeps/unix/sysv/linux/alpha/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/arm/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/csky/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/i386/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/mips/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/sh/sigcontextinfo.h: Likewise.
* sysdeps/sysv/linux/sparc/sparc32/sigcontextinfo.h: Likewise.
* sysdeps/sysv/linux/sparc/sparc64/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/register-dump.h (register_dump):
Handle CTX argument as ucontext_t.
* sysdeps/unix/sysv/linux/i386/register-dump.h: Likewise.
Likewise.
* sysdeps/unix/sysv/linux/m68k/register-dump.h: Likewise.
* sysdeps/sysv/linux/s390/s390-32/register-dump.h: Likewise.
* sysdeps/sysv/linux/s390/s390-64/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/sh/register-dump.h: New file.
* sysdeps/unix/sysv/linux/sh/sh4/register-dump.h: Remove File.
* sysdeps/unix/sysv/linux/sh/sh3/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/Makefile (tests-internal): Add
tst-sigcontextinfo-get_pc.
* sysdeps/unix/sysv/linux/tst-sigcontextinfo-get_pc.c: New file.
(CFLAGS-tst-sigcontextinfo-get_pc.c): New rule.
Fix a couple of typos and v_regs field name in mcontext_t.
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h: Fix typos and
field name in mcontext_t struct.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
It doesn't make sense to remove all the internal uses of time.
It's still a standard ISO C function, and its callers don't need
sub-second resolution and would be unnecessarily complicated if
they had to declare a struct timespec instead of just a time_t.
However, a handful of places were using the vestigial "result"
argument instead of the return value, which is slightly less
efficient and also looks strange. Correct this.
* misc/syslog.c (__vsyslog_internal)
* time/getdate.c (__getdate_r)
* time/tst_wcsftime.c (main):
Use return value of time, not its argument.
* string/strfry.c (strfry)
* sysdeps/mach/sleep.c (__sleep):
Remove unnecessary casts of NULL in calls to time.
If the process is in a bad state, we used to print backtraces in
many cases. This is problematic because doing so could involve
a lot of work, like loading libgcc_s using the dynamic linker,
and this could itself be targeted by exploit writers. For example,
if the crashing process was forked from a long-lived process, the
addresses in the error message could be used to bypass ASLR.
Commit ed421fca42 ("Avoid backtrace from
__stack_chk_fail [BZ #12189]"), backtraces where no longer printed
because backtrace_and_maps was always called with do_abort == 1.
Rather than fixing this logic error, this change removes the backtrace
functionality from the sources. With the prevalence of external crash
handlers, it does not appear to be particularly useful. The crash
handler may also destroy useful information for debugging.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The resolution of C floating-point Clarification Request 25
<http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2397.htm#dr_25> is
that the totalorder and totalordermag functions should take pointer
arguments, and this has been adopted in C2X (with const added; note
that the integration of this change into C2X is present in the C
standard git repository but postdates the most recent public PDF
draft).
This patch updates glibc accordingly. As a defect resolution, the API
is changed unconditionally rather than supporting any sort of TS
18661-1 mode for compilation with the old version of the API. There
are compat symbols for existing binaries that pass floating-point
arguments directly. As a consequence of changing to pointer
arguments, there are no longer type-generic macros in tgmath.h for
these functions.
Because of the fairly complicated logic for creating libm function
aliases and determining the set of aliases to create in a given glibc
configuration, rather than duplicating all that in individual source
files to create the versioned and compat symbols, the source files for
the various versions of totalorder functions are set up to redefine
weak_alias before using libm_alias_* macros to create the symbols
required. In turn, this requires creating a separate alias for each
symbol version pointing to the same implementation (see binutils bug
<https://sourceware.org/bugzilla/show_bug.cgi?id=23840>), which is
done automatically using __COUNTER__. (As I noted in
<https://sourceware.org/ml/libc-alpha/2018-10/msg00631.html>, it might
well make sense for glibc's symbol versioning macros to do that alias
creation with __COUNTER__ themselves, which would somewhat simplify
the logic in the totalorder source files.)
It is of course desirable to test the compat symbols. I did this with
the generic libm-test machinery, but didn't wish to duplicate the
actual tables of test inputs and outputs, and thought it risky to
attempt to have a single object file refer to both default and compat
versions of the same function in order to test them together. Thus, I
created libm-test-compat_totalorder.inc and
libm-test-compat_totalordermag.inc which include the generated .c
files (with the processed version of those tables of inputs) from the
non-compat tests, and added appropriate dependencies. I think this
provides sufficient test coverage for the compat symbols without also
needing to make the special ldbl-96 and ldbl-128ibm tests (of
peculiarities relating to the representations of those formats that
can't be covered in the generic tests) run for the compat symbols.
Tests of compat symbols need to be internal tests, meaning _ISOMAC is
not defined. Making some libm-test tests into internal tests showed
up two other issues. GCC diagnoses duplicate macro definitions of
__STDC_* macros, including __STDC_WANT_IEC_60559_TYPES_EXT__; I added
an appropriate conditional and filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91451> for this issue.
On ia64, include/setjmp.h ends up getting included indirectly from
libm-symbols.h, resulting in conflicting definitions of the STR macro
(also defined in libm-test-driver.c); I renamed the macros in
include/setjmp.h. (It's arguable that we should have common internal
headers used everywhere for stringizing and concatenation macros.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/bits/mathcalls.h
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalorder): Take pointer arguments.
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalordermag): Likewise.
* manual/arith.texi (totalorder): Likewise.
(totalorderf): Likewise.
(totalorderl): Likewise.
(totalorderfN): Likewise.
(totalorderfNx): Likewise.
(totalordermag): Likewise.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
(totalordermagfN): Likewise.
(totalordermagfNx): Likewise.
* math/tgmath.h (__TGMATH_BINARY_REAL_RET_ONLY): Remove macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag): Likewise.
* math/Versions (GLIBC_2.31): Add totalorder, totalorderf,
totalorderl, totalordermag, totalordermagf, totalordermagl,
totalorderf32, totalorderf64, totalorderf32x, totalordermagf32,
totalordermagf64, totalordermagf32x, totalorderf64x,
totalordermagf64x, totalorderf128 and totalordermagf128.
* math/Makefile (libm-test-funcs-noauto): Add compat_totalorder
and compat_totalordermag.
(libm-test-funcs-compat): New variable.
(libm-tests-compat): Likewise.
(tests): Do not include compat tests.
(tests-internal): Add compat tests.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalorder.o)): Depend
on $(objpfx)libm-test-totalorder.c.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalordermag.o): Depend on
$(objpfx)libm-test-totalordermag.c.
(tgmath3-macros): Remove totalorder and totalordermag.
* math/libm-test-compat_totalorder.inc: New file.
* math/libm-test-compat_totalordermag.inc: Likewise.
* math/libm-test-driver.c (struct test_ff_i_data): Update comment.
(RUN_TEST_fpfp_b): New macro.
(RUN_TEST_LOOP_fpfp_b): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Use
TEST_fpfp_b.
(totalorder_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data): Use
TEST_fpfp_b.
(totalordermag_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/gen-tgmath-tests.py (Tests.add_all_tests): Remove
totalorder and totalordermag.
* math/test-tgmath.c (NCALLS): Change to 132.
(F(compile_test)): Do not call totalorder or totalordermag.
(F(totalorder)): Remove.
(F(totalordermag)): Likewise.
* include/float.h (__STDC_WANT_IEC_60559_TYPES_EXT__): Do not
define if [__STDC_WANT_IEC_60559_TYPES_EXT__].
* include/setjmp.h [!_ISOMAC] (STR_HELPER): Rename to
SJSTR_HELPER.
[!_ISOMAC] (STR): Rename to SJSTR. Update call to STR_HELPER.
[!_ISOMAC] (TEST_SIZE): Update call to STR.
[!_ISOMAC] (TEST_ALIGN): Likewise.
[!_ISOMAC] (TEST_OFFSET): Likewise.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/float128/float128_private.h
(__totalorder_compatl): New macro.
(__totalordermag_compatl): Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorderf): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagf): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<shlib-compat.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<shlib-compat.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c (totalorderl): Take
pointer arguments.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c (totalordermagl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Update calls to totalorderl and totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Update calls to totalorderl and totalordermagl.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/csky/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Commit 7532837d7b ("The
-Wstringop-truncation option new in GCC 8 detects common misuses")
added __attribute_nonstring__ to bits/utmp.h, but it did not update
the parallel bits/utmpx.h header. In struct utmp, the nonstring
attribute for ut_id was missing.
* sysdeps/aarch64/multiarch/memset_base64.S (DC_ZVA_THRESHOLD):
Disable DC ZVA code if this macro is defined as zero.
* sysdeps/aarch64/multiarch/memset_emag.S (DC_ZVA_THRESHOLD):
Change to zero to disable using DC ZVA.
This patch adds the SYNC_FILE_RANGE_WRITE_AND_WAIT constant from Linux
5.2 (a new name for a combination of existing bits, not actually a new
kernel interface) to bits/fcntl-linux.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/fcntl-linux.h [__USE_GNU]
(SYNC_FILE_RANGE_WRITE_AND_WAIT): New macro.
The commit 5e855c8954
"s390: Enable VDSO for static linking" removed the definition of VDSO_SETUP
which leads to not setup the vdso symbols.
Instead it jumps to false addresses.
This patch just re adds the removed VDSO_SETUP macro definition.
ChangeLog:
* sysdeps/unix/sysv/linux/s390/init-first.c (VDSO_SETUP): New define.
This patch adds the CLONE_PIDFD constant from Linux 5.2 to glibc's
bits/sched.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/sched.h [__USE_GNU] (CLONE_PIDFD):
New macro.
This patch assumes static vDSO is supported as default, it is now supported
on all current architectures that support vDSO. It allows removing both
ALWAYS_USE_VSYSCALL define, which an architecture requires to explicit define
and USE_VSYSCALL (which defines vDSO only for shared or if architecture defines
ALWAYS_USE_VSYSCALL).
Checked with a build against all affected ABIs.
[BZ #19767]
* sysdeps/unix/sysv/linux/aarch64/sysdep.h (ALWAYS_USE_VSYSCALL):
Remove definition.
* sysdeps/unix/sysv/linux/arm/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/i386/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/riscv/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/x86/libc-vdso.h: Remove #if USE_VSYSCALL.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/sysdep.h (ALWAYS_USE_VSYSCALL,
USE_VSYSCALL): Remove defitions.
Although s390 only enables vDSO for dynamically linked elf binaries
(arch/s390/kernel/vdso.c:217), there is no indication in the code or
associated commit message for why not enable it for statically linked
binaries as well. To double check, I rebuilt a kernel with the
check removed and the vDSO does work for static build for supplied
symbols.
Checked on s390x-linux-gnu and s390-linux-gnu.
[BZ #19767]
* sysdeps/unix/sysv/linux/s390/init-first.c: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/s390/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/sysdep.h
(ALWAYS_USE_VSYSCALL): Define.
* sysdeps/unix/sysv/linux/s390/s390-64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
There is just one file-based implementation, so this dispatch
mechanism is unnecessary. Instead of the vtable pointer
__libc_utmp_jump_table, use a non-negative file_fd as the indicator
that the backend is initialized.
This patch updates the Linux kernel version in a comment in
syscall-names.list to agree with the following "kernel" line.
* sysdeps/unix/sysv/linux/syscall-names.list: Update comment.
The tst-mman-consts.py test includes a kernel version number, to avoid
failures because of newly added constants in the kernel (if kernel
headers are newer than this version of glibc) or missing constants in
the kernel (if kernel headers are older than this version of glibc).
This patch updates it to 5.2 to reflect that the MAP_* constants in
glibc are still current as of that kernel version.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/tst-mman-consts.py (main): Update Linux
kernel version number to 5.2.
Some implementations in sysdeps/powerpc/powerpc64/power8/*.S still had
pre power8 compatible binutils hardcoded macros and were not using
.machine power8.
This patch should not have semantic changes, in fact it should have the
same exact code generated.
Tested that generated stripped shared objects are identical when
using "strip --remove-section=.note.gnu.build-id".
Checked on:
- powerpc64le, power9, build-many-glibcs.py, gcc 6.4.1 20180104, binutils 2.26.2.20160726
- powerpc64le, power8, debian 9, gcc 6.3.0 20170516, binutils 2.28
- powerpc64le, power9, ubuntu 19.04, gcc 8.3.0, binutils 2.32
- powerpc64le, power9, opensuse tumbleweed, gcc 9.1.1 20190527, binutils 2.32
- powerpc64, power9, debian 10, gcc 8.3.0, binutils 2.31.1
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
This is missing bit for fully fix BZ#15813 (the other two were fixed
by 359653aaac).
Checked on x86_64-linux-gnu.
[BZ #15813]
sysdeps/posix/tempname.c (__gen_tempname): get entrypy on each
attempt.
Commit ffe8a9a831, "powerpc: Remove
rt_sigreturn usage on context function", removed from powerpc32
swapcontext a setting of r31 that is relied upon in subsequent code.
I'm not sure why this didn't produce test failures in Adhemerval's
32-bit testing; in my (soft-float) testing in preparation for 2.30
release, I see several context-related failures
FAIL: stdlib/tst-makecontext2
FAIL: stdlib/tst-makecontext3
FAIL: stdlib/tst-setcontext
FAIL: stdlib/tst-setcontext2
FAIL: stdlib/tst-setcontext4
FAIL: stdlib/tst-setcontext7
FAIL: stdlib/tst-setcontext9
FAIL: stdlib/tst-swapcontext1
that did not appear in 2.29 testing. This patch restores the removed
register setting in question, and thus fixes those failures.
Tested for powerpc (soft-float).
* sysdeps/unix/sysv/linux/powerpc/powerpc32/swapcontext-common.S
(__CONTEXT_FUNC_NAME): Restore setting of r31.
When compiled with -O3 and AVX, GCC 8 and 9 optimize some loops in
sysdeps/ieee754/dbl-64/branred.c with 256-bit vector instructions,
which leads to store forward stall:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90579
There is no easy fix in compiler. This patch limits vector width to
128 bits to work around this issue. It improves performance of sin
and cos by more than 40% on Skylake compiled with -O3 -march=skylake.
Tested with GCC 7/8/9 on x86-64.
[BZ #24603]
* sysdeps/x86_64/configure.ac: Check if -mprefer-vector-width=128
works.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/fpu/Makefile (CFLAGS-branred.c): New. Set
to -mprefer-vector-width=128 if supported.
The kernel changes for a 64-bit time_t on 32-bit architectures
resulted in <asm/socket.h> indirectly including <linux/posix_types.h>.
The latter is not namespace-clean for the POSIX version of
<sys/socket.h>.
This issue has persisted across several Linux releases, so this commit
creates our own copy of the SO_* definitions for !__USE_MISC mode.
The new test socket/tst-socket-consts ensures that the copy is
consistent with the kernel definitions (which vary across
architectures). The test is tricky to get right because CPPFLAGS
includes include/libc-symbols.h, which in turn defines _GNU_SOURCE
unconditionally.
Tested with build-many-glibcs.py. I verified that a discrepancy in
the definitions actually results in a failure of the
socket/tst-socket-consts test.
The pthread _clock functions that were recently added to nptl need to be
declared in hppa's pthread.h too. After this change, the function
declaration part of sysdeps/nptl/pthread.h and
sysdeps/unix/sysv/linux/hppa/pthread.h are identical.
* sysdeps/unix/sysv/linux/hppa/pthread.h: Add declarations of
functions recently added to sysdeps/nptl/pthread.h:
pthread_mutex_clocklock, pthread_rwlock_clockrdlock,
pthread_rwlock_clockwrlock and pthread_cond_clockwait.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
In afe4de7d28, I added forwarding functions
from libc to libpthread for __pthread_cond_clockwait and
pthread_cond_clockwait to mirror those for pthread_cond_timedwait. These
are unnecessary[1], since these functions aren't (yet) being called from
within libc itself. Let's remove them.
* nptl/forward.c: Remove unnecessary __pthread_cond_clockwait and
pthread_cond_clockwait forwarding functions. There are no internal
users, so it is unnecessary to expose these functions in libc.so.
* sysdeps/nptl/pthread-functions.h (pthread_functions): Remove
unnecessary ptr___pthread_cond_clockwait member.
* nptl/nptl-init.c (pthread_functions): Remove assignment of
removed member.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
[1] https://sourceware.org/ml/libc-alpha/2017-10/msg00082.html
The only implementation of futex_supports_exact_relative_timeouts always
returns true. Let's remove it and all its callers.
* nptl/pthread_cond_wait.c: (__pthread_cond_clockwait): Remove code
that is only useful if futex_supports_exact_relative_timeouts ()
returns false.
* nptl/pthread_condattr_setclock.c: (pthread_condattr_setclock):
Likewise.
* sysdeps/nptl/futex-internal.h: Remove comment about relative
timeouts potentially being imprecise since it's no longer true.
Remove declaration of futex_supports_exact_relative_timeouts.
* sysdeps/unix/sysv/linux/futex-internal.h: Remove implementation
of futex_supports_exact_relative_timeouts.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Rename lll_timedlock to lll_clocklock and add clockid
parameter to indicate the clock that the abstime parameter should
be measured against in preparation for adding
pthread_mutex_clocklock.
The name change mirrors the naming for the exposed pthread functions:
timed => absolute timeout measured against CLOCK_REALTIME (or clock
specified by attribute in the case of pthread_cond_timedwait.)
clock => absolute timeout measured against clock specified in preceding
parameter.
* sysdeps/nptl/lowlevellock.h (lll_clocklock): Rename from
lll_timedlock and add clockid parameter. (__lll_clocklock): Rename
from __lll_timedlock and add clockid parameter.
* sysdeps/unix/sysv/linux/sparc/lowlevellock.h (lll_clocklock):
Likewise.
* nptl/lll_timedlock_wait.c (__lll_clocklock_wait): Rename from
__lll_timedlock_wait and add clockid parameter. Use __clock_gettime
rather than __gettimeofday so that clockid can be used. This means
that conversion from struct timeval is no longer required.
* sysdeps/sparc/sparc32/lowlevellock.c (lll_clocklock_wait):
Likewise.
* sysdeps/sparc/sparc32/lll_timedlock_wait.c: Update comment to
refer to __lll_clocklock_wait rather than __lll_timedlock_wait.
* nptl/pthread_mutex_timedlock.c (lll_clocklock_elision): Rename
from lll_timedlock_elision, add clockid parameter and use
meaningful names for other parameters. (__pthread_mutex_timedlock):
Pass CLOCK_REALTIME where necessary to lll_clocklock and
lll_clocklock_elision.
* sysdeps/unix/sysv/linux/powerpc/lowlevellock.h
(lll_clocklock_elision): Rename from lll_timedlock_elision and add
clockid parameter. (__lll_clocklock_elision): Rename from
__lll_timedlock_elision and add clockid parameter.
* sysdeps/unix/sysv/linux/s390/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/x86/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-timed.c
(__lll_lock_elision): Call __lll_clocklock_elision rather than
__lll_timedlock_elision. (EXTRAARG): Add clockid parameter.
(LLL_LOCK): Likewise.
* sysdeps/unix/sysv/linux/s390/elision-timed.c: Likewise.
* sysdeps/unix/sysv/linux/x86/elision-timed.c: Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add:
int pthread_rwlock_clockrdlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
and:
int pthread_rwlock_clockwrlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
which behave like pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock respectively, except they always measure
abstime against the supplied clockid. The functions currently support
CLOCK_REALTIME and CLOCK_MONOTONIC and return EINVAL if any other
clock is specified.
* sysdeps/nptl/pthread.h: Add pthread_rwlock_clockrdlock and
pthread_wrlock_clockwrlock.
* nptl/Makefile: Build pthread_rwlock_clockrdlock.c and
pthread_rwlock_clockwrlock.c.
* nptl/pthread_rwlock_clockrdlock.c: Implement
pthread_rwlock_clockrdlock.
* nptl/pthread_rwlock_clockwrlock.c: Implement
pthread_rwlock_clockwrlock.
* nptl/pthread_rwlock_common.c (__pthread_rwlock_rdlock_full): Add
clockid parameter and verify that it indicates a supported clock on
entry so that we fail even if it doesn't end up being used. Pass
that clock on to futex_abstimed_wait when necessary.
(__pthread_rwlock_wrlock_full): Likewise.
* nptl/pthread_rwlock_rdlock.c: (__pthread_rwlock_rdlock): Pass
CLOCK_REALTIME to __pthread_rwlock_rdlock_full even though it won't
be used because there's no timeout.
* nptl/pthread_rwlock_wrlock.c (__pthread_rwlock_wrlock): Pass
CLOCK_REALTIME to __pthread_rwlock_wrlock_full even though it won't
be used because there is no timeout.
* nptl/pthread_rwlock_timedrdlock.c (pthread_rwlock_timedrdlock):
Pass CLOCK_REALTIME to __pthread_rwlock_rdlock_full since abstime
uses that clock.
* nptl/pthread_rwlock_timedwrlock.c (pthread_rwlock_timedwrlock):
Pass CLOCK_REALTIME to __pthread_rwlock_wrlock_full since abstime
uses that clock.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-abstime.c (th): Add pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock timeout tests to match the existing
pthread_rwlock_timedrdloock and pthread_rwlock_timedwrlock tests.
* nptl/tst-rwlock14.c (do_test): Likewise.
* nptl/tst-rwlock6.c Invent verbose_printf macro, and use for
ancillary output throughout. (tf): Accept thread_args structure so
that rwlock, a clockid and function name can be passed to the
thread. (do_test_clock): Rename from do_test. Accept clockid
parameter to specify test clock. Use the magic clockid value of
CLOCK_USE_TIMEDLOCK to indicate that pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock should be tested, otherwise pass the
specified clockid to pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock. Use xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* nptl/tst-rwlock7.c: Likewise.
* nptl/tst-rwlock9.c (writer_thread, reader_thread): Accept
thread_args structure so that the (now int) thread number, the
clockid and the function name can be passed to the thread.
(do_test_clock): Renamed from do_test. Pass the necessary
thread_args when creating the reader and writer threads. Use
xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* manual/threads.texi: Add documentation for
pthread_rwlock_clockrdlock and pthread_rwlock_clockwrclock.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add:
int pthread_cond_clockwait (pthread_cond_t *cond,
pthread_mutex_t *mutex,
clockid_t clockid,
const struct timespec *abstime)
which behaves just like pthread_cond_timedwait except it always measures
abstime against the supplied clockid. Currently supports CLOCK_REALTIME
and
CLOCK_MONOTONIC and returns EINVAL if any other clock is specified.
Includes feedback from many others. This function was originally
proposed[1] as pthread_cond_timedwaitonclock_np, but The Austin Group
preferred the new name.
* nptl/Makefile: Add tst-cond26 and tst-cond27
* nptl/Versions (GLIBC_2.30): Add pthread_cond_clockwait
* sysdeps/nptl/pthread.h: Likewise
* nptl/forward.c: Add __pthread_cond_clockwait
* nptl/forward.c: Likewise
* nptl/pthreadP.h: Likewise
* sysdeps/nptl/pthread-functions.h: Likewise
* nptl/pthread_cond_wait.c (__pthread_cond_wait_common): Add
clockid parameter and comment describing why we don't need to
check
its value. Use that value when calling
futex_abstimed_wait_cancelable rather than reading the clock
from
the flags. (__pthread_cond_wait): Pass unused clockid parameter.
(__pthread_cond_timedwait): Read clock from flags and pass it to
__pthread_cond_wait_common. (__pthread_cond_clockwait): Add new
function with weak alias from pthread_cond_clockwait.
* sysdeps/mach/hurd/i386/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist
* (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-cond11.c (run_test): Support testing
pthread_cond_clockwait too by using a special magic
CLOCK_USE_ATTR_CLOCK value to determine whether to call
pthread_cond_timedwait or pthread_cond_clockwait. (do_test):
Pass
CLOCK_USE_ATTR_CLOCK for existing tests, and add new tests using
all combinations of CLOCK_MONOTONIC and CLOCK_REALTIME.
* ntpl/tst-cond26.c: New test for passing unsupported and
* invalid
clocks to pthread_cond_clockwait.
* nptl/tst-cond27.c: Add test similar to tst-cond5.c, but using
struct timespec and pthread_cond_clockwait.
* manual/threads.texi: Document pthread_cond_clockwait. The
* comment
was provided by Carlos O'Donell.
[1] https://sourceware.org/ml/libc-alpha/2015-07/msg00193.html
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
In preparation for adding POSIX clockwait variants of timedwait functions,
add a clockid_t parameter to futex_abstimed_wait functions and pass
CLOCK_REALTIME from all callers for the time being.
Replace lll_futex_timed_wait_bitset with lll_futex_clock_wait_bitset
which takes a clockid_t parameter rather than the magic clockbit.
* sysdeps/nptl/lowlevellock-futex.h,
sysdeps/unix/sysv/linux/lowlevellock-futex.h: Replace
lll_futex_timed_wait_bitset with lll_futex_clock_wait_bitset that
takes a clockid rather than a special clockbit.
* sysdeps/nptl/lowlevellock-futex.h: Add
lll_futex_supported_clockid so that client functions can check
whether their clockid parameter is valid even if they don't
ultimately end up calling lll_futex_clock_wait_bitset.
* sysdeps/nptl/futex-internal.h,
sysdeps/unix/sysv/linux/futex-internal.h
(futex_abstimed_wait, futex_abstimed_wait_cancelable): Add
clockid_t parameter to indicate which clock the absolute time
passed should be measured against. Pass that clockid onto
lll_futex_clock_wait_bitset. Add invalid clock as reason for
returning -EINVAL.
* sysdeps/nptl/futex-internal.h,
sysdeps/unix/sysv/linux/futex-internal.h: Introduce
futex_abstimed_supported_clockid so that client functions can check
whether their clockid parameter is valid even if they don't
ultimately end up calling futex_abstimed_wait.
* nptl/pthread_cond_wait.c (__pthread_cond_wait_common): Remove
code to calculate relative timeout for
__PTHREAD_COND_CLOCK_MONOTONIC_MASK and just pass CLOCK_MONOTONIC
or CLOCK_REALTIME as required to futex_abstimed_wait_cancelable.
* nptl/pthread_rwlock_common (__pthread_rwlock_rdlock_full)
(__pthread_wrlock_full), nptl/sem_waitcommon (do_futex_wait): Pass
additional CLOCK_REALTIME to futex_abstimed_wait_cancelable.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock):
Switch to lll_futex_clock_wait_bitset and pass CLOCK_REALTIME
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The fix for BZ#21270 (commit 158d5fa0e1) added a mask to avoid offset larger
than 1^44 to be used along __NR_mmap2. However mips64n32 users __NR_mmap,
as mips64n64, but still defines off_t as old non-LFS type (other ILP32, such
x32, defines off_t being equal to off64_t). This leads to use the same
mask meant only for __NR_mmap2 call for __NR_mmap, thus limiting the maximum
offset it can use with mmap64.
This patch fixes by setting the high mask only for __NR_mmap2 usage. The
posix/tst-mmap-offset.c already tests it and also fails for mips64n32. The
patch also change the test to check for an arch-specific header that defines
the maximum supported offset.
Checked on x86_64-linux-gnu, i686-linux-gnu, and I also tests tst-mmap-offset
on qemu simulated mips64 with kernel 3.2.0 kernel for both mips-linux-gnu and
mips64-n32-linux-gnu.
[BZ #24699]
* posix/tst-mmap-offset.c: Mention BZ #24699.
(do_test_bz21270): Rename to do_test_large_offset and use
mmap64_maximum_offset to check for maximum expected offset value.
* sysdeps/generic/mmap_info.h: New file.
* sysdeps/unix/sysv/linux/mips/mmap_info.h: Likewise.
* sysdeps/unix/sysv/linux/mmap64.c (MMAP_OFF_HIGH_MASK): Define iff
__NR_mmap2 is used.
Remove unnecessary variant_pcs field: the dynamic tag can be checked
directly.
* sysdeps/aarch64/dl-machine.h (elf_machine_runtime_setup): Remove the
DT_AARCH64_VARIANT_PCS check.
(elf_machine_lazy_rel): Use l_info[DT_AARCH64 (VARIANT_PCS)].
* sysdeps/aarch64/linkmap.h (struct link_map_machine): Remove
variant_pcs.
Using __builtin_cpu_supports() requires support in GCC and Glibc.
My recent patch to fenv_libc.h added an unprotected use of
__builtin_cpu_supports(). Compilation of Glibc itself will fail
with a sufficiently new GCC and sufficiently old Glibc:
../sysdeps/powerpc/fpu/fegetexcept.c: In function ‘__fegetexcept’:
../sysdeps/powerpc/fpu/fenv_libc.h:52:20: error: builtin ‘__builtin_cpu_supports’ needs GLIBC (2.23 and newer) that exports hardware capability bits [-Werror]
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Fixes 3db85a9814.
The power7 logb implementation does not show a performance gain on
ISA 2.07+ chips with faster floating-point to GRP instructions
(currently POWER8 and POWER9).
This patch moves the POWER7 implementation to generic one and enables
it for POWER7. It also add some cleanup to use inline floating-point
number instead of define them using static const.
The performance difference is for POWER9:
- Without patch:
"logb": {
"subnormal": {
"duration": 4.99202e+09,
"iterations": 8.83662e+08,
"max": 75.194,
"min": 5.501,
"mean": 5.64925
},
"normal": {
"duration": 4.97063e+09,
"iterations": 9.97094e+08,
"max": 46.489,
"min": 4.956,
"mean": 4.98512
}
}
- With patch:
"logb": {
"subnormal": {
"duration": 4.97226e+09,
"iterations": 9.92036e+08,
"max": 77.209,
"min": 4.892,
"mean": 5.01218
},
"normal": {
"duration": 4.96192e+09,
"iterations": 1.07545e+09,
"max": 12.361,
"min": 4.593,
"mean": 4.61382
}
}
The ifunc implementation is also enabled only for powerpc64.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/powerpc/power7/fpu/s_logb.c: Move to ...
* sysdeps/powerpc/fpu/s_logb.c: ... here. Use inline FP constants.
* sysdeps/powerpc/power7/fpu/s_logbf.c: Move to ...
* sysdeps/powerpc/fpu/s_logbf.c: ... here. Use inline FP constants.
* sysdeps/powerpc/power7/fpu/s_logbl.c: Move to ...
* sysdeps/powerpc/fpu/s_logbl.c: ... here. Use inline FP constants.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_logb-power7.c:
Adjust implementation path.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_logbf-power7.c:
Adjust implementation path.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_logbl-power7.c:
Adjust implementation path.
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/Makefile
(libm-sysdep_routines): Add s_log* objects.
(CFLAGS-s_logbf-power7.c, CFLAGS-s_logbl-power7.c,
CFLAGS-s_logb-power7.c): New fule.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logb-power7.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logb-power7.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logb-ppc64.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logb-ppc64.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logb.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logb.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbf-power7.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbf-power7.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbf-ppc64.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbf-ppc64.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbf.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbf.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbl-power7.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbl-power7.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbl-ppc64.c: Move
to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbl-ppc64.c:
... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_logbl.c: Move to ...
* sysdeps/powerpc/powerpc64/be/fpu/multiarch/s_logbl.c: ... here.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile: Remove file.
* sysdeps/powerpc/powerpc64/power7/fpu/s_logb.c: Remove file.
* sysdeps/powerpc/powerpc64/power7/fpu/s_logbf.c: Likewise.
* sysdeps/powerpc/powerpc64/power7/fpu/s_logbl.c: Likewise.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- The resulting binary difference on 32 bits architecture is
minimum. On i686-linux-gnu (with architecture optimization
routine removed) there is no different using logb benchtests
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_logb.c: Move to ...
* sysdeps/ieee754/dbl-64/s_logb.c: ... here. Add work around for
powerpc32 integer 0 converting to -0.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Passing a second argument to the ifunc resolver allows accessing
AT_HWCAP2 values from the resolver. AArch64 will start using AT_HWCAP2
on linux because for ilp32 to remain compatible with lp64 ABI no more
than 32bit hwcap flags can be in AT_HWCAP which is already used up.
Currently the relocation ordering logic does not guarantee that ifunc
resolvers can call libc apis or access libc objects, so only the
resolver arguments and runtime environment dependent instructions can
be used to do the dispatch (this affects ifunc resolvers outside of
the libc).
Since ifunc resolver is target specific and only supposed to be
called by the dynamic linker, the call ABI can be changed in a
backward compatible way:
Old call ABI passed hwcap as uint64_t, new abi sets the
_IFUNC_ARG_HWCAP flag in the hwcap and passes a second argument
that's a pointer to an extendible struct. A resolver has to check
the _IFUNC_ARG_HWCAP flag before accessing the second argument.
The new sys/ifunc.h installed header has the definitions for the
new ABI, everything is in the implementation reserved namespace.
An alternative approach is to try to support extern calls from ifunc
resolvers such as getauxval, but that seems non-trivial
https://sourceware.org/ml/libc-alpha/2017-01/msg00468.html
* sysdeps/aarch64/Makefile: Install sys/ifunc.h and add tests.
* sysdeps/aarch64/dl-irel.h (elf_ifunc_invoke): Update to new ABI.
* sysdeps/aarch64/sys/ifunc.h: New file.
* sysdeps/aarch64/tst-ifunc-arg-1.c: New file.
* sysdeps/aarch64/tst-ifunc-arg-2.c: New file.
With commit f0b2132b35 ("ld.so:
Support moving versioned symbols between sonames [BZ #24741]"), the
dynamic linker will find the definition of vfork in libc and binds
a vfork reference to that symbol, even if the soname in the version
reference says that the symbol should be located in libpthread.
As a result, the forwarder (whether it's IFUNC-based or a duplicate
of the libc implementation) is no longer necessary.
On older architectures, a placeholder symbol is required, to make sure
that the GLIBC_2.1.2 symbol version does not go away, or is turned in
to a weak symbol definition by the link editor. (The symbol version
needs to preserved so that the symbol coverage check in
elf/dl-version.c does not fail for old binaries.)
mips32 is an outlier: It defined __vfork@@GLIBC_2.2, but the
baseline is GLIBC_2.0. Since there are other @@GLIBC_2.2 symbols,
the placeholder symbol is not needed there.
Using 'mffs' instruction to read the Floating Point Status Control Register
(FPSCR) can force a processor flush in some cases, with undesirable
performance impact. If the values of the bits in the FPSCR which force the
flush are not needed, an instruction that is new to POWER9 (ISA version 3.0),
'mffsl' can be used instead.
Cases included: get_rounding_mode, fegetround, fegetmode, fegetexcept.
* sysdeps/powerpc/bits/fenvinline.h (__fegetround): Use
__fegetround_ISA300() or __fegetround_ISA2() as appropriate.
(__fegetround_ISA300) New.
(__fegetround_ISA2) New.
* sysdeps/powerpc/fpu_control.h (IS_ISA300): New.
(_FPU_MFFS): Move implementation...
(_FPU_GETCW): Here.
(_FPU_MFFSL): Move implementation....
(_FPU_GET_RC_ISA300): Here. New.
(_FPU_GET_RC): Use _FPU_GET_RC_ISA300() or _FPU_GETCW() as appropriate.
* sysdeps/powerpc/fpu/fenv_libc.h (fegetenv_status_ISA300): New.
(fegetenv_status): New.
* sysdeps/powerpc/fpu/fegetmode.c (fegetmode): Use fegetenv_status()
instead of fegetenv_register().
* sysdeps/powerpc/fpu/fegetexcept.c (__fegetexcept): Likewise.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The kernel is evolving this interface (e.g., removal of the
restriction on cross-device copies), and keeping up with that
is difficult. Applications which need the function should
run kernels which support the system call instead of relying on
the imperfect glibc emulation.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The kernel interface uses type unsigned int, but there is an
internal conversion to int, so INT_MAX is the correct limit.
Part of the buffer will always be unused, but this is not a
problem. Such huge buffers do not occur in practice anyway.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Since sysdeps/i386/dl-lookupcfg.h and sysdeps/x86_64/dl-lookupcfg.h are
identical, we can replace them with sysdeps/x86/dl-lookupcfg.h.
* sysdeps/i386/dl-lookupcfg.h: Moved to ...
* sysdeps/x86/dl-lookupcfg.h: Here.
* sysdeps/x86_64/dl-lookupcfg.h: Removed.