The creation of the divergent sysdeps directory for powerpc64le
commit 2f7f3cd8cd
Author: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
Date: Fri Jul 15 18:04:40 2016 -0500
powerpc64le: Create divergent sysdep directory for powerpc64le.
allowed float128 to be enabled for powerpc64le (little-endian) and not
for powerpc64 (big-endian). Since the only intended difference between
them was the presence or absence of the float128 interface, the sysdeps
directory for powerpc64le explicitly reused the files from powerpc64
(through the use of Implies files).
Although this works, it also means that files under the powerpc64
directory might be preferred over files under powerpc64le. For
instance, on a build for powerpc64le with target set to power9, a file
from powerpc64/power5 might get built, even though a file with the same
name exists in powerpc64le/power8. That happens because the processor
hierarchy was only defined in the sysdeps directory for powerpc64 (and
borrowed by powerpc64le).
This patch fixes this behavior, by creating new subdirectories under
powerpc64 (i.e.: powerpc64/be and powerpc64/le) and creating new Implies
files to provide the hierarchy of processors for powerpc64 and
powerpc64le separately. These changes have no effect on installed,
stripped binaries (which remain unchanged).
Tested that installed stripped binaries are unchanged and that there are
no regressions on powerpc64 and powerpc64le.
Clean up the IFUNC implementations for powerpc in order to remove
unneeded macro definitions.
Tested on ppc64le with and without --disable-multi-arch flag.
* sysdeps/powerpc/powerpc64/multiarch/memcmp-power4.S: Define the
implementation-specific function name and remove unneeded
macros definition.
* sysdeps/powerpc/powerpc64/multiarch/memcmp-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memmove-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/power4/memcmp.S: Set a default function
name if not defined and pass as parameter to macros accordingly.
* sysdeps/powerpc/powerpc64/power7/memcmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/memmove.S: Likewise.
Clean up the IFUNC implementations for powerpc in order to remove
unneeded macro definitions.
Tested on ppc64le with and without --disable-multi-arch flag.
* sysdeps/powerpc/powerpc64/multiarch/memcpy-a2.S: Define the
implementation-specific function name and remove unneeded
macros definition.
* sysdeps/powerpc/powerpc64/multiarch/memcpy-cell.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memcpy-power4.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memcpy-power6.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memcpy-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memcpy-ppc64.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/mempcpy-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/a2/memcpy.S: Set a default function
name if not defined and pass as parameter to macros accordingly.
* sysdeps/powerpc/powerpc64/cell/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power4/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/mempcpy.S: Likewise.
Clean up the IFUNC implementations for powerpc in order to remove
unneeded macro definitions.
Tested on ppc64le with and without --disable-multi-arch flag.
* sysdeps/powerpc/powerpc64/multiarch/memset-power4.S: Define the
implementation-specific function name and remove unneeded macros
definition.
* sysdeps/powerpc/powerpc64/multiarch/memset-power6.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memset-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memset-power8.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/memset-ppc64.S: Likewise.
* sysdeps/powerpc/powerpc64/memset.S: Set a default function name if
not defined and pass as parameter to macros accordingly.
* sysdeps/powerpc/powerpc64/power4/memset.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/memset.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/memset.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/memset.S: Likewise.
Clean up the IFUNC implementations for powerpc in order to remove
unneeded macro definitions.
Tested on ppc64le with and without --disable-multi-arch flag.
* sysdeps/powerpc/powerpc64/multiarch/strcasecmp_l-power7.S: Define
the implementation-specific function name and remove unneeded
macros definition.
* sysdeps/powerpc/powerpc64/multiarch/strcmp-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strcmp-power8.S Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strcmp-power9.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strcmp-ppc64.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strncmp-power4.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strncmp-power7.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strncmp-power8.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strncmp-power9.S: Likewise.
* sysdeps/powerpc/powerpc64/multiarch/strncmp-ppc64.S: Likewise.
* sysdeps/powerpc/powerpc64/power4/strncmp.S: Set a default function
name if not defined and pass as parameter to macros accordingly.
* sysdeps/powerpc/powerpc64/power7/strcmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/strcmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power8/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power9/strcmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power9/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc64/strcmp.S: Likewise.
* sysdeps/powerpc/powerpc64/strncmp.S: Likewise.
This patch cleanups the multiarch bzero for powerpc64 by remove
the multiarch objects and use instead the the memset embedded
implementation presented in each multiarch optimization. The
code generate is essentially the same, but the TB_TOCLESS (which
is not essential).
For PPC64, all the wrappers at sysdeps are superfluous: they are
basically the same implementation from math/w_sqrt.c with the
'#ifdef _IEEE_LIBM'. And the power4 version just force the 'fsqrt'
instruction utilization with an inline assembly, which is already
handled by math_private.h __ieee754_sqrt implementation.
http://sourceware.org/ml/libc-alpha/2013-08/msg00104.html
One of the things I noticed when looking at power7 timing is that rlwimi
is cracked and the two resulting insns have a register dependency.
That makes it a little slower than the equivalent rldimi.
* sysdeps/powerpc/powerpc64/memset.S: Replace rlwimi with
insrdi. Formatting.
* sysdeps/powerpc/powerpc64/power4/memset.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/memset.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/memset.S: Likewise.
* sysdeps/powerpc/powerpc32/power4/memset.S: Likewise.
* sysdeps/powerpc/powerpc32/power6/memset.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/memset.S: Likewise.
http://sourceware.org/ml/libc-alpha/2013-08/msg00103.html
LIttle-endian support for memcpy. I spent some time cleaning up the
64-bit power7 memcpy, in order to avoid the extra alignment traps
power7 takes for little-endian. It probably would have been better
to copy the linux kernel version of memcpy.
* sysdeps/powerpc/powerpc32/power4/memcpy.S: Add little endian support.
* sysdeps/powerpc/powerpc32/power6/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/mempcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power4/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power6/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/memcpy.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/mempcpy.S: Likewise. Make better
use of regs. Use power7 mtocrf. Tidy function tails.
http://sourceware.org/ml/libc-alpha/2013-08/msg00102.html
This is a rather large patch due to formatting and renaming. The
formatting changes were to make it possible to compare power7 and
power4 versions of memcmp. Using different register defines came
about while I was wrestling with the code, trying to find spare
registers at one stage. I found it much simpler if we refer to a reg
by the same name throughout a function, so it's better if short-term
multiple use regs like rTMP are referred to using their register
number. I made the cr field usage changes when attempting to reload
rWORDn regs in the exit path to byte swap before comparing when
little-endian. That proved a bad idea due to the pipelining involved
in the main loop; Offsets to reload the regs were different first
time around the loop.. Anyway, I left the cr field usage changes in
place for consistency.
Aside from these more-or-less cosmetic changes, I fixed a number of
places where an early exit path restores regs unnecessarily, removed
some dead code, and optimised one or two exits.
* sysdeps/powerpc/powerpc64/power7/memcmp.S: Add little-endian support.
Formatting. Consistently use rXXX register defines or rN defines.
Use early exit labels that avoid restoring unused non-volatile regs.
Make cr field use more consistent with rWORDn compares. Rename
regs used as shift registers for unaligned loop, using rN defines
for short lifetime/multiple use regs.
* sysdeps/powerpc/powerpc64/power4/memcmp.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/memcmp.S: Likewise. Exit with
addi 1,1,64 to pop stack frame. Simplify return value code.
* sysdeps/powerpc/powerpc32/power4/memcmp.S: Likewise.
http://sourceware.org/ml/libc-alpha/2013-08/msg00099.html
More little-endian support. I leave the main strcmp loops unchanged,
(well, except for renumbering rTMP to something other than r0 since
it's needed in an addi insn) and modify the tail for little-endian.
I noticed some of the big-endian tail code was a little untidy so have
cleaned that up too.
* sysdeps/powerpc/powerpc64/strcmp.S (rTMP2): Define as r0.
(rTMP): Define as r11.
(strcmp): Add little-endian support. Optimise tail.
* sysdeps/powerpc/powerpc32/strcmp.S: Similarly.
* sysdeps/powerpc/powerpc64/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc32/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power4/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc32/power4/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc64/power7/strncmp.S: Likewise.
* sysdeps/powerpc/powerpc32/power7/strncmp.S: Likewise.
In the past the "-ftree-loop-linear" switch provided a measurable
improvement in performance for certain functions. At some point it
was assigned as the responsibility of Graphite in GCC. It has been
found that even with Graphite enabled these flags no longer perform
any appreciable improvement over the baseline.
Graphite now has some open bugs which need to be fixed in order for it
to provide measurable performance improvements but it lacks active
development. As a result some compiler distributors may disable
Graphite. If Graphite is disabled then building GLIBC will fail if
the "-ftree-loop-linear" switch is used.
This patch removes the use of "-ftree-loop-linear" as unnecessary.