This patch fixes backtrace for PPC32 and PPC64 to correctly handle
signal trampolines. The 'debug/tst-backtrace6.c' also check for
SA_SIGINFO handling, where is triggers another vDSO symbols for PPC32.
Resolves: #15465
The program name may be unavailable if the user application tampers
with argc and argv[]. Some parts of the dynamic linker caters for
this while others don't, so this patch consolidates the check and
fallback into a single macro and updates all users.
This patch fix the 3c0265394d commits
by correctly setting minimum architecture for modf PPC optimization
to power5+ instead of power5 (since only on power5+ round/ceil will
be inline to inline assembly).
The branch prediction hints is actually hurts performance in this case.
The assembly implementation make two assumptions: 1. 'fabs (x) < 2^52'
is unlikely and 2. 'x > 0.0' is unlike (if 1. is true). Since it a
general floating point function, expected input is not bounded and then
it is better to let the hardware handle the branches.
Initially based on the versions found in wcsmbs/* ; these files have
been changed by hand unrolling, and adding some additional variables
to allow some read-ahead to occur, which then relieves some of the
wait-for-increment/wait-for-load/wait-for-compare-results pressure
that was slowing down every iteration through the while-loop.
For 64-bit Power7, These changes give an approx 20% throughput boost
for the wcschr and wcsrchr functions; and approx 40% boost for the
wcscpy function. 32-bit improvements appear to be slightly better
with ~ %30 and ~ %45 respectively. Results for Power6 closely match
those for power7.
Assorted tweaking, twisting and tuning to squeeze a few additional cycles
out of the memchr code. Changes include bypassing the shift pairs
(sld,srd) when they are not required, and unrolling the small_loop that
handles short and trailing strings.
Per scrollpipe data measuring aligned strings for 64-bit, these changes
save between five and eight cycles (9-13% overall) for short strings (<32),
Longer aligned strings see slight improvement of 1-3% due to bypassing the
shifts and the instruction rearranging.