Commit Graph

8 Commits

Author SHA1 Message Date
H.J. Lu
f53ffc9b90 x86: Handle _SC_LEVEL1_ICACHE_LINESIZE [BZ #27444]
commit 2d651eb926
Author: H.J. Lu <hjl.tools@gmail.com>
Date:   Fri Sep 18 07:55:14 2020 -0700

    x86: Move x86 processor cache info to cpu_features

missed _SC_LEVEL1_ICACHE_LINESIZE.

1. Add level1_icache_linesize to struct cpu_features.
2. Initialize level1_icache_linesize by calling handle_intel,
handle_zhaoxin and handle_amd with _SC_LEVEL1_ICACHE_LINESIZE.
3. Return level1_icache_linesize for _SC_LEVEL1_ICACHE_LINESIZE.

Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2021-03-15 05:43:26 -07:00
Siddhesh Poyarekar
a1b8b06a55 x86: Use SIZE_MAX instead of (long int)-1 for tunable range value
The tunable types are SIZE_T, so set the ranges to the correct maximum
value, i.e. SIZE_MAX.
2021-02-10 19:08:33 +05:30
Siddhesh Poyarekar
61117bfa1b tunables: Simplify TUNABLE_SET interface
The TUNABLE_SET interface took a primitive C type argument, which
resulted in inconsistent type conversions internally due to incorrect
dereferencing of types, especialy on 32-bit architectures.  This
change simplifies the TUNABLE setting logic along with the interfaces.

Now all numeric tunable values are stored as signed numbers in
tunable_num_t, which is intmax_t.  All calls to set tunables cast the
input value to its primitive type and then to tunable_num_t for
storage.  This relies on gcc-specific (although I suspect other
compilers woul also do the same) unsigned to signed integer conversion
semantics, i.e. the bit pattern is conserved.  The reverse conversion
is guaranteed by the standard.
2021-02-10 19:08:33 +05:30
Sajan Karumanchi
6e02b3e932 x86: Adding an upper bound for Enhanced REP MOVSB.
In the process of optimizing memcpy for AMD machines, we have found the
vector move operations are outperforming enhanced REP MOVSB for data
transfers above the L2 cache size on Zen3 architectures.
To handle this use case, we are adding an upper bound parameter on
enhanced REP MOVSB:'__x86_rep_movsb_stop_threshold'.
As per large-bench results, we are configuring this parameter to the
L2 cache size for AMD machines and applicable from Zen3 architecture
supporting the ERMS feature.
For architectures other than AMD, it is the computed value of
non-temporal threshold parameter.

Reviewed-by: Premachandra Mallappa <premachandra.mallappa@amd.com>
2021-02-02 12:42:15 +01:00
H.J. Lu
ff6d62e9ed <sys/platform/x86.h>: Remove the C preprocessor magic
In <sys/platform/x86.h>, define CPU features as enum instead of using
the C preprocessor magic to make it easier to wrap this functionality
in other languages.  Move the C preprocessor magic to internal header
for better GCC codegen when more than one features are checked in a
single expression as in x86-64 dl-hwcaps-subdirs.c.

1. Rename COMMON_CPUID_INDEX_XXX to CPUID_INDEX_XXX.
2. Move CPUID_INDEX_MAX to sysdeps/x86/include/cpu-features.h.
3. Remove struct cpu_features and __x86_get_cpu_features from
<sys/platform/x86.h>.
4. Add __x86_get_cpuid_feature_leaf to <sys/platform/x86.h> and put it
in libc.
5. Make __get_cpu_features() private to glibc.
6. Replace __x86_get_cpu_features(N) with __get_cpu_features().
7. Add _dl_x86_get_cpu_features to GLIBC_PRIVATE.
8. Use a single enum index for each CPU feature detection.
9. Pass the CPUID feature leaf to __x86_get_cpuid_feature_leaf.
10. Return zero struct cpuid_feature for the older glibc binary with a
smaller CPUID_INDEX_MAX [BZ #27104].
11. Inside glibc, use the C preprocessor magic so that cpu_features data
can be loaded just once leading to more compact code for glibc.

256 bits are used for each CPUID leaf.  Some leaves only contain a few
features.  We can add exceptions to such leaves.  But it will increase
code sizes and it is harder to provide backward/forward compatibilities
when new features are added to such leaves in the future.

When new leaves are added, _rtld_global_ro offsets will change which
leads to race condition during in-place updates. We may avoid in-place
updates by

1. Rename the old glibc.
2. Install the new glibc.
3. Remove the old glibc.

NB: A function, __x86_get_cpuid_feature_leaf , is used to avoid the copy
relocation issue with IFUNC resolver as shown in IFUNC resolver tests.
2021-01-21 05:58:17 -08:00
H.J. Lu
2d651eb926 x86: Move x86 processor cache info to cpu_features
1. Move x86 processor cache info to _dl_x86_cpu_features in ld.so.
2. Update tunable bounds with TUNABLE_SET_WITH_BOUNDS.
3. Move x86 cache info initialization to dl-cacheinfo.h and initialize
x86 cache info in init_cpu_features ().
4. Put x86 cache info for libc in cacheinfo.h, which is included in
libc-start.c in libc.a and is included in cacheinfo.c in libc.so.

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2021-01-14 11:38:45 -08:00
Paul Eggert
2b778ceb40 Update copyright dates with scripts/update-copyrights
I used these shell commands:

../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")

and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
2021-01-02 12:17:34 -08:00
H.J. Lu
0f09154c64 x86: Initialize CPU info via IFUNC relocation [BZ 26203]
X86 CPU features in ld.so are initialized by init_cpu_features, which is
invoked by DL_PLATFORM_INIT from _dl_sysdep_start.  But when ld.so is
loaded by static executable, DL_PLATFORM_INIT is never called.  Also
x86 cache info in libc.o and libc.a is initialized by a constructor
which may be called too late.  Since some fields in _rtld_global_ro
in ld.so are initialized by dynamic relocation, we can also initialize
x86 CPU features in _rtld_global_ro in ld.so and cache info in libc.so
by initializing dummy function pointers in ld.so and libc.so via IFUNC
relocation.

Key points:

1. IFUNC is always supported, independent of --enable-multi-arch or
--disable-multi-arch.  Linker generates IFUNC relocations from input
IFUNC objects and ld.so performs IFUNC relocations.
2. There are no IFUNC dependencies in ld.so before dynamic relocation
have been performed,
3. The x86 CPU features in ld.so is initialized by DL_PLATFORM_INIT
in dynamic executable and by IFUNC relocation in dlopen in static
executable.
4. The x86 cache info in libc.o is initialized by IFUNC relocation.
5. In libc.a, both x86 CPU features and cache info are initialized from
ARCH_INIT_CPU_FEATURES, not by IFUNC relocation, before __libc_early_init
is called.

Note: _dl_x86_init_cpu_features can be called more than once from
DL_PLATFORM_INIT and during relocation in ld.so.
2020-10-16 16:17:53 -07:00