Add a macro to linux/kernel-features.h, __ASSUME_TIME64_SYSCALLS, to
indicate whether the kernel can be assumed to provide a set of system
calls that process 64-bit time_t.
__ASSUME_TIME64_SYSCALLS does not indicate whether time_t is actually
64 bits (that's __TIMEBITS) and also does not indicate whether the
64-bit time_t system calls have "time64" suffixes on their names.
Code that uses __ASSUME_TIME64_SYSCALLS will be added in subsequent
patches.
* sysdeps/unix/sysv/linux/kernel-features.h
(__ASSUME_TIME64_SYSCALLS): New macro.
Reviewed-by: Alistair Francis <alistair23@gmail.com>
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Zack Weinberg <zackw@panix.com>
In glibc 2.17, the functions clock_getcpuclockid, clock_getres,
clock_gettime, clock_nanosleep, and clock_settime were moved from
librt.so to libc.so, leaving compatibility stubs behind. Now that the
dynamic linker no longer insists on finding versioned symbols in the
same library that originally defined them, we do not need the stubs
anymore, and this means we don't need GLIBC_PRIVATE __-prefix aliases
for most of the functions anymore either. (clock_gettime still needs
one.) For ports added before 2.17, libc.so needs to provide two
symbol versions for each, the default at GLIBC_2.17 plus a compat
version matching what librt had.
While I'm at it, move the clock_*.c files and their tests from rt/ to
time/.
This patch is a reimplementation of [1], which was submitted back in
2015. Copyright issue has been sorted [2] last year. It proposed a new
section (.gnu.xhash) and related dynamic tag (GT_GNU_XHASH). The new
section would be virtually identical to the existing .gnu.hash except
for the translation table (xlat) which would contain correct MIPS
.dynsym indexes corresponding to the hashvals in chains. This is because
MIPS ABI imposes a different ordering of the dynsyms than the one
expected by the .gnu.hash section. Another addition would be a leading
word at the beggining of the section, which would contain the number of
entries in the translation table.
In this patch, the new section name and dynamic tag are changed to
reflect the fact that the section should be treated as MIPS specific
(.MIPS.xhash and DT_MIPS_XHASH).
This patch addresses the alignment issue reported in [3] which is caused
by the leading word of the .MIPS.xhash section. Leading word is now
removed in the corresponding binutils patch, and the number of entries
in the translation table is computed using DT_MIPS_SYMTABNO dynamic tag.
Since the MIPS specific dl-lookup.c file was removed following the
initial patch submission, I opted for the definition of three new macros
in the generic ldsodefs.h. ELF_MACHINE_GNU_HASH_ADDRIDX defines the
index of the dynamic tag in the l_info array. ELF_MACHINE_HASH_SYMIDX is
used to calculate the index of a symbol in GNU hash. On MIPS, it is
defined to look up the symbol index in the translation table.
ELF_MACHINE_XHASH_SETUP is defined for MIPS only. It initializes the
.MIPS.xhash pointer in the link_map_machine struct.
The other major change is bumping the highest EI_ABIVERSION value for
MIPS to suggest that the dynamic linker now supports GNU hash.
The patch was tested by running the glibc testsuite for the three MIPS
ABIs (o32, n32 and n64) and for x86_64-linux-gnu.
[1] https://sourceware.org/ml/binutils/2015-10/msg00057.html
[2] https://sourceware.org/ml/binutils/2018-03/msg00025.html
[3] https://sourceware.org/ml/binutils/2016-01/msg00006.html
* elf/dl-addr.c (determine_info): Calculate the symbol index
using the newly defined ELF_MACHINE_HASH_SYMIDX macro.
* elf/dl-lookup.c (do_lookup_x): Ditto.
(_dl_setup_hash): Initialize MIPS xhash translation table.
* elf/elf.h (SHT_MIPS_XHASH): New define.
(DT_MIPS_XHASH): New define.
* sysdeps/generic/ldsodefs.h (ELF_MACHINE_GNU_HASH_ADDRIDX): New
define.
(ELF_MACHINE_HASH_SYMIDX): Ditto.
(ELF_MACHINE_XHASH_SETUP): Ditto.
* sysdeps/mips/ldsodefs.h (ELF_MACHINE_GNU_HASH_ADDRIDX): New
define.
(ELF_MACHINE_HASH_SYMIDX): Ditto.
(ELF_MACHINE_XHASH_SETUP): Ditto.
* sysdeps/mips/linkmap.h (struct link_map_machine): New member.
* sysdeps/unix/sysv/linux/mips/ldsodefs.h: Increment valid ABI
version.
* sysdeps/unix/sysv/linux/mips/libc-abis: New ABI version.
The fix for BZ#18231 requires new symbols only for sh4eb. This patch
adds the required folder and files for both BE and LE abilist. No
semantic changes are expected.
Checked with check-abi for sh4eb-linux-gnu and sh4-linux-gnu.
* sysdeps/sh/preconfigure.ac: New file.
* sysdeps/sh/preconfigure: Regenerate.
* sysdeps/sh/be/sh3/Implies: New file.
* sysdeps/sh/be/sh4/Implies: Likewise.
* sysdeps/sh/le/sh3/Implies: Likewise.
* sysdeps/sh/le/sh4/Implies: Likewise.
* sysdeps/unix/sysv/linux/sh/le/sh3/Implies: Likewise.
* sysdeps/unix/sysv/linux/sh/le/sh4/Implies: Likewise.
* sysdeps/unix/sysv/linux/sh/*.abilist: Move to
sysdeps/unix/sysv/linux/sh/le/*.abilist.
* sysdeps/unix/sysv/linux/sh/be/*.abilist: New files.
The fix for BZ#18231 requires new symbols only for microblaze. This patch
adds the required folder and files for both BE and LE abilist. No semantic
changes are expected.
Checked with check-abi for microblaze-linux-gnueabihf and
microblazeel-linux-gnueabihf.
* sysdeps/microblaze/preconfigure.ac: New file.
* sysdeps/microblaze/preconfigure: Regenerate.
* sysdeps/microblaze/be/implies: New file.
* sysdeps/microblaze/le/implies: Likewise.
* sysdeps/unix/sysv/linux/microblaze/be/implies: Likewise.
* sysdeps/unix/sysv/linux/microblaze/le/implies: Likewise.
* sysdeps/unix/sysv/linux/microblaze/*.abilist. Move to
sysdeps/unix/sysv/linux/microblaze/be/*.abilist.
* sysdeps/unix/sysv/linux/microblaze/le/*.abilist: New files.
The fix for BZ#18231 requires new symbols only for armeb. This patch
adds the required folder and files for both BE and LE abilist. No
semantic changes are expected.
Checked with check-abi for arm-linux-gnueabihf and armeb-linux-gnueabihf.
* sysdeps/arm/preconfigure.ac: Set machine based on endianness.
* sysdeps/arm/preconfigure: Regenerate.
* sysdeps/arm/be/Implies: New file.
* sysdeps/arm/be/armv6/Implies: Likewise.
* sysdeps/arm/be/armv6t2/Implies: Likewise.
* sysdeps/arm/be/armv7/Implies: Likewise.
* sysdeps/arm/le/Implies: Likewise.
* sysdeps/unix/sysv/linux/arm/be/Implies: Likewise.
* sysdeps/unix/sysv/linux/arm/le/Implies: Likewise.
* sysdeps/unix/sysv/linux/arm/*.abilist: Move to
sysdeps/unix/sysv/linux/arm/le/*.abilist.
* sysdeps/unix/sysv/linux/arm/be/l*.abilist: New files.
Move non-ASCII contributor names from installed headers
into contrib.texi when possible, and when it's not (the
copyright notice in sysdeps/unix/sysv/linux/mips/sys/user.h)
go back to ASCIIfied names. Problem reported by Joseph Myers in:
https://www.sourceware.org/ml/libc-alpha/2019-08/msg00646.html
This bumps the highest valid EI_ABIVERSION value to ABSOLUTE ABI.
New testcase loads the symbol from the GOT with the "lb" instruction
so that the EI_ABIVERSION header field of the shared object is set
to ABSOLUTE (it doesn't actually check the value of the symbol), and
makes sure that the main executable is executed without "ABI version
invalid" error.
Tested for all three ABIs (o32, n32, n64) using both static linker which
handles undefined weak symbols correctly [1] (and sets the EI_ABIVERSION
of the test module) and the one that doesn't (EI_ABIVERSION left as 0).
[1] https://sourceware.org/ml/binutils/2018-07/msg00268.html
[BZ #24916]
* sysdeps/mips/Makefile [$(subdir) = elf] (tests): Add
tst-undefined-weak.
[$(subdir) = elf] (modules-names): Add tst-undefined-weak-lib.
[$(subdir) = elf] ($(objpfx)tst-undefined-weak): Add dependency.
* sysdeps/mips/tst-undefined-weak-lib.S: New file.
* sysdeps/mips/tst-undefined-weak.c: Likewise.
* sysdeps/unix/sysv/linux/mips/ldsodefs.h (VALID_ELF_ABIVERSION):
Increment highest valid ABIVERSION value.
Linux/Mips kernels prior to 4.8 could potentially crash the user
process when doing FPU emulation while running on non-executable
user stack.
Currently, gcc doesn't emit .note.GNU-stack for mips, but that will
change in the future. To ensure that glibc can be used with such
future gcc, without silently resulting in binaries that might crash
in runtime, this patch forces RWX stack for all built objects if
configured to run against minimum kernel version less than 4.8.
* sysdeps/unix/sysv/linux/mips/Makefile
(test-xfail-check-execstack):
Move under mips-has-gnustack != yes.
(CFLAGS-.o*, ASFLAGS-.o*): New rules.
Apply -Wa,-execstack if mips-force-execstack == yes.
* sysdeps/unix/sysv/linux/mips/configure: Regenerated.
* sysdeps/unix/sysv/linux/mips/configure.ac
(mips-force-execstack): New var.
Set to yes for hard-float builds with minimum_kernel < 4.8.0
or minimum_kernel not set at all.
(mips-has-gnustack): New var.
Use value of libc_cv_as_noexecstack
if mips-force-execstack != yes, otherwise set to no.
As indicated by Joseph's comment on BZ#17726, this symbol is most
likely a historical ABI accident. This patch make it on both arm
and sparc ABIs a compat_symbol.
Checked against a build arm-linux-gnueabihf, sparcv9-linux-gnu, adn
sparc64-linux-gnu to see if the symbol is still present.
* gmon/Versions (libc) [GLIBC_2.31]: New entry.
* sysdeps/unix/sysv/linux/arm/profil-counter.h (profil_counter):
Make a compat_symbol.
* sysdeps/unix/sysv/linux/sparc/profil-counter.h
(__profil_counter_global): Likewise.
This patch refactor sigcontextinfo.h header to use SA_SIGINFO as default
for both gmon and debug implementations. This allows simplify
profil-counter.h on Linux to use a single implementation and remove the
requirements for newer ports to redefine __sigaction/sigaction to use
SA_SIGINFO.
The GET_PC macro is also replaced with a function sigcontext_get_pc that
returns an uintptr_t instead of a void pointer. It allows easier convertion
to integer on ILP32 architecture, such as x32, without the need to suppress
compiler warnings.
The patch also requires some refactor of register-dump.h file for some
architectures (to reflect it is now called from a sa_sigaction instead of
sa_handler signal context).
- Alpha, i386, and s390 are straighfoward to take in consideration the
new argument type.
- ia64 takes in consideration the kernel pass a struct sigcontextt
as third argument for sa_sigaction.
- sparc take in consideration the kernel pass a pt_regs struct
as third argument for sa_sigaction.
- m68k dummy function is removed and the FP state is dumped on
register_dump itself.
- For SH the register-dump.h file is consolidate on a common implementation
and the floating-point state is checked based on ownedfp field.
The register_dump does not change its output format in any affected
architecture.
I checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
arm-linux-gnueabihf, sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu,
powerpc64-linux-gnu, and powerpc64le-linux-gnu.
I also checked the libSegFault.so through catchsegv on alpha-linux-gnu,
m68k-linux-gnu and sh4-linux-gnu to confirm the output has not changed.
Adhemerval Zanella <adhemerval.zanella@linaro.org>
Florian Weimer <fweimer@redhat.com>
* debug/segfault.c (install_handler): Use SA_SIGINFO if defined.
* sysdeps/generic/profil-counter.h (__profil_counter): Cast to
uintptr_t.
* sysdeps/generic/sigcontextinfo.h (GET_PC): Rename to
sigcontext_get_pc and return aligned cast to uintptr_t.
* sysdeps/mach/hurd/i386/sigcontextinfo.h (GET_PC): Likewise.
* sysdeps/posix/profil.c (profil_count): Change PC argument to
uintptr_t.
(__profil): Use SA_SIGINFO.
* sysdeps/posix/sprofil.c (profil_count): Change PCP argument to
uintptr_t.
(__sprofil): Use SA_SIGINFO.
* sysdeps/unix/sysv/linux/profil-counter.h: New file.
* sysdeps/unix/sysv/linux/aarch64/profil-counter.h: Remove file.
* sysdeps/unix/sysv/linux/csky/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/i386/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/mips/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/profil-counter.h: Likewise.
* sysdeps/sysv/linux/s390/s390-32/profil-counter.h: Likewise.
* sysdeps/sysv/linux/s390/s390-64/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/sh/profil-counter.h: Likewise.
* sysdeps/unix/sysv/linux/arm/profil-counter.h (__profil_counter):
Assume SA_SIGINFO and use sigcontext_get_pc instead of GET_PC.
* sysdeps/unix/sysv/linux/sparc/profil-counter.h: New file.
* sysdeps/unix/sysv/linux/sparc/sparc64/profil-counter.h: Remove file.
* sysdeps/unix/sysv/linux/sparc/sparc32/profil-counter.h: Likewise.
* sysdpes/unix/sysv/linux/aarch64/sigcontextinfo.h (SIGCONTEXT,
GET_PC, __sigaction, sigaction): Remove defines.
(sigcontext_get_pc): New function.
* sysdeps/unix/sysv/linux/alpha/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/arm/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/csky/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/i386/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/mips/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/sh/sigcontextinfo.h: Likewise.
* sysdeps/sysv/linux/sparc/sparc32/sigcontextinfo.h: Likewise.
* sysdeps/sysv/linux/sparc/sparc64/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigcontextinfo.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/register-dump.h (register_dump):
Handle CTX argument as ucontext_t.
* sysdeps/unix/sysv/linux/i386/register-dump.h: Likewise.
Likewise.
* sysdeps/unix/sysv/linux/m68k/register-dump.h: Likewise.
* sysdeps/sysv/linux/s390/s390-32/register-dump.h: Likewise.
* sysdeps/sysv/linux/s390/s390-64/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/sh/register-dump.h: New file.
* sysdeps/unix/sysv/linux/sh/sh4/register-dump.h: Remove File.
* sysdeps/unix/sysv/linux/sh/sh3/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/register-dump.h: Likewise.
* sysdeps/unix/sysv/linux/Makefile (tests-internal): Add
tst-sigcontextinfo-get_pc.
* sysdeps/unix/sysv/linux/tst-sigcontextinfo-get_pc.c: New file.
(CFLAGS-tst-sigcontextinfo-get_pc.c): New rule.
Fix a couple of typos and v_regs field name in mcontext_t.
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h: Fix typos and
field name in mcontext_t struct.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
If the process is in a bad state, we used to print backtraces in
many cases. This is problematic because doing so could involve
a lot of work, like loading libgcc_s using the dynamic linker,
and this could itself be targeted by exploit writers. For example,
if the crashing process was forked from a long-lived process, the
addresses in the error message could be used to bypass ASLR.
Commit ed421fca42 ("Avoid backtrace from
__stack_chk_fail [BZ #12189]"), backtraces where no longer printed
because backtrace_and_maps was always called with do_abort == 1.
Rather than fixing this logic error, this change removes the backtrace
functionality from the sources. With the prevalence of external crash
handlers, it does not appear to be particularly useful. The crash
handler may also destroy useful information for debugging.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The resolution of C floating-point Clarification Request 25
<http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2397.htm#dr_25> is
that the totalorder and totalordermag functions should take pointer
arguments, and this has been adopted in C2X (with const added; note
that the integration of this change into C2X is present in the C
standard git repository but postdates the most recent public PDF
draft).
This patch updates glibc accordingly. As a defect resolution, the API
is changed unconditionally rather than supporting any sort of TS
18661-1 mode for compilation with the old version of the API. There
are compat symbols for existing binaries that pass floating-point
arguments directly. As a consequence of changing to pointer
arguments, there are no longer type-generic macros in tgmath.h for
these functions.
Because of the fairly complicated logic for creating libm function
aliases and determining the set of aliases to create in a given glibc
configuration, rather than duplicating all that in individual source
files to create the versioned and compat symbols, the source files for
the various versions of totalorder functions are set up to redefine
weak_alias before using libm_alias_* macros to create the symbols
required. In turn, this requires creating a separate alias for each
symbol version pointing to the same implementation (see binutils bug
<https://sourceware.org/bugzilla/show_bug.cgi?id=23840>), which is
done automatically using __COUNTER__. (As I noted in
<https://sourceware.org/ml/libc-alpha/2018-10/msg00631.html>, it might
well make sense for glibc's symbol versioning macros to do that alias
creation with __COUNTER__ themselves, which would somewhat simplify
the logic in the totalorder source files.)
It is of course desirable to test the compat symbols. I did this with
the generic libm-test machinery, but didn't wish to duplicate the
actual tables of test inputs and outputs, and thought it risky to
attempt to have a single object file refer to both default and compat
versions of the same function in order to test them together. Thus, I
created libm-test-compat_totalorder.inc and
libm-test-compat_totalordermag.inc which include the generated .c
files (with the processed version of those tables of inputs) from the
non-compat tests, and added appropriate dependencies. I think this
provides sufficient test coverage for the compat symbols without also
needing to make the special ldbl-96 and ldbl-128ibm tests (of
peculiarities relating to the representations of those formats that
can't be covered in the generic tests) run for the compat symbols.
Tests of compat symbols need to be internal tests, meaning _ISOMAC is
not defined. Making some libm-test tests into internal tests showed
up two other issues. GCC diagnoses duplicate macro definitions of
__STDC_* macros, including __STDC_WANT_IEC_60559_TYPES_EXT__; I added
an appropriate conditional and filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91451> for this issue.
On ia64, include/setjmp.h ends up getting included indirectly from
libm-symbols.h, resulting in conflicting definitions of the STR macro
(also defined in libm-test-driver.c); I renamed the macros in
include/setjmp.h. (It's arguable that we should have common internal
headers used everywhere for stringizing and concatenation macros.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/bits/mathcalls.h
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalorder): Take pointer arguments.
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalordermag): Likewise.
* manual/arith.texi (totalorder): Likewise.
(totalorderf): Likewise.
(totalorderl): Likewise.
(totalorderfN): Likewise.
(totalorderfNx): Likewise.
(totalordermag): Likewise.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
(totalordermagfN): Likewise.
(totalordermagfNx): Likewise.
* math/tgmath.h (__TGMATH_BINARY_REAL_RET_ONLY): Remove macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag): Likewise.
* math/Versions (GLIBC_2.31): Add totalorder, totalorderf,
totalorderl, totalordermag, totalordermagf, totalordermagl,
totalorderf32, totalorderf64, totalorderf32x, totalordermagf32,
totalordermagf64, totalordermagf32x, totalorderf64x,
totalordermagf64x, totalorderf128 and totalordermagf128.
* math/Makefile (libm-test-funcs-noauto): Add compat_totalorder
and compat_totalordermag.
(libm-test-funcs-compat): New variable.
(libm-tests-compat): Likewise.
(tests): Do not include compat tests.
(tests-internal): Add compat tests.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalorder.o)): Depend
on $(objpfx)libm-test-totalorder.c.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalordermag.o): Depend on
$(objpfx)libm-test-totalordermag.c.
(tgmath3-macros): Remove totalorder and totalordermag.
* math/libm-test-compat_totalorder.inc: New file.
* math/libm-test-compat_totalordermag.inc: Likewise.
* math/libm-test-driver.c (struct test_ff_i_data): Update comment.
(RUN_TEST_fpfp_b): New macro.
(RUN_TEST_LOOP_fpfp_b): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Use
TEST_fpfp_b.
(totalorder_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data): Use
TEST_fpfp_b.
(totalordermag_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/gen-tgmath-tests.py (Tests.add_all_tests): Remove
totalorder and totalordermag.
* math/test-tgmath.c (NCALLS): Change to 132.
(F(compile_test)): Do not call totalorder or totalordermag.
(F(totalorder)): Remove.
(F(totalordermag)): Likewise.
* include/float.h (__STDC_WANT_IEC_60559_TYPES_EXT__): Do not
define if [__STDC_WANT_IEC_60559_TYPES_EXT__].
* include/setjmp.h [!_ISOMAC] (STR_HELPER): Rename to
SJSTR_HELPER.
[!_ISOMAC] (STR): Rename to SJSTR. Update call to STR_HELPER.
[!_ISOMAC] (TEST_SIZE): Update call to STR.
[!_ISOMAC] (TEST_ALIGN): Likewise.
[!_ISOMAC] (TEST_OFFSET): Likewise.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/float128/float128_private.h
(__totalorder_compatl): New macro.
(__totalordermag_compatl): Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorderf): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagf): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<shlib-compat.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<shlib-compat.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c (totalorderl): Take
pointer arguments.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c (totalordermagl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Update calls to totalorderl and totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Update calls to totalorderl and totalordermagl.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/csky/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Commit 7532837d7b ("The
-Wstringop-truncation option new in GCC 8 detects common misuses")
added __attribute_nonstring__ to bits/utmp.h, but it did not update
the parallel bits/utmpx.h header. In struct utmp, the nonstring
attribute for ut_id was missing.
This patch adds the SYNC_FILE_RANGE_WRITE_AND_WAIT constant from Linux
5.2 (a new name for a combination of existing bits, not actually a new
kernel interface) to bits/fcntl-linux.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/fcntl-linux.h [__USE_GNU]
(SYNC_FILE_RANGE_WRITE_AND_WAIT): New macro.
The commit 5e855c8954
"s390: Enable VDSO for static linking" removed the definition of VDSO_SETUP
which leads to not setup the vdso symbols.
Instead it jumps to false addresses.
This patch just re adds the removed VDSO_SETUP macro definition.
ChangeLog:
* sysdeps/unix/sysv/linux/s390/init-first.c (VDSO_SETUP): New define.
This patch adds the CLONE_PIDFD constant from Linux 5.2 to glibc's
bits/sched.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/sched.h [__USE_GNU] (CLONE_PIDFD):
New macro.
This patch assumes static vDSO is supported as default, it is now supported
on all current architectures that support vDSO. It allows removing both
ALWAYS_USE_VSYSCALL define, which an architecture requires to explicit define
and USE_VSYSCALL (which defines vDSO only for shared or if architecture defines
ALWAYS_USE_VSYSCALL).
Checked with a build against all affected ABIs.
[BZ #19767]
* sysdeps/unix/sysv/linux/aarch64/sysdep.h (ALWAYS_USE_VSYSCALL):
Remove definition.
* sysdeps/unix/sysv/linux/arm/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/i386/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/riscv/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h (ALWAYS_USE_VSYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/x86/libc-vdso.h: Remove #if USE_VSYSCALL.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/sysdep.h (ALWAYS_USE_VSYSCALL,
USE_VSYSCALL): Remove defitions.
Although s390 only enables vDSO for dynamically linked elf binaries
(arch/s390/kernel/vdso.c:217), there is no indication in the code or
associated commit message for why not enable it for statically linked
binaries as well. To double check, I rebuilt a kernel with the
check removed and the vDSO does work for static build for supplied
symbols.
Checked on s390x-linux-gnu and s390-linux-gnu.
[BZ #19767]
* sysdeps/unix/sysv/linux/s390/init-first.c: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/s390/libc-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/sysdep.h
(ALWAYS_USE_VSYSCALL): Define.
* sysdeps/unix/sysv/linux/s390/s390-64/sysdep.h
(ALWAYS_USE_VSYSCALL): Likewise.
This patch updates the Linux kernel version in a comment in
syscall-names.list to agree with the following "kernel" line.
* sysdeps/unix/sysv/linux/syscall-names.list: Update comment.
The tst-mman-consts.py test includes a kernel version number, to avoid
failures because of newly added constants in the kernel (if kernel
headers are newer than this version of glibc) or missing constants in
the kernel (if kernel headers are older than this version of glibc).
This patch updates it to 5.2 to reflect that the MAP_* constants in
glibc are still current as of that kernel version.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/tst-mman-consts.py (main): Update Linux
kernel version number to 5.2.
Commit ffe8a9a831, "powerpc: Remove
rt_sigreturn usage on context function", removed from powerpc32
swapcontext a setting of r31 that is relied upon in subsequent code.
I'm not sure why this didn't produce test failures in Adhemerval's
32-bit testing; in my (soft-float) testing in preparation for 2.30
release, I see several context-related failures
FAIL: stdlib/tst-makecontext2
FAIL: stdlib/tst-makecontext3
FAIL: stdlib/tst-setcontext
FAIL: stdlib/tst-setcontext2
FAIL: stdlib/tst-setcontext4
FAIL: stdlib/tst-setcontext7
FAIL: stdlib/tst-setcontext9
FAIL: stdlib/tst-swapcontext1
that did not appear in 2.29 testing. This patch restores the removed
register setting in question, and thus fixes those failures.
Tested for powerpc (soft-float).
* sysdeps/unix/sysv/linux/powerpc/powerpc32/swapcontext-common.S
(__CONTEXT_FUNC_NAME): Restore setting of r31.
The kernel changes for a 64-bit time_t on 32-bit architectures
resulted in <asm/socket.h> indirectly including <linux/posix_types.h>.
The latter is not namespace-clean for the POSIX version of
<sys/socket.h>.
This issue has persisted across several Linux releases, so this commit
creates our own copy of the SO_* definitions for !__USE_MISC mode.
The new test socket/tst-socket-consts ensures that the copy is
consistent with the kernel definitions (which vary across
architectures). The test is tricky to get right because CPPFLAGS
includes include/libc-symbols.h, which in turn defines _GNU_SOURCE
unconditionally.
Tested with build-many-glibcs.py. I verified that a discrepancy in
the definitions actually results in a failure of the
socket/tst-socket-consts test.
The pthread _clock functions that were recently added to nptl need to be
declared in hppa's pthread.h too. After this change, the function
declaration part of sysdeps/nptl/pthread.h and
sysdeps/unix/sysv/linux/hppa/pthread.h are identical.
* sysdeps/unix/sysv/linux/hppa/pthread.h: Add declarations of
functions recently added to sysdeps/nptl/pthread.h:
pthread_mutex_clocklock, pthread_rwlock_clockrdlock,
pthread_rwlock_clockwrlock and pthread_cond_clockwait.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The only implementation of futex_supports_exact_relative_timeouts always
returns true. Let's remove it and all its callers.
* nptl/pthread_cond_wait.c: (__pthread_cond_clockwait): Remove code
that is only useful if futex_supports_exact_relative_timeouts ()
returns false.
* nptl/pthread_condattr_setclock.c: (pthread_condattr_setclock):
Likewise.
* sysdeps/nptl/futex-internal.h: Remove comment about relative
timeouts potentially being imprecise since it's no longer true.
Remove declaration of futex_supports_exact_relative_timeouts.
* sysdeps/unix/sysv/linux/futex-internal.h: Remove implementation
of futex_supports_exact_relative_timeouts.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Rename lll_timedlock to lll_clocklock and add clockid
parameter to indicate the clock that the abstime parameter should
be measured against in preparation for adding
pthread_mutex_clocklock.
The name change mirrors the naming for the exposed pthread functions:
timed => absolute timeout measured against CLOCK_REALTIME (or clock
specified by attribute in the case of pthread_cond_timedwait.)
clock => absolute timeout measured against clock specified in preceding
parameter.
* sysdeps/nptl/lowlevellock.h (lll_clocklock): Rename from
lll_timedlock and add clockid parameter. (__lll_clocklock): Rename
from __lll_timedlock and add clockid parameter.
* sysdeps/unix/sysv/linux/sparc/lowlevellock.h (lll_clocklock):
Likewise.
* nptl/lll_timedlock_wait.c (__lll_clocklock_wait): Rename from
__lll_timedlock_wait and add clockid parameter. Use __clock_gettime
rather than __gettimeofday so that clockid can be used. This means
that conversion from struct timeval is no longer required.
* sysdeps/sparc/sparc32/lowlevellock.c (lll_clocklock_wait):
Likewise.
* sysdeps/sparc/sparc32/lll_timedlock_wait.c: Update comment to
refer to __lll_clocklock_wait rather than __lll_timedlock_wait.
* nptl/pthread_mutex_timedlock.c (lll_clocklock_elision): Rename
from lll_timedlock_elision, add clockid parameter and use
meaningful names for other parameters. (__pthread_mutex_timedlock):
Pass CLOCK_REALTIME where necessary to lll_clocklock and
lll_clocklock_elision.
* sysdeps/unix/sysv/linux/powerpc/lowlevellock.h
(lll_clocklock_elision): Rename from lll_timedlock_elision and add
clockid parameter. (__lll_clocklock_elision): Rename from
__lll_timedlock_elision and add clockid parameter.
* sysdeps/unix/sysv/linux/s390/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/x86/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-timed.c
(__lll_lock_elision): Call __lll_clocklock_elision rather than
__lll_timedlock_elision. (EXTRAARG): Add clockid parameter.
(LLL_LOCK): Likewise.
* sysdeps/unix/sysv/linux/s390/elision-timed.c: Likewise.
* sysdeps/unix/sysv/linux/x86/elision-timed.c: Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add:
int pthread_rwlock_clockrdlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
and:
int pthread_rwlock_clockwrlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
which behave like pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock respectively, except they always measure
abstime against the supplied clockid. The functions currently support
CLOCK_REALTIME and CLOCK_MONOTONIC and return EINVAL if any other
clock is specified.
* sysdeps/nptl/pthread.h: Add pthread_rwlock_clockrdlock and
pthread_wrlock_clockwrlock.
* nptl/Makefile: Build pthread_rwlock_clockrdlock.c and
pthread_rwlock_clockwrlock.c.
* nptl/pthread_rwlock_clockrdlock.c: Implement
pthread_rwlock_clockrdlock.
* nptl/pthread_rwlock_clockwrlock.c: Implement
pthread_rwlock_clockwrlock.
* nptl/pthread_rwlock_common.c (__pthread_rwlock_rdlock_full): Add
clockid parameter and verify that it indicates a supported clock on
entry so that we fail even if it doesn't end up being used. Pass
that clock on to futex_abstimed_wait when necessary.
(__pthread_rwlock_wrlock_full): Likewise.
* nptl/pthread_rwlock_rdlock.c: (__pthread_rwlock_rdlock): Pass
CLOCK_REALTIME to __pthread_rwlock_rdlock_full even though it won't
be used because there's no timeout.
* nptl/pthread_rwlock_wrlock.c (__pthread_rwlock_wrlock): Pass
CLOCK_REALTIME to __pthread_rwlock_wrlock_full even though it won't
be used because there is no timeout.
* nptl/pthread_rwlock_timedrdlock.c (pthread_rwlock_timedrdlock):
Pass CLOCK_REALTIME to __pthread_rwlock_rdlock_full since abstime
uses that clock.
* nptl/pthread_rwlock_timedwrlock.c (pthread_rwlock_timedwrlock):
Pass CLOCK_REALTIME to __pthread_rwlock_wrlock_full since abstime
uses that clock.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-abstime.c (th): Add pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock timeout tests to match the existing
pthread_rwlock_timedrdloock and pthread_rwlock_timedwrlock tests.
* nptl/tst-rwlock14.c (do_test): Likewise.
* nptl/tst-rwlock6.c Invent verbose_printf macro, and use for
ancillary output throughout. (tf): Accept thread_args structure so
that rwlock, a clockid and function name can be passed to the
thread. (do_test_clock): Rename from do_test. Accept clockid
parameter to specify test clock. Use the magic clockid value of
CLOCK_USE_TIMEDLOCK to indicate that pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock should be tested, otherwise pass the
specified clockid to pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock. Use xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* nptl/tst-rwlock7.c: Likewise.
* nptl/tst-rwlock9.c (writer_thread, reader_thread): Accept
thread_args structure so that the (now int) thread number, the
clockid and the function name can be passed to the thread.
(do_test_clock): Renamed from do_test. Pass the necessary
thread_args when creating the reader and writer threads. Use
xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* manual/threads.texi: Add documentation for
pthread_rwlock_clockrdlock and pthread_rwlock_clockwrclock.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Add:
int pthread_cond_clockwait (pthread_cond_t *cond,
pthread_mutex_t *mutex,
clockid_t clockid,
const struct timespec *abstime)
which behaves just like pthread_cond_timedwait except it always measures
abstime against the supplied clockid. Currently supports CLOCK_REALTIME
and
CLOCK_MONOTONIC and returns EINVAL if any other clock is specified.
Includes feedback from many others. This function was originally
proposed[1] as pthread_cond_timedwaitonclock_np, but The Austin Group
preferred the new name.
* nptl/Makefile: Add tst-cond26 and tst-cond27
* nptl/Versions (GLIBC_2.30): Add pthread_cond_clockwait
* sysdeps/nptl/pthread.h: Likewise
* nptl/forward.c: Add __pthread_cond_clockwait
* nptl/forward.c: Likewise
* nptl/pthreadP.h: Likewise
* sysdeps/nptl/pthread-functions.h: Likewise
* nptl/pthread_cond_wait.c (__pthread_cond_wait_common): Add
clockid parameter and comment describing why we don't need to
check
its value. Use that value when calling
futex_abstimed_wait_cancelable rather than reading the clock
from
the flags. (__pthread_cond_wait): Pass unused clockid parameter.
(__pthread_cond_timedwait): Read clock from flags and pass it to
__pthread_cond_wait_common. (__pthread_cond_clockwait): Add new
function with weak alias from pthread_cond_clockwait.
* sysdeps/mach/hurd/i386/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist
* (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30):
* Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-cond11.c (run_test): Support testing
pthread_cond_clockwait too by using a special magic
CLOCK_USE_ATTR_CLOCK value to determine whether to call
pthread_cond_timedwait or pthread_cond_clockwait. (do_test):
Pass
CLOCK_USE_ATTR_CLOCK for existing tests, and add new tests using
all combinations of CLOCK_MONOTONIC and CLOCK_REALTIME.
* ntpl/tst-cond26.c: New test for passing unsupported and
* invalid
clocks to pthread_cond_clockwait.
* nptl/tst-cond27.c: Add test similar to tst-cond5.c, but using
struct timespec and pthread_cond_clockwait.
* manual/threads.texi: Document pthread_cond_clockwait. The
* comment
was provided by Carlos O'Donell.
[1] https://sourceware.org/ml/libc-alpha/2015-07/msg00193.html
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
In preparation for adding POSIX clockwait variants of timedwait functions,
add a clockid_t parameter to futex_abstimed_wait functions and pass
CLOCK_REALTIME from all callers for the time being.
Replace lll_futex_timed_wait_bitset with lll_futex_clock_wait_bitset
which takes a clockid_t parameter rather than the magic clockbit.
* sysdeps/nptl/lowlevellock-futex.h,
sysdeps/unix/sysv/linux/lowlevellock-futex.h: Replace
lll_futex_timed_wait_bitset with lll_futex_clock_wait_bitset that
takes a clockid rather than a special clockbit.
* sysdeps/nptl/lowlevellock-futex.h: Add
lll_futex_supported_clockid so that client functions can check
whether their clockid parameter is valid even if they don't
ultimately end up calling lll_futex_clock_wait_bitset.
* sysdeps/nptl/futex-internal.h,
sysdeps/unix/sysv/linux/futex-internal.h
(futex_abstimed_wait, futex_abstimed_wait_cancelable): Add
clockid_t parameter to indicate which clock the absolute time
passed should be measured against. Pass that clockid onto
lll_futex_clock_wait_bitset. Add invalid clock as reason for
returning -EINVAL.
* sysdeps/nptl/futex-internal.h,
sysdeps/unix/sysv/linux/futex-internal.h: Introduce
futex_abstimed_supported_clockid so that client functions can check
whether their clockid parameter is valid even if they don't
ultimately end up calling futex_abstimed_wait.
* nptl/pthread_cond_wait.c (__pthread_cond_wait_common): Remove
code to calculate relative timeout for
__PTHREAD_COND_CLOCK_MONOTONIC_MASK and just pass CLOCK_MONOTONIC
or CLOCK_REALTIME as required to futex_abstimed_wait_cancelable.
* nptl/pthread_rwlock_common (__pthread_rwlock_rdlock_full)
(__pthread_wrlock_full), nptl/sem_waitcommon (do_futex_wait): Pass
additional CLOCK_REALTIME to futex_abstimed_wait_cancelable.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock):
Switch to lll_futex_clock_wait_bitset and pass CLOCK_REALTIME
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The fix for BZ#21270 (commit 158d5fa0e1) added a mask to avoid offset larger
than 1^44 to be used along __NR_mmap2. However mips64n32 users __NR_mmap,
as mips64n64, but still defines off_t as old non-LFS type (other ILP32, such
x32, defines off_t being equal to off64_t). This leads to use the same
mask meant only for __NR_mmap2 call for __NR_mmap, thus limiting the maximum
offset it can use with mmap64.
This patch fixes by setting the high mask only for __NR_mmap2 usage. The
posix/tst-mmap-offset.c already tests it and also fails for mips64n32. The
patch also change the test to check for an arch-specific header that defines
the maximum supported offset.
Checked on x86_64-linux-gnu, i686-linux-gnu, and I also tests tst-mmap-offset
on qemu simulated mips64 with kernel 3.2.0 kernel for both mips-linux-gnu and
mips64-n32-linux-gnu.
[BZ #24699]
* posix/tst-mmap-offset.c: Mention BZ #24699.
(do_test_bz21270): Rename to do_test_large_offset and use
mmap64_maximum_offset to check for maximum expected offset value.
* sysdeps/generic/mmap_info.h: New file.
* sysdeps/unix/sysv/linux/mips/mmap_info.h: Likewise.
* sysdeps/unix/sysv/linux/mmap64.c (MMAP_OFF_HIGH_MASK): Define iff
__NR_mmap2 is used.
With commit f0b2132b35 ("ld.so:
Support moving versioned symbols between sonames [BZ #24741]"), the
dynamic linker will find the definition of vfork in libc and binds
a vfork reference to that symbol, even if the soname in the version
reference says that the symbol should be located in libpthread.
As a result, the forwarder (whether it's IFUNC-based or a duplicate
of the libc implementation) is no longer necessary.
On older architectures, a placeholder symbol is required, to make sure
that the GLIBC_2.1.2 symbol version does not go away, or is turned in
to a weak symbol definition by the link editor. (The symbol version
needs to preserved so that the symbol coverage check in
elf/dl-version.c does not fail for old binaries.)
mips32 is an outlier: It defined __vfork@@GLIBC_2.2, but the
baseline is GLIBC_2.0. Since there are other @@GLIBC_2.2 symbols,
the placeholder symbol is not needed there.
The kernel is evolving this interface (e.g., removal of the
restriction on cross-device copies), and keeping up with that
is difficult. Applications which need the function should
run kernels which support the system call instead of relying on
the imperfect glibc emulation.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The kernel interface uses type unsigned int, but there is an
internal conversion to int, so INT_MAX is the correct limit.
Part of the buffer will always be unused, but this is not a
problem. Such huge buffers do not occur in practice anyway.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The nds32 creates two specific syscalls, udftrap and fp_udfiex_crtl, in
kernel v5.0 and v5.2, respectively. Add these two syscalls to
syscall-names.list.
Define all currently used Linux versions used for
PREPARE_VERSION{,_KNOWN} in sysdeps/unix/sysv/linux/dl-vdso.h and use
them instead of duplicating the versions and precomputed hashes across
architecture specific files.
* sysdeps/unix/sysv/linux/aarch64/gettimeofday.c (INIT_ARCH): Use
PREPARE_VERSION_KNOWN.
* sysdeps/unix/sysv/linux/aarch64/init-first.c: Likewise.
* sysdeps/unix/sysv/linux/dl-vdso.h (VDSO_NAME_LINUX_2_6_39): New
define.
(VDSO_HASH_LINUX_2_6_39): Likewise.
(VDSO_NAME_LINUX_4_9): Likewise.
(VDSO_HASH_LINUX_4_9): Likewise.
* sysdeps/unix/sysv/linux/powerpc/gettimeofday.c (INIT_ARCH): Likewise.
* sysdeps/unix/sysv/linux/powerpc/init-first.c
(_libc_vdso_platform_setup): Likewise.
* sysdeps/unix/sysv/linux/powerpc/time.c (INIT_ARCH): Likewise.
* sysdeps/unix/sysv/linux/s390/init-first.c (_libc_vdso_platform_setup):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/init-first.c (__vdso_platform_setup):
Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
__ppc_get_timebase_freq() always return 0 when using static linked
glibc.
This is a minimal example.c to reproduce:
/******************************/
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/platform/ppc.h>
int main() {
uint64_t freq = __ppc_get_timebase_freq();
printf("Time Base frequency = %"PRIu64" Hz\n", freq);
if (freq == 0)
return -1;
return 0;
}
/******************************/
Compile command: gcc -static example.c
This bug has been reproduced, fixed and tested on all powerpc platforms
(ppc32, ppc64 and ppc64le).
The underlying code of __ppc_get_timebase_freq uses __get_timebase_freq
that has a different implementation for shared and static version of
glibc. In the static version, there is an incorrect sense in the if
check for the fd returned when opening /proc/cpuinfo.
This solution is mostly a cherry-pick from:
commit 4791e4f773d060c1a37b27aac5b03cdfa9327afc
Author: Stan Shebs <stanshebs@google.com>
Date: Fri May 17 12:25:19 2019 -0700
Subject: Fix sense of a test in the static-linking version of ppc get_clockfreq
That is in branch glibc/google/grte/v5-2.27/master and was mentioned for
inclusion on master here:
https://www.sourceware.org/ml/libc-alpha/2019-05/msg00409.html
Adapted from original fix for get_clockfreq. That code was moved to
get_timebase_freq.
Also added a static-build testcase for __ppc_get_timebase_freq since the
underlying function has different implementations for shared and static
build.
[BZ #24640]
* sysdeps/unix/sysv/linux/powerpc/get_timebase_freq.c
[!SHARED] (__get_timebase_freq): Fix sense of a test in the
static-linking version.
* sysdeps/unix/sysv/linux/powerpc/Makefile
(tests-static): Add test-gettimebasefreq-static.
(tests): Likewise.
* sysdeps/unix/sysv/linux/powerpc/test-gettimebasefreq-static.c:
New file.
Although defined in initial TLS/NPTL ABI for m68k and ColdFire [1], kernel
support was never pushed upstream. This patch removes the unused m68k
vDSO support.
Checked with a build against m68k and m68k-coldfire and some basic
tests on ARAnyM.
* sysdeps/unix/sysv/linux/m68k/Makefile (sysdep_routines,
sysdep-rtld-routines): Remove rules.
* sysdeps/unix/sysv/linux/m68k/Versions (libc) [GLIBC_PRIVATE]:
Remove __vdso_atomic_cmpxchg_32 and __vdso_atomic_barrier.
(ld) [GLIBC_PRIVATE]: __rtld___vdso_read_tp,
__rtld___vdso_atomic_cmpxchg_32, and __rtld___vdso_atomic_barrier.
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h
(atomic_compare_and_exchange_val_acq, atomic_full_barrier): Remove
vDSO path for SHARED.
* sysdeps/unix/sysv/linux/m68k/init-first.c: Remove file.
* sysdeps/unix/sysv/linux/m68k/libc-m68k-vdso.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-helpers.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-vdso.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-vdso.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/m68k-helpers.c: New file.
[1] https://lists.debian.org/debian-68k/2007/11/msg00071.html
The identifier linux is used as a predefined macro, so the actually
used path is 1/stat.h or 1/stat64.h. Using the quote-based version
triggers a file lookup for /usr/include/bits/linux/stat.h (or whatever
directory is used to store bits/statx.h), but since bits/ is pretty
much reserved by glibc, this appears to be acceptable.
This is related to GCC PR 80005: incorrect macro expansion of the
argument of __has_include.
Suggested by Zack Weinberg.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch adds the new constant IPV6_ROUTER_ALERT_ISOLATE from Linux
5.1 to sysdeps/unix/sysv/linux/bits/in.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/in.h (IPV6_ROUTER_ALERT_ISOLATE):
New macro.
Some recent change on GCC mainline resulted in the localplt test
failing for powerpc soft-float (not sure exactly when, as the failure
appeared when there were other build test failures as well;
<https://sourceware.org/ml/libc-testresults/2019-q2/msg00261.html>
shows it remaining when other failures went away). The problem is a
call to memset that GCC now generates in the libgcc long double code.
Since memset is documented as a function GCC may always implicitly
generate calls to, it seems reasonable to allow that local PLT
reference (just like those for libgcc functions that GCC implicitly
generates calls to and that are also exported from libc.so), which
this patch does.
Tested for powerpc soft-float with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/localplt.data:
Allow memset in libc.so.
Now that there are no internal users of __sysctl left, it is possible
to add an unconditional deprecation warning to <sys/sysctl.h>.
To avoid a test failure due this warning in check-install-headers,
skip the test for sys/sysctl.h.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
No 32-bit system call wrapper is added because the interface
is problematic because it cannot deal with 64-bit inode numbers
and 64-bit directory hashes.
A future commit will deprecate the undocumented getdirentries
and getdirentries64 functions.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Linux only supports the required ISA sysctls on StrongARM devices,
which are armv4 and no longer tested during glibc development
and probably bit-rotted by this point. (No reported test results,
and the last discussion of armv4 support was in the glibc 2.19
release notes.)
<asm/unistd.h> on arm defines the following macros:
#define __ARM_NR_breakpoint (__ARM_NR_BASE+1)
#define __ARM_NR_cacheflush (__ARM_NR_BASE+2)
#define __ARM_NR_usr26 (__ARM_NR_BASE+3)
#define __ARM_NR_usr32 (__ARM_NR_BASE+4)
#define __ARM_NR_set_tls (__ARM_NR_BASE+5)
#define __ARM_NR_get_tls (__ARM_NR_BASE+6)
These do not follow the regular __NR_* naming convention and
have so far been ignored by the syscall-names.list consistency
checks. This commit adds these names to the file, preparing
for the availability of these names in the regular __NR_*
namespace.
The patch 6e8ba7fd57 meant to remove the all get_clockfreq.c. This
patch removes the missing files for sparcv9 and x86_64.
Checked against a build to x86_64-linux-gnu and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/sparc/sparc32/sparcv9/get_clockfreq.c:
Remove file.
* sysdeps/unix/sysv/linux/x86_64/get_clockfreq.c: Likewise.
This patch adds the new F_SEAL_FUTURE_WRITE constant from Linux 5.1 to
bits/fcntl-linux.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/fcntl-linux.h [__USE_GNU]
(F_SEAL_FUTURE_WRITE): New macro.
GCC 9 dropped support for the SPE extensions to PowerPC, which means
powerpc*-*-*gnuspe* configurations are no longer buildable with that
compiler. This ISA extension was peculiar to the “e500” line of
embedded PowerPC chips, which, as far as I can tell, are no longer
being manufactured, so I think we should follow suit.
This patch was developed by grepping for “e500”, “__SPE__”, and
“__NO_FPRS__”, and may not eliminate every vestige of SPE support.
Most uses of __NO_FPRS__ are left alone, as they are relevant to
normal embedded PowerPC with soft-float.
* sysdeps/powerpc/preconfigure: Error out on powerpc-*-*gnuspe*
host type.
* scripts/build-many-glibcs.py: Remove powerpc-*-linux-gnuspe
and powerpc-*-linux-gnuspe-e500v1 from list of build configurations.
* sysdeps/powerpc/powerpc32/e500: Recursively delete.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/e500: Recursively delete.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/context-e500.h:
Delete.
* sysdeps/powerpc/fpu_control.h: Remove SPE variant.
Issue an #error if used with a compiler in SPE-float mode.
* sysdeps/powerpc/powerpc32/__longjmp_common.S
* sysdeps/powerpc/powerpc32/setjmp_common.S
* sysdeps/unix/sysv/linux/powerpc/powerpc32/getcontext-common.S
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/getcontext.S
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/setcontext.S
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/swapcontext.S
* sysdeps/unix/sysv/linux/powerpc/powerpc32/setcontext-common.S
* sysdeps/unix/sysv/linux/powerpc/powerpc32/swapcontext-common.S:
Remove code to preserve SPE register state.
* sysdeps/unix/sysv/linux/powerpc/elision-lock.c
* sysdeps/unix/sysv/linux/powerpc/elision-trylock.c
* sysdeps/unix/sysv/linux/powerpc/elision-unlock.c
Remove __SPE__ ifndefs.
This patch add the missing SEMTIMEDOP_IPC_ARGS definions on powerpc
and sparc ipc_priv.h.
Checked on powerpc64le-linux-gnu and with a build for sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/powerpc/ipc_priv.h (SEMTIMEDOP_IPC_ARGS):
New define.
* sysdeps/unix/sysv/linux/sparc/sparc64/ipc_priv.h
(SEMTIMEDOP_IPC_ARGS): Likewise.
This patch consolidates the s390-32 semtimedop implementation by defining
a arch-specific SEMTIMEDOP_IPC_ARGS to rearrange the arguments expected
by s390 Linux kABI. The idea is to avoid have multiples semtimedop
implementation changes for Linux v5.1 change to enable wire-up sysvipc
support.
Checked with a s390-linux-gnu and s390x-linux-gnu and checking that
resulting semtimedop objects did not change.
* sysdeps/unix/sysv/linux/ipc_priv.h (SEMTIMEDOP_IPC_ARGS): New
define.
* sysdpes/unix/sysv/linux/s390/ipc_priv.h: New file.
* sysdeps/unix/sysv/linux/s390/semtimedop.c: Remove file.
* sysdeps/unix/sysv/linux/semtimedop.c (semtimedop): Use
SEMTIMEDOP_IPC_ARGS for calls with __NR_ipc.
The __IPC64 flags is meant to be used to enable the new sysv struct
format when the architectures supports it (ARCH_WANT_IPC_PARSE_VERSION
config flag on Linux kernel).
This currently issue only affects alpha.
[BZ #24570]
* sysdeps/unix/sysv/linux/msgctl.c (__old_msgctl): Remove __IPC_64
usage.
Linux 5.1 adds missing syscalls to the syscall table for many Linux
kernel architectures. This patch updates the kernel-features.h
headers accordingly. __ASSUME_DIRECT_SYSVIPC_SYSCALLS is not updated
because of the differences between new and old syscalls described in
<https://sourceware.org/ml/libc-alpha/2019-05/msg00235.html>. The
statfs64 structure used by alpha matches what the new kernel syscalls
use.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/alpha/kernel-features.h
(__ASSUME_STATFS64): Only undefine if [__LINUX_KERNEL_VERSION <
0x050100].
* sysdeps/unix/sysv/linux/ia64/kernel-features.h (__ASSUME_STATX):
Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
(__ASSUME_STATX): Likewise.
The tgkill function is sometimes used in crash handlers.
<bits/signal_ext.h> follows the same approach as <bits/unistd_ext.h>
(which was added for the gettid system call wrapper).
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch removes the arch-specific x86 assembly implementation for
low level locking and consolidate both 64 bits and 32 bits in a
single implementation.
Different than other architectures, x86 lll_trylock, lll_lock, and
lll_unlock implements a single-thread optimization to avoid atomic
operation, using cmpxchgl instead. This patch implements by using
the new single-thread.h definitions in a generic way, although using
the previous semantic.
The lll_cond_trylock, lll_cond_lock, and lll_timedlock just use
atomic operations plus calls to lll_lock_wait*.
For __lll_lock_wait_private and __lll_lock_wait the generic implemtation
there is no indication that assembly implementation is required
performance-wise.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* sysdeps/nptl/lowlevellock.h (__lll_trylock): New macro.
(lll_trylock): Call __lll_trylock.
* sysdeps/unix/sysv/linux/i386/libc-lowlevellock.S: Remove file.
* sysdeps/unix/sysv/linux/i386/lll_timedlock_wait.c: Likewise.
* sysdeps/unix/sysv/linux/i386/lowlevellock.S: Likewise.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/libc-lowlevellock.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/lll_timedlock_wait.c: Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/x86/lowlevellock.h: New file.
* sysdeps/unix/sysv/linux/x86_64/cancellation.S: Include
lowlevellock-futex.h.
This patch move the single-thread syscall optimization defintions from
syscall-cancel.h to new header file single-thread.h and also move the
cancellation definitions from pthreadP.h to syscall-cancel.h.
The idea is just simplify the inclusion of both syscall-cancel.h and
single-thread.h (without the requirement of including all pthreadP.h
defintions).
No semantic changes expected, checked on a build for all major ABIs.
* nptl/pthreadP.h (CANCEL_ASYNC, CANCEL_RESET, LIBC_CANCEL_ASYNC,
LIBC_CANCEL_RESET, __libc_enable_asynccancel,
__libc_disable_asynccancel, __librt_enable_asynccancel,
__libc_disable_asynccancel, __librt_enable_asynccancel,
__librt_disable_asynccancel): Move to ...
* sysdeps/unix/sysv/linux/sysdep-cancel.h: ... here.
(SINGLE_THREAD_P, RTLD_SINGLE_THREAD_P): Move to ...
* sysdeps/unix/sysv/linux/single-thread.h: ... here.
* sysdeps/generic/single-thread.h: New file.
* sysdeps/unix/sysdep.h: Include single-thread.h.
* sysdeps/unix/sysv/linux/futex-internal.h: Include sysdep-cancel.h.
* sysdeps/unix/sysv/linux/lowlevellock-futex.h: Likewise.
This patch updates syscall-names.list for Linux 5.1 (which has many
new syscalls, mainly but not entirely ones for 64-bit time).
Tested with build-many-glibcs.py (before the revert of the move to
Linux 5.1 there; verified there were no tst-syscall-list failures).
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 5.1.
(clock_adjtime64) New syscall.
(clock_getres_time64) Likewise.
(clock_gettime64) Likewise.
(clock_nanosleep_time64) Likewise.
(clock_settime64) Likewise.
(futex_time64) Likewise.
(io_pgetevents_time64) Likewise.
(io_uring_enter) Likewise.
(io_uring_register) Likewise.
(io_uring_setup) Likewise.
(mq_timedreceive_time64) Likewise.
(mq_timedsend_time64) Likewise.
(pidfd_send_signal) Likewise.
(ppoll_time64) Likewise.
(pselect6_time64) Likewise.
(recvmmsg_time64) Likewise.
(rt_sigtimedwait_time64) Likewise.
(sched_rr_get_interval_time64) Likewise.
(semtimedop_time64) Likewise.
(timer_gettime64) Likewise.
(timer_settime64) Likewise.
(timerfd_gettime64) Likewise.
(timerfd_settime64) Likewise.
(utimensat_time64) Likewise.
The twalk function is very difficult to use in a multi-threaded
program because there is no way to pass external state to the
iterator function.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Similar to powerpc, mips also issues rt_sigreturn for setcontext
case the v0 value saved is not the one set by setcontext or
makecontext. As for powerpc, it is intention is no really supported
since setcontext is not async-signal-safe.
Checked the context tests on mips64-linux-gnu and mips-linux-gnu.
* sysdeps/unix/sysv/linux/mips/getcontext.S (__getcontext): Remove
the magic flag store.
* sysdeps/unix/sysv/linux/mips/makecontext.S (__makecontext):
Likewise.
* sysdeps/unix/sysv/linux/mips/swapcontext.S (__swapcontext):
Likewise.
* sysdeps/unix/sysv/linux/mips/setcontext.S (__setcontext):
Remove rt_sigreturn call.
As described in a recent glibc thread [1], the rt_sigreturn syscall
on setcontext and swapcontext is not used on default use and its
intention is no really supported since neither setcontext nor
swapcontext are async-signal-safe.
Checked on powerpc64-linux-gnu and powerpc-linux-gnu.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/setcontext-common.S:
Remove rt_sigreturn call.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/swapcontext-common.S:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/setcontext.S: Likewie.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/swapcontext.S: Likewise.
[1] https://sourceware.org/ml/libc-alpha/2019-02/msg00367.html
Fixes build using v5.1-rc1 headers.
The kernel has cleaned up how these are defined. Previous behavior
was to define __NR_osf_shmat as 209 and not define __NR_shmat.
Current behavior is to define __NR_shmat as 209 and then define
__NR_osf_shmat as __NR_shmat.
* sysdeps/unix/sysv/linux/alpha/kernel-features.h (__NR_shmat):
Do not redefine.
* sysdeps/unix/sysv/linux/alpha/sysdep.h (__NR_osf_shmat):
Do not redefine.
Fix a:
.../sysdeps/unix/sysv/linux/riscv/configure: line 181: test: =: unary operator expected
message produced by the RISC-V configure fragment with the soft-float
ABI selected, caused by $libc_cv_riscv_float_abi evaluating to nil in
the invocation of `test $libc_cv_riscv_float_abi = no'.
* sysdeps/unix/sysv/linux/riscv/configure.ac: Quote
$libc_cv_riscv_float_abi in `test' invocation.
* sysdeps/unix/sysv/linux/riscv/configure: Regenerate.
With clock_getres, clock_gettime, and clock_settime refactor to remove the
generic CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID support through
hp-timing, there is no usage of internal __get_clockfreq. This patch removes
both generic and Linux implementation..
Checked with a build against aarch64-linux-gnu, i686-linux-gnu, ia64-linux-gnu,
sparc64-linux-gnu, powerpc-linux-gnu-power4.
* include/libc-internal.h (__get_clockfreq): Remove prototype.
* rt/Makefile (clock-routines): Remove get_clockfreq.
* rt/get_clockfreq.c: Remove file.
* sysdeps/unix/sysv/linux/i386/get_clockfreq.c: Likewise.
* sysdeps/unix/sysv/linux/ia64/get_clockfreq.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/get_clockfreq.c: Move code to ...
* sysdeps/unix/sysv/linux/powerpc/get_timebase_freq.c: ... here.
The Linux 3.2 clock_getres kernel code (kernel/posix-cpu-timers.c)
issued for clock_getres CLOCK_PROCESS_CPUTIME_ID (process_cpu_clock_getres)
and CLOCK_THREAD_CPUTIME_ID (thread_cpu_clock_getres) call
posix_cpu_clock_getres. And it fails on check_clock only if an invalid
clock is used (not the case) or if we pass an invalid the pid/tid in
29 msb of clock_id (not the case either).
This patch assumes that clock_getres syscall always support
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID, so there is no need
to fallback to hp-timing support for _SC_MONOTONIC_CLOCK neither to issue
the syscall to certify the clock_id is supported bt the kernel. This
allows simplify the sysconf support to always use the syscall.
it also removes ia64 itc drift check and assume kernel handles it correctly.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, and i686-linux-gnu.
* sysdeps/unix/sysv/linux/ia64/has_cpuclock.c: Remove file.
* sysdeps/unix/sysv/linux/ia64/sysconf.c: Likewise.
* sysdeps/unix/sysv/linux/sysconf.c (has_cpuclock): Remove function.
(__sysconf): Assume kernel support for _SC_MONOTONIC_CLOCK,
_SC_CPUTIME, and _SC_THREAD_CPUTIME.
This patch adds new AArch64 HWCAPs from Linux 5.0 to the AArch64
bits/hwcap.h and dl-procinfo.c.
Tested (compilation only) with build-many-glibcs.py for
aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_SB): New
macro.
(HWCAP_PACA): Likewise.
(HWCAP_PACG): Likewise.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Increase to 32.
(_dl_aarch64_cap_flags): Add new entries for new HWCAPs.
This patch updates sysdeps/unix/sysv/linux/syscall-names.list for
Linux 5.0. Based on testing with build-many-glibcs.py, the only new
entry needed is for old_getpagesize (a newly added __NR_* name for an
old syscall on ia64). (Because 5.0 changes how syscall tables are
handled in the kernel, checking diffs wasn't a useful way of looking
for new syscalls in 5.0 as most of the syscall tables were moved to
the new representation without actually adding any syscalls to them.)
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 5.0.
(old_getpagesize): New syscall.
The stub implementations are turned into compat symbols.
Linux actually has two reserved system call numbers (for getpmsg
and putpmsg), but these system calls have never been implemented,
and there are no plans to implement them, so this patch replaces
the wrappers with the generic stubs.
According to <https://bugzilla.redhat.com/show_bug.cgi?id=436349>,
the presence of the XSI STREAMS declarations is a minor portability
hazard because they are not actually implemented.
This commit does not change the TIRPC support code in
sunrpc/rpc_svcout.c. It uses additional XTI functionality and
therefore never worked with glibc.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Starting with commit 1616d034b6
the output was corrupted on some platforms as _dl_procinfo
was called for every auxv entry and on some architectures like s390
all entries were represented as "AT_HWCAP".
This patch is removing the condition and let _dl_procinfo decide if
an entry is printed in a platform specific or generic way.
This patch also adjusts all _dl_procinfo implementations which assumed
that they are only called for AT_HWCAP or AT_HWCAP2. They are now just
returning a non-zero-value for entries which are not handled platform
specifc.
ChangeLog:
* elf/dl-sysdep.c (_dl_show_auxv): Remove condition and always
call _dl_procinfo.
* sysdeps/unix/sysv/linux/s390/dl-procinfo.h (_dl_procinfo):
Ignore types other than AT_HWCAP.
* sysdeps/sparc/dl-procinfo.h (_dl_procinfo): Likewise.
* sysdeps/unix/sysv/linux/i386/dl-procinfo.h (_dl_procinfo):
Likewise.
* sysdeps/powerpc/dl-procinfo.h (_dl_procinfo): Adjust comment
in the case of falling back to generic output mechanism.
* sysdeps/unix/sysv/linux/arm/dl-procinfo.h (_dl_procinfo):
Likewise.
Mark the lr register as undefined at the start of execution, so unwind
will stop at this frame. run-backtrace-*.sh from elfutils testsuite will
fail without this patch.
* sysdeps/csky/abiv2/start.S: Mark lr as undefined.
* sysdeps/unix/sysv/linux/csky/abiv2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/csky/abiv2/setcontext.S: Likewise.
C-SKY GDB dose not use this file for ptrace and coredump. ptrace can use
pt_regs definition from linux kernel directly. The old definition only
got 34 regs instead of 38 regs from linux kernel, which will corrupted
the memory after ptrace PTRACE_GETREGSET call.
* sysdeps/unix/sysv/linux/csky/sys/procfs.h: Use linux definition
directly.
* sysdeps/unix/sysv/linux/csky/sys/user.h: Remove user_regs
definition.
C-SKY defines SIGCONTEXT as siginfo_t *_si, struct ucontext_t * for
__profil_counter. ucontext_t get an extra __mask field which is miss
match with the struct sigcontext from linux kernel. The time value
from gprof report will be always zero without this patch. This
patch also fix the registers sequence in register-dump.h.
* sysdeps/unix/sysv/linux/csky/register-dump.h: Adjust offset change.
* sysdeps/unix/sysv/linux/csky/sys/ucontext.h: Remove __mask field
in mcontext_t
This patch fixes further coding style issues where code should have
broken lines before operators in accordance with the GNU Coding
Standards but instead was breaking lines after them.
Tested for x86_64, and with build-many-glibcs.py.
* stdio-common/vfscanf-internal.c (ARG): Break lines before rather
than after operators.
* sysdeps/mach/hurd/setitimer.c (timer_thread): Likewise.
(setitimer_locked): Likewise.
* sysdeps/mach/hurd/sigaction.c (__sigaction): Likewise.
* sysdeps/mach/hurd/sigaltstack.c (__sigaltstack): Likewise.
* sysdeps/mach/pagecopy.h (PAGE_COPY_FWD): Likewise.
* sysdeps/mach/thread_state.h (machine_get_basic_state): Likewise.
* sysdeps/powerpc/powerpc64/tst-ucontext-ppc64-vscr.c
(PPC_CPU_SUPPORTED): Likewise.
* sysdeps/unix/sysv/linux/alpha/a.out.h (N_TXTOFF): Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/overflow.h
(stat_overflow): Likewise.
(statfs_overflow): Likewise.
* sysdeps/unix/sysv/linux/tst-personality.c (do_test): Likewise.
* sysdeps/unix/sysv/linux/tst-ttyname.c (eq_ttyname): Likewise.
(eq_ttyname_r): Likewise.
(run_chroot_tests): Likewise.
This patch assumes realtime clock support for nptl and thus removes
all the associated code.
For __pthread_mutex_timedlock the fallback usage for the case where
lll_futex_timed_wait_bitset it not set define is also removed. The
generic lowlevellock-futex.h always define it, so for NPTL code the
check always yield true.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* nptl/nptl-init.c (__have_futex_clock_realtime,
__have_futex_clock_realtime): Remove definition.
(__pthread_initialize_minimal_internal): Remove FUTEX_CLOCK_REALTIME
check test for !__ASSUME_FUTEX_CLOCK_REALTIME.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock): Assume
__ASSUME_FUTEX_CLOCK_REALTIME support.
* sysdeps/unix/sysv/linux/i386/lowlevellock.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.S: Likewise.
* sysdeps/unix/sysv/linux/kernel-features.h
(__ASSUME_FUTEX_CLOCK_REALTIME): Remove.
* sysdeps/nptl/lowlevellock-futex.h (lll_futex_timed_wait_bitset):
Adjust comment.
On platforms where long double may have the same format as double
(-mlong-double-64), error and error_at_line do not take that into
account and might produce wrong output if a long double conversion is
requested by the format string ('%Lf'). This patch adds compatibility
functions for this situation and redirects calls via header magic.
Tested for powerpc, powerpc64 and powerpc64le.
When support for long double format with 128-bits (-mlong-double-128)
was added for platforms where long double had the same format as double,
such as powerpc, compatibility versions for the functions listed in the
commit title were missed. Since the older format of long double can
still be used (with -mlong-double-64), using these functions with a
format string that requests the printing of long double variables will
produce wrong outputs.
This patch adds the missing compatibility functions and header magic to
redirect calls to them when -mlong-double-64 is in use.
Tested for powerpc, powerpc64 and powerpc64le.
The functions argp_error and argp_failure are missing support for
printing long double values when long double has the same format as
double. This patch adds the new functions __nldbl_argp_error and
__nldbl_argp_failure, as well as header magic to redirect calls to them
when -mlong-double-64 is in use.
Tested for powerpc, powerpc64 and powerpc64le.
This patch fixes more places where a space should have been present
before '(' in accordance with the GNU Coding Standards (as with the
previous patch, mainly for calls to sizeof).
Tested with build-many-glibcs.py.
* sysdeps/powerpc/powerpc32/dl-machine.c
(__elf_machine_fixup_plt): Use space before '('.
(__process_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/register-dump.h (register_dump):
Likewise.
* sysdeps/powerpc/powerpc64/le/fpu/sfp-machine.h (TI_BITS):
Likewise.
* sysdeps/powerpc/powerpc64/register-dump.h (register_dump):
Likewise.
* sysdeps/powerpc/test-arith.c (union_t): Likewise.
(pattern): Likewise.
(delta): Likewise.
(check_result): Likewise.
(check_excepts): Likewise.
(check_op): Likewise.
(fail_xr): Likewise.
* sysdeps/unix/alpha/sysdep.h (syscall_promote): Likewise.
* sysdeps/unix/sysv/linux/alpha/a.out.h (AOUTHSZ): Likewise.
(SCNHSZ): Likewise.
* sysdeps/unix/sysv/linux/hppa/makecontext.c (FRAME_SIZE_BYTES):
Likewise.
(ARGS): Likewise.
(__makecontext): Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h (ucontext_t):
Likewise.
From time to time the test misc/tst-clone3 fails with a timeout.
Then futex_wait is blocking. Usually ctid should be set to zero
due to CLONE_CHILD_CLEARTID and the futex should be waken up.
But the fail occures if the thread has already exited before
ctid is set to the return value of clone(). Then futex_wait() will
block as there will be nobody who wakes the futex up again.
This patch initializes ctid to a known value before calling clone
and the kernel is the only one who updates the value to zero after clone.
If futex_wait is called then it is either waked up due to the exited thread
or the futex syscall fails as *ctid_ptr is already zero instead of the
specified value 1.
ChangeLog:
* sysdeps/unix/sysv/linux/tst-clone3.c (do_test):
Initialize ctid with a known value and remove update of ctid
after clone.
(wait_tid): Adjust arguments and call futex_wait with ctid_val
as assumed current value of ctid_ptr.
With internal fcntl64 internal (commit 06ab719d), it is possible to
consolidate lockf implementation by using the LFS fcntl interface
instead of using arch and system-specific implementations.
For Linux, the i386 implementation is used as generic implementation
by replacing the direct syscall with fcntl64 call. The LFS symbol
alias for default LFS ABI (__OFF_T_MATCHES_OFF64_T) is used to avoid
the duplicate symbol (instead of overriding the implementation with an
empty file).
For Hurd lockf64 semantic is changed: previous generic lockf64
implementation returned EOVERFLOW if LEN input is larger than 32-bit
off_t. However, Hurd fcntl64 implementation for F_GETLK64, F_SETLK64,
and F_SETLKW64 do accept off64_t inputs (__f_setlk accepts only off64_t
inputs).
Checked on i686-linux-gnu and x86_64-linux-gnu along with a i686-gnu
build.
* io/Makefile (tests): Add tst-lockf.
* io/lockf.c (lockf): Use __fcntl and only define for
!__OFF_T_MATCHES_OFF64_T.
* io/lockf64.c (__lockf64): Call __fcntl64 and alias to lockf for
__OFF_T_MATCHES_OFF64_T case.
* io/tst-lockf.c: New file.
* sysdeps/unix/sysv/linux/i386/lockf64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/sh/lockf64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/lockf64.c: Likewise.
Patch ce7eb0e903 ("nptl: Cleanup cancellation macros") changed the
join sequence for internal common __pthread_timedjoin_ex to use the
new macro lll_wait_tid. The idea was this macro would issue the
cancellable futex operation depending whether the timeout is used or
not. However if a timeout is used, __lll_timedwait_tid is called and
it is not a cancellable entrypoint.
This patch fixes it by simplifying the code in various ways:
- Instead of adding the cancellation handling on __lll_timedwait_tid,
it moves the generic implementation to pthread_join_common.c (called
now timedwait_tid with some fixes to use the correct type for pid).
- The llvm_wait_tid macro is removed, along with its replication on
x86_64, i686, and sparc arch-specific lowlevellock.h.
- sparc32 __lll_timedwait_tid is also removed, since the code is similar
to generic one.
- x86_64 and i386 provides arch-specific __lll_timedwait_tid which is
also removed since they are similar in functionality to generic C code
and there is no indication it is better than compiler generated code.
New tests, tst-join8 and tst-join9, are provided to check if
pthread_timedjoin_np acts as a cancellation point.
Checked on x86_64-linux-gnu, i686-linux-gnu, sparcv9-linux-gnu, and
aarch64-linux-gnu.
[BZ #24215]
* nptl/Makefile (lpthread-routines): Remove lll_timedwait_tid.
(tests): Add tst-join8 tst-join9.
* nptl/lll_timedwait_tid.c: Remove file.
* sysdeps/sparc/sparc32/lll_timedwait_tid.c: Likewise.
* sysdeps/unix/sysv/linux/i386/lll_timedwait_tid.c: Likewise.
* sysdeps/sysv/linux/x86_64/lll_timedwait_tid.c: Likewise.
* nptl/pthread_join_common.c (timedwait_tid): New function.
(__pthread_timedjoin_ex): Act as cancellation entrypoint is block
is set.
* nptl/tst-join5.c (thread_join): New function.
(tf1, tf2, do_test): Use libsupport and add pthread_timedjoin_np
check.
* nptl/tst-join8.c: New file.
* nptl/tst-join9.c: Likewise.
* sysdeps/nptl/lowlevellock-futex.h (lll_futex_wait_cancel,
lll_futex_timed_wait_cancel): Add generic macros.
* sysdeps/nptl/lowlevellock.h (__lll_timedwait_tid, lll_wait_tid):
Remove definitions.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h: Likewise.
* sysdeps/sparc/sparc32/lowlevellock.c (__lll_timedwait_tid):
Remove function.
* sysdeps/unix/sysv/linux/i386/lowlevellock.S (__lll_timedwait_tid):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.S: Likewise.
* sysdeps/unix/sysv/linux/lowlevellock-futex.h
(lll_futex_timed_wait_cancel): New macro.
The clone.S patch fixes 2 elfutils testsuite unwind failures, where the
backtrace gets stuck repeating __thread_start until we hit the backtrace
limit. This was confirmed by building and installing a patched glibc and
then building elfutils and running its testsuite.
Unfortunately, the testcase isn't working as expected and I don't know why.
The testcase passes even when my clone.S patch is not installed. The testcase
looks logically similarly to the elfutils testcases that are failing. Maybe
there is a subtle difference in how the glibc unwinding works versus the
elfutils unwinding? I don't have good gdb pthread support yet, so I haven't
found a way to debug this. Anyways, I don't know if the testcase is useful or
not. If the testcase isn't useful then maybe the clone.S patch is OK without
a testcase?
Jim
[BZ #24040]
* elf/Makefile (CFLAGS-tst-unwind-main.c): Add -DUSE_PTHREADS=0.
* elf/tst-unwind-main.c: If USE_PTHEADS, include pthread.h and error.h
(func): New.
(main): If USE_PTHREADS, call pthread_create to run func. Otherwise
call func directly.
* nptl/Makefile (tests): Add tst-unwind-thread.
(CFLAGS-tst-unwind-thread.c): Define.
* nptl/tst-unwind-thread.c: New file.
* sysdeps/unix/sysv/linux/riscv/clone.S (__thread_start): Mark ra
as undefined.
This commit adds gettid to <unistd.h> on Linux, and not to the
kernel-independent GNU API.
gettid is now supportable on Linux because too many things assume a
1:1 mapping between libpthread threads and kernel threads.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
One group of warnings seen with -Wextra is warnings for static or
inline not at the start of a declaration (-Wold-style-declaration).
This patch fixes various such cases for inline, ensuring it comes at
the start of the declaration (after any static). A common case of the
fix is "static inline <type> __always_inline"; the definition of
__always_inline starts with __inline, so the natural change is to
"static __always_inline <type>". Other cases of the warning may be
harder to fix (one pattern is a function definition that gets
rewritten to be static by an including file, "#define funcname static
wrapped_funcname" or similar), but it seems worth fixing these cases
with inline anyway.
Tested for x86_64.
* elf/dl-load.h (_dl_postprocess_loadcmd): Use __always_inline
before return type, without separate inline.
* elf/dl-tunables.c (maybe_enable_malloc_check): Likewise.
* elf/dl-tunables.h (tunable_is_name): Likewise.
* malloc/malloc.c (do_set_trim_threshold): Likewise.
(do_set_top_pad): Likewise.
(do_set_mmap_threshold): Likewise.
(do_set_mmaps_max): Likewise.
(do_set_mallopt_check): Likewise.
(do_set_perturb_byte): Likewise.
(do_set_arena_test): Likewise.
(do_set_arena_max): Likewise.
(do_set_tcache_max): Likewise.
(do_set_tcache_count): Likewise.
(do_set_tcache_unsorted_limit): Likewise.
* nis/nis_subr.c (count_dots): Likewise.
* nptl/allocatestack.c (advise_stack_range): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Likewise.
(do_sin): Likewise.
(reduce_sincos): Likewise.
(do_sincos): Likewise.
* sysdeps/unix/sysv/linux/x86/elision-conf.c
(do_set_elision_enable): Likewise.
(TUNABLE_CALLBACK_FNDECL): Likewise.
In the i386 case, it appears that the sole remaining LIBC_PROBE was
removed in commit a9fe4c5aa8 ("Support
six-argument syscalls from C for 32-bit x86, use generic
lowlevellock-futex.h (bug 18138)."), when
sysdeps/unix/sysv/linux/i386/lowlevellock-futex.h was replaced with
the generic version.
For x86_64, the relevant change is commit
76f71081cd ("Use generic
lowlevellock-futex.h in x86_64 lowlevellock.h."), again by using the
generic version of <lowlevellock-futex.h>.
Tested on i386 and x86_64, with and without --enable-systemtap.
On Linux, we define _POSIX_PRIORITY_SCHEDULING, but functions such
as sched_setparam and sched_setscheduler apply to individual threads,
not processes.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Clock_gettime, settime and getres implementations are unncessarily
complex due to using defines and C file inclusion. Simplify the
code by replacing the redundant defines and removing the inclusion,
making it much easier to understand. No functional changes.
* sysdeps/posix/clock_getres.c (__clock_getres): Cleanup.
* sysdeps/unix/clock_gettime.c (__clock_gettime): Cleanup.
* sysdeps/unix/clock_settime.c (__clock_settime): Cleanup.
* sysdeps/unix/sysv/linux/clock_getres.c (__clock_getres): Cleanup.
* sysdeps/unix/sysv/linux/clock_gettime.c (__clock_gettime): Cleanup.
* sysdeps/unix/sysv/linux/clock_settime.c (__clock_settime): Cleanup.
Emag is a 64-bit CPU core released by AmpereComputing.
Add its name to cpu list, and corresponding macro as utilities for
later IFUNC dispatch.
* manual/tunables.texi (Tunable glibc.cpu.name): Add emag.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add emag.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_EMAG):
New macro.
This patch fix VSCR position on ucontext. VSCR was read in the wrong
position on ucontext structure because it was ignoring the machine
endianess.
[BZ #24088]
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h (vscr_t): Added
ifdef to fix read of VSCR.
* sysdeps/powerpc/powerpc64/Makefile [$subdir == stdlib]: Add
tst-ucontext-ppc64-vscr.c to test list.
* sysdeps/powerpc/powerpc64/tst-ucontext-ppc64-vscr.c: New test file.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Add Ares to the midr_el0 list and support ifunc dispatch. Since Ares
supports 2 128-bit loads/stores, use Neon registers for memcpy by
selecting __memcpy_falkor by default (we should rename this to
__memcpy_simd or similar).
* manual/tunables.texi (glibc.cpu.name): Add ares tunable.
* sysdeps/aarch64/multiarch/memcpy.c (__libc_memcpy): Use
__memcpy_falkor for ares.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_ARES):
Add new define.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add ares cpu.
An attempt to re-create a different PTY under the same name can fail
if the PTY has a very high number. Try to increase the file
descriptor limit in this case, and bail out if this still does not
allow the test to proceed.
This patch wraps all uses of *_{enable,disable}_asynccancel and
and *_CANCEL_{ASYNC,RESET} in either already provided macros
(lll_futex_timed_wait_cancel) or creates new ones if the
functionality is not provided (SYSCALL_CANCEL_NCS, lll_futex_wait_cancel,
and lll_futex_timed_wait_cancel).
Also for some generic implementations, the direct call of the macros
are removed since the underlying symbols are suppose to provide
cancellation support.
This is a priliminary patch intended to simplify the work required
for BZ#12683 fix. It is a refactor change, no semantic changes are
expected.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* nptl/pthread_join_common.c (__pthread_timedjoin_ex): Use
lll_wait_tid with timeout.
* nptl/sem_wait.c (__old_sem_wait): Use lll_futex_wait_cancel.
* sysdeps/nptl/aio_misc.h (AIO_MISC_WAIT): Use
futex_reltimed_wait_cancelable for cancelabla mode.
* sysdeps/nptl/gai_misc.h (GAI_MISC_WAIT): Likewise.
* sysdeps/posix/open64.c (__libc_open64): Do not call cancelation
macros.
* sysdeps/posix/sigwait.c (__sigwait): Likewise.
* sysdeps/posix/waitid.c (__sigwait): Likewise.
* sysdeps/unix/sysdep.h (__SYSCALL_CANCEL_CALL,
SYSCALL_CANCEL_NCS): New macro.
* sysdeps/nptl/lowlevellock.h (lll_wait_tid): Add timeout argument.
(lll_timedwait_tid): Remove macro.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h (lll_wait_tid):
Likewise.
(lll_timedwait_tid): Likewise.
* sysdeps/unix/sysv/linux/sparc/lowlevellock.h (lll_wait_tid):
Likewise.
(lll_timedwait_tid): Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h (lll_wait_tid):
Likewise.
(lll_timedwait_tid): Likewise.
* sysdeps/unix/sysv/linux/clock_nanosleep.c (__clock_nanosleep):
Use INTERNAL_SYSCALL_CANCEL.
* sysdeps/unix/sysv/linux/futex-internal.h
(futex_reltimed_wait_cancelable): Use LIBC_CANCEL_{ASYNC,RESET}
instead of __pthread_{enable,disable}_asynccancel.
* sysdeps/unix/sysv/linux/lowlevellock-futex.h
(lll_futex_wait_cancel): New macro.
bits/hwcap.h should be updated together with dl-procinfo.c.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h: Add comment.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Update.
Austin Group issue #411 [1] proposes that posix_spawn file action
posix_spawn_file_actions_adddup2 resets the close-on-exec when
source and destination refer to same file descriptor.
It solves the issue on multi-thread applications which uses
close-on-exec as default, and want to hand-chose specifically
file descriptor to purposefully inherited into a child process.
Current approach to achieve this scenario is to use two adddup2 file
actions and a temporary file description which do not conflict with
any other, coupled with a close file action to avoid leaking the
temporary file descriptor. This approach, besides being complex,
may fail with EMFILE/ENFILE file descriptor exaustion.
This can be more easily accomplished with an in-place removal of
FD_CLOEXEC. Although the resulting adddup2 semantic is slight
different than dup2 (equal file descriptors should be handled as
no-op), the proposed possible solution are either more complex
(fcntl action which a limited set of operations) or results in
unrequired operations (dup3 which also returns EINVAL for same
file descriptor).
Checked on aarch64-linux-gnu.
[BZ #23640]
* posix/tst-spawn.c (do_prepare, handle_restart, do_test): Add
posix_spawn_file_actions_adddup2 test to check O_CLOCEXEC reset.
* sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Add
close-on-exec reset for adddup2 file action.
* sysdeps/posix/spawni.c (__spawni_child): Likewise.
[1] http://austingroupbugs.net/view.php?id=411
This patch consolidates the Linux termios.h by removing the arch-specific
one.
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/termios-misc.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Remove file.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios-misc.h: New file.
* sysdeps/unix/sysv/linux/bits/termios.h: Include termios-misc.h.
It is used only on hurd.
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/bits/termios.h (_IOT_termios): Remove.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants for use with tcflow
in its own header. The Linux generic implementation values match the
kernel UAPI and each architecture with deviate values have their own
implementation (currently only mips).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-tcflow.h.
* sysdeps/unix/sysv/linux/bits/termios-tcflow.h: New file.
* sysdeps/unix/sysv/linux/mips/bits/termios-tcflow.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (TCSANOW, TCSADRAIN,
TCSAFLUSH): Move to termios-tcflow.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for local
mode with c_lflag member on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha, mips, and powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-c_lflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_lflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_lflag.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios-c_lflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_lflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (ISIG, ISCANON, ECHO, ECHOE,
ECHOK, ECHONL, NOFLSH, TOSTOP, IEXTEN): Move to termios-c_lflag.h.
[__USE_MISC || (__USE_XOPEN && !__USE_XOPEN2K)] (XCASE): Likewise.
[__USE_MISC] (ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, PENDIN, EXTPROC):
Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for output
mode with c_cflag memver on its own header. The Linux generic
implementation values match the kernel UAPI and each architecture with
deviate values have their own implementation (in this case alpha and
powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-c_cflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_cflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_cflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_cflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (CSIZE, CS5, CS6, CS7, CS8,
CSTOPB, CREAD, PARENB, PARODD, HUPCL, CLOCAL): Move to
termios-c_cflag.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for baud rates
selection used along with speed_t on its own header. The Linux generic
implementation values match the kernel UAPI and each architecture with
deviate values have their own implementation (in this case alpha and
powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
[BZ #23783]
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-baud.h.
* sysdeps/unix/sysv/linux/bits/termios-baud.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-baud.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-baud.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-baud.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h (B57600, B115200,
B230400, B460800, B500000, B576000, B921600, B1000000, B1152000,
B1500000, B2000000, B2500000, B3000000, B3500000, B4000000,
__MAX_BAUD): Move to termios-baud.h.
[__USE_MISC] (CBAUD, CBAUDEX): Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for ouput
modes with c_oflag member on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha, powerpc, and sparc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_routines): Add
termios-c_oflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_oflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_oflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_oflag.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-c_oflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (OPOST, OLCUC, ONLCR, OCRNL,
ONOCR, ONLRET, OFILL, OFDEL, VTDLY, VT0, VT1): Move to
termios-c_oflag.h.
[__USE_MISC || __USE_XOPEN] (NLDLY, NL0, NL1, CRDLY, CR0, CR1, CR2,
CR3, TABDLY, TAB0, TAB1, TAB2, TAB3, BSDLY, BS0, BS1, FFDLY, FF0,
FFR1): Likewise.
[USE_MISC] (XTABS): Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h Likewise.
This patch consolidates the termios symbolic constants used for input
modes with c_iflag member on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha and powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_headers): Add
termios-c_iflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_iflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_iflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_iflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (IGNBRK, BRKINT, IGNPAR, PARMRK,
INPCK, ISTRIP, INLCR, IGNCR, ICRNL, IXON, IXOFF, IXANY, IUCLC, IMAXBEL,
IUTF8): Move to termios-c_iflag.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used as subscript
for the array c_cc on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha, mips64, sparc64, and
powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_headers): Add
termios-cc.h.
* sysdeps/unix/sysv/linux/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_cc.h: New file.
* sysdeps/unix/sysv/linux/mips/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (VINTR, VQUIT, VERASE,
VKILL, VEOF, VTIME, VMIN, VSWTC, VSTART, VSTOP, VSUSP, VEOL,
VREPRINT, VDISCARD, VWERASE, VLNEXT, VEOLF2): Move to termios-cc.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the struct termios definition on its own header
and adds arch-defined ones for ABIs that deviate from generic
implementation. They are:
- alpha which has a slight different layout than generic one (c_cc
field is defined prior c_line).
- sparc and mips which do not have the c_ispeed/c_ospeed fields.
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/bits/termios-struct.h: New file.
* sysdeps/unix/sysv/linux/bits/termios-struct.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios-struct.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-struct.h: Likewise.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-struct.h.
* sysdeps/unix/sysv/linux/bits/termios.h (struct termios): Move to
termios-struct.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/kernel_termios.h (_HAVE_C_ISPEED,
_HAVE_C_OSPEED): Define.
* sysdeps/unix/sysv/linux/mips/kernel_termios.h (_HAVE_C_ISPEED,
_HAVE_C_OSPEED): Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel_termios.h (_HAVE_C_ISPEED,
_HAVE_C_OSPEED): Likewise.
* sysdeps/unix/sysv/linux/speed.c [_HAVE_STRUCT_TERMIOS_C_OSPEED]
(cfsetospeed): Check for define value instead of existence.
[_HAVE_STRUCT_TERMIOS_C_ISPEED] (cfsetispeed): Likewise.
* sysdeps/unix/sysv/linux/tcgetattr.c [_HAVE_STRUCT_TERMIOS_C_ISPEED
&& _HAVE_C_ISPEED] (__tcgetattr): Likewise.
* sysdeps/unix/sysv/linux/tcsetattr.c [_HAVE_STRUCT_TERMIOS_C_ISPEED
&& _HAVE_C_ISPEED] (__tcsetattr): Likewise.
This patch defines TIOCSER_TEMT on all architectures using the __USE_MISC
guards similar to BZ#17782 fix. Latest Linux UAPI defines TIOCSER_TEMT
with the same value for all architectures, so it is safe to use the value
as default for all ABIs.
Checked on x86_64linux-gnu and build against sparc64-linux-gnu and
powerpc64le-linux-gnu.
[BZ #17783]
* sysdeps/unix/sysv/linux/bits/termios.h [__USE_MISC] (TIOCSER_TEMT):
Define.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h [__USE_MISC]
(TIOCSER_TEMT): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h [__USE_MISC]
(TEOCSER_TEMT): Likewise.
This patch updates the Linux kernel version in tst-mman-consts.py to
4.20 (meaning that's the version for which glibc is expected to have
the same constants as the kernel, up to the exceptions listed in the
test). (Once we have more such tests sharing common infrastructure, I
expect the kernel version will be something set in the infrastructure
shared by all such tests, rather than something needing updating
separately for each test for each new kernel version.)
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/tst-mman-consts.py (main): Expect
constants to match with Linux 4.20.
The pre-ARMv7 CPUs are missing atomic compare and exchange and/or
barrier instructions. Therefore those are implemented using kernel
assistance, calling a kernel function at a specific address, and passing
the arguments in the r0 to r4 registers. This is done by specifying
registers for local variables. The a_ptr variable is placed in the r2
register and declared with __typeof (mem). According to the GCC
documentation on local register variables, if mem is a constant pointer,
the compiler may substitute the variable with its initializer in asm
statements, which may cause the corresponding operand to appear in a
different register.
This happens in __libc_start_main with the pointer to the thread counter
for static binaries (but not the shared ones):
# ifdef SHARED
unsigned int *ptr = __libc_pthread_functions.ptr_nthreads;
# ifdef PTR_DEMANGLE
PTR_DEMANGLE (ptr);
# endif
# else
extern unsigned int __nptl_nthreads __attribute ((weak));
unsigned int *const ptr = &__nptl_nthreads;
# endif
This causes static binaries using threads to crash when the GNU libc is
built with GCC 8 and most notably tst-cancel21-static.
To fix that, use the same trick than for the volatile qualifier,
defining a_ptr as a union.
Changelog:
[BZ #24034]
* sysdeps/unix/sysv/linux/arm/atomic-machine.h
(__arm_assisted_compare_and_exchange_val_32_acq): Use uint32_t rather
than __typeof (...) for the a_ptr variable.
This patch adds the IPV6_MULTICAST_ALL constant from Linux 4.20 to
bits/in.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/in.h (IPV6_MULTICAST_ALL): New
macro.
This patch adds the PACKET_IGNORE_OUTGOING constant from Linux 4.20 to
netpacket/packet.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/netpacket/packet.h
(PACKET_IGNORE_OUTGOING): New macro.
This patch adds the HWCAP_SSBS constant from Linux 4.20 to the AArch64
bits/hwcap.h.
Tested with build-many-glibcs.py for aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_SSBS): New
macro.
This patch updates sysdeps/unix/sysv/linux/syscall-names.list for
Linux 4.20. Although there are no new syscalls, the
riscv_flush_icache syscall has moved to asm/unistd.h (previously in
asm/syscalls.h) and so now needs to be added to the list.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.20.
(riscv_flush_icache): New syscall.
<asm/syscalls.h> has been removed by
commit 27f8899d6002e11a6e2d995e29b8deab5aa9cc25
Author: David Abdurachmanov <david.abdurachmanov@gmail.com>
Date: Thu Nov 8 20:02:39 2018 +0100
riscv: add asm/unistd.h UAPI header
Marcin Juszkiewicz reported issues while generating syscall table for riscv
using 4.20-rc1. The patch refactors our unistd.h files to match some other
architectures.
- Add asm/unistd.h UAPI header, which has __ARCH_WANT_NEW_STAT only for 64-bit
- Remove asm/syscalls.h UAPI header and merge to asm/unistd.h
- Adjust kernel asm/unistd.h
So now asm/unistd.h UAPI header should show all syscalls for riscv.
<asm/syscalls.h> may be restored by
Subject: [PATCH] riscv: restore asm/syscalls.h UAPI header
Date: Tue, 11 Dec 2018 09:09:35 +0100
UAPI header asm/syscalls.h was merged into UAPI asm/unistd.h header,
which did resolve issue with missing syscalls macros resulting in
glibc (2.28) build failure. It also broke glibc in a different way:
asm/syscalls.h is being used by glibc. I noticed this while doing
Fedora 30/Rawhide mass rebuild.
The patch returns asm/syscalls.h header and incl. it into asm/unistd.h.
I plan to send a patch to glibc to use asm/unistd.h instead of
asm/syscalls.h
In the meantime, we use __has_include__, which was added to GCC 5, to
check if <asm/syscalls.h> exists before including it. Tested with
build-many-glibcs.py for riscv against kernel 4.19.12 and 4.20-rc7.
[BZ #24022]
* sysdeps/unix/sysv/linux/riscv/flush-icache.c: Check if
<asm/syscalls.h> exists with __has_include__ before including it.
The recent difftime changes introduced localplt test failures on nios2
and sparc32, two configurations where some soft-fp functions are
defined in / exported from libc.so, and where the difftime changes
affected the particular set of floating-point operations used in
libc.so. This patch adds those functions to localplt.data, alongside
other such functions already there. (In the sparc32 case, and more
generally on any platform where long double is a software
floating-point type, it would probably be more efficient to avoid
using long double at all in difftime, but that's a pre-existing
issue.)
Tested with build-many-glibcs.py for its nios2 and sparcv9
configurations.
[BZ #24023]
* sysdeps/unix/sysv/linux/nios2/localplt.data: Allow __floatundidf
PLT reference in libc.so.
* sysdeps/unix/sysv/linux/sparc/sparc32/localplt.data: Allow
_Q_lltoq and _Q_qtod PLT references in libc.so.
S390 kernel sigaction is the same as the Linux generic one.
Checked with a s390-linux-gnu and s390x-linux-gnu build.
* sysdeps/unix/sysv/linux/s390/kernel_sigaction.h: Use Linux generic
kernel_sigction definition.
IA64 kernel_sigaction.h definition is the sama as the Linux generic
one.
Checked on ia64-linux-gnu.
* sysdeps/unix/sysv/linux/ia64/kernel_sigaction.h: Remove file.
HPPA kernel_sigaction.h definition is the sama as the Linux generic
one and old_kernel_sigaction is not used.
Checked on hppa-linux-gnu.
* sysdeps/unix/sysv/linux/hppa/kernel_sigaction.h: Remove file.
Alpha rt_sigaction syscall uses a slight different kernel ABI than
generic one:
arch/alpha/kernel/signal.c
90 SYSCALL_DEFINE5(rt_sigaction, int, sig, const struct sigaction __user *, act,
91 struct sigaction __user *, oact,
92 size_t, sigsetsize, void __user *, restorer)
Similar as sparc, the syscall expects a restorer function. However
different than sparc, alpha defines the restorer as the 5th argument
(sparc defines as the 4th).
This patch removes the arch-specific alpha sigaction implementation,
adapt the Linux generic one to different restore placements (through
STUB macro), and make alpha use the Linux generic kernel_sigaction
definition.
Checked on alpha-linux-gnu and x86_64-linux-gnu (for sanity).
* sysdeps/unix/sysv/linux/alpha/Makefile: Update comment about
__syscall_rt_sigaction.
* sysdeps/unix/sysv/linux/alpha/kernel_sigaction.h
(kernel_sigaction): Use Linux generic defintion.
(STUB): Define.
(__syscall_rt_sigreturn, __syscall_sigreturn): Add prototype.
* sysdeps/unix/sysv/linux/alpha/rt_sigaction.S
(__syscall_rt_sigaction): Remove implementation.
(__syscall_sigreturn, __syscall_rt_sigreturn): Define as global and
hidden.
* sysdeps/unix/sysv/linux/alpha/sigaction.c: Remove file.
* sysdeps/unix/sysv/linux/alpha/sysdep.h (INLINE_SYSCALL,
INTERNAL_SYSCALL): Remove definitions.
* sysdeps/unix/sysv/linux/sigaction.c: Define STUB to accept both the
action and signal set size.
* sysdeps/unix/sysv/linux/sparc/sparc32/sigaction.c (STUB): Redefine.
* sysdeps/unix/sysv/linux/sparc/sparc64/sigaction.c (STUB): Likewise.
Commit b4a5d26d88 (linux: Consolidate sigaction implementation) added
a wrong kernel_sigaction definition for m68k, meant for __NR_sigaction
instead of __NR_rt_sigaction as used on generic Linux sigaction
implementation. This patch fixes it by using the Linux generic
definition meant for the RT kernel ABI.
Checked the signal tests on emulated m68-linux-gnu (Aranym). It fixes
the faulty signal/tst-sigaction and man works as expected.
Adhemerval Zanella <adhemerval.zanella@linaro.org>
James Clarke <jrtc27@jrtc27.com>
[BZ #23960]
* sysdeps/unix/sysv/linux/kernel_sigaction.h (HAS_SA_RESTORER):
Define if SA_RESTORER is defined.
(kernel_sigaction): Define sa_restorer if HAS_SA_RESTORER is defined.
(SET_SA_RESTORER, RESET_SA_RESTORER): Define iff the macro are not
already defined.
* sysdeps/unix/sysv/linux/m68k/kernel_sigaction.h (SA_RESTORER,
kernel_sigaction, SET_SA_RESTORER, RESET_SA_RESTORER): Remove
definitions.
(HAS_SA_RESTORER): Define.
* sysdeps/unix/sysv/linux/sparc/kernel_sigaction.h (SA_RESTORER,
SET_SA_RESTORER, RESET_SA_RESTORER): Remove definition.
(HAS_SA_RESTORER): Define.
* sysdeps/unix/sysv/linux/nios2/kernel_sigaction.h: Include generic
kernel_sigaction after define SET_SA_RESTORER and RESET_SA_RESTORER.
* sysdeps/unix/sysv/linux/powerpc/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigaction.c: Likewise.
kernel-features.h has a macro __ASSUME_ST_INO_64_BIT, with a comment
"However, SH is lame, and still does not have a 64-bit inode field.".
The macro is, in fact, defined to 0 by Alpha as well as SH. The Alpha
case is, however, trivially useless: none of the files that test
__ASSUME_ST_INO_64_BIT are built for Alpha (which gained kernel
support for stat64 syscalls, with a 64-bit st_ino field, in Linux
2.6.4; the define to 0 for Alpha in glibc predates that).
The SH kernel gained support for a 64-bit st_ino in struct stat64 in
commit 760bcb1deec13c50e20399c84cb6a8ea41cc2820 ("sh: Fix fstatat64()
syscall."), which is in Linux 2.6.22 and later. So the redefinition
of __ASSUME_ST_INO_64_BIT to 0 is of no use for SH either; three of
the files testing it do so immediately after a stat64-family syscall
has been used, which will always have set the 64-bit st_ino correctly
(in addition to the 32-bit __st_ino), while the relevant code
__xstat32_conv executes only after such a syscall in the function
calling __xstat32_conv.
Thus this patch removes __ASSUME_ST_INO_64_BIT and code testing it.
Removing the useless [!__ASSUME_ST_INO_64_BIT] code in __xstat32_conv
renders the [_HAVE_STAT64___ST_INO] and [!_HAVE_STAT64___ST_INO] cases
around it identical, so that conditional is also removed.
Tested compilation with build-many-glibcs.py for its Alpha and SH
configurations; also ran the glibc testsuite for x86_64 and x86.
* sysdeps/unix/sysv/linux/kernel-features.h
(__ASSUME_ST_INO_64_BIT): Remove macro definition.
* sysdeps/unix/sysv/linux/alpha/kernel-features.h
(__ASSUME_ST_INO_64_BIT): Do not undefine and define.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
(__ASSUME_ST_INO_64_BIT): Likewise.
* sysdeps/unix/sysv/linux/fxstat64.c: Do not include
<kernel-features.h>.
(___fxstat64) [_HAVE_STAT64___ST_INO && !__ASSUME_ST_INO_64_BIT]:
Remove conditional code.
* sysdeps/unix/sysv/linux/lxstat64.c: Do not include
<kernel-features.h>.
(___lxstat64) [_HAVE_STAT64___ST_INO && !__ASSUME_ST_INO_64_BIT]:
Remove conditional code.
* sysdeps/unix/sysv/linux/xstat64.c: Do not include
<kernel-features.h>.
(___xstat64) [_HAVE_STAT64___ST_INO && !__ASSUME_ST_INO_64_BIT]:
Remove conditional code.
* sysdeps/unix/sysv/linux/xstatconv.c: Do not include
<kernel-features.h>.
(__xstat32_conv) [_HAVE_STAT64___ST_INO]: Remove conditional code.
[!_HAVE_STAT64___ST_INO]: Make code unconditional.
GCC mainline now gives errors for an asm that clobbers the stack
pointer. According to
<https://gcc.gnu.org/ml/gcc-patches/2018-12/msg00932.html> GCC
previously ignored such a clobber; thus, this patch removes it from
the clobbers for ia64 syscalls.
Tested with build-many-glibcs.py for ia64-linux-gnu.
* sysdeps/unix/sysv/linux/ia64/sysdep.h (ASM_CLOBBERS_6_COMMON):
Do not clobber r12.
Continuing the process of building up and using Python infrastructure
for extracting and using values in headers, this patch adds a test
that MAP_* constants from sys/mman.h agree with those in the Linux
kernel headers. (Other sys/mman.h constants could be added to the
test separately.)
This set of constants has grown over time, so the generic code is
enhanced to allow saying extra constants are OK on either side of the
comparison (where the caller sets those parameters based on the Linux
kernel headers version, compared with the version the headers were
last updated from). Although the test is a custom Python file, my
intention is to move in future to a single Python script for such
tests and text files it takes as inputs, once there are enough
examples to provide a guide to the common cases in such tests (I'd
like to end up with most or all such sets of constants copied from
kernel headers having such tests, and likewise for structure layouts
from the kernel).
The Makefile code is essentially the same as for tst-signal-numbers,
but I didn't try to find an object file to depend on to represent the
dependency on the headers used by the test (the conform/ tests don't
try to represent such header dependencies at all, for example).
Tested with build-many-glibcs.py, and also for x86_64 with older
kernel headers.
* scripts/glibcextract.py (compare_macro_consts): Take parameters
to allow extra macros from first or second sources.
* sysdeps/unix/sysv/linux/tst-mman-consts.py: New file.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(tests-special): Add $(objpfx)tst-mman-consts.out.
($(objpfx)tst-mman-consts.out): New makefile target.
Linux kernel have remove stat64 family from default syscall set, new
implementations with statx is needed when __ARCH_WANT_STAT64 is not
define. This patch add conditionals for relevant functions, using statx
system call to get information and then copy to the return buf, ref to
include/linux/fs.h from linux kernel.
* sysdeps/unix/sysv/linux/Makefile: Add statx_cp.c.
* sysdeps/unix/sysv/linux/fxstat64.c: Add conditionals for kernel
without stat64 system call support.
* sysdeps/unix/sysv/linux/fxstatat64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/fxstat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/fxstatat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/lxstat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/lxstat64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/xstat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/xstat64.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/statx_cp.c: New file.
* sysdeps/unix/sysv/linux/statx_cp.c: Likewise.
* sysdeps/unix/sysv/linux/statx_cp.h: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/statx_cp.c: Likewise.
This patch converts the tst-signal-numbers test from shell + awk to
Python.
As with gen-as-const, the point is not so much that shell and awk are
problematic for this code, as that it's useful to build up general
infrastructure in Python for use of a range of code involving
extracting values from C headers. This patch moves some code from
gen-as-const.py to a new glibcextract.py, which also gains functions
relating to listing macros, and comparing the values of a set of
macros from compiling two different pieces of code.
It's not just signal numbers that should have such tests; pretty much
any case where glibc copies constants from Linux kernel headers should
have such tests that the values and sets of constants agree except
where differences are known to be OK. Much the same also applies to
structure layouts (although testing those without hardcoding lists of
fields to test will be more complicated).
Given this patch, another test for a set of macros would essentially
be just a call to glibcextract.compare_macro_consts (plus boilerplate
code - and we could move to having separate text files defining such
tests, like the .sym inputs to gen-as-const, so that only a single
Python script is needed for most such tests). Some such tests would
of course need new features, e.g. where the set of macros changes in
new kernel versions (so you need to allow new macro names on the
kernel side if the kernel headers are newer than the version known to
glibc, and extra macros on the glibc side if the kernel headers are
older). tst-syscall-list.sh could become a Python script that uses
common code to generate lists of macros but does other things with its
own custom logic.
There are a few differences from the existing shell + awk test.
Because the new test evaluates constants using the compiler, no
special handling is needed any more for one signal name being defined
to another. Because asm/signal.h now needs to pass through the
compiler, not just the preprocessor, stddef.h is included as well
(given the asm/signal.h issue that it requires an externally provided
definition of size_t). The previous code defined __ASSEMBLER__ with
asm/signal.h; this is removed (__ASSEMBLY__, a different macro,
eliminates the requirement for stddef.h on some but not all
architectures).
Tested for x86_64, and with build-many-glibcs.py.
* scripts/glibcextract.py: New file.
* scripts/gen-as-const.py: Do not import os.path, re, subprocess
or tempfile. Import glibcexctract.
(compute_c_consts): Remove. Moved to glibcextract.py.
(gen_test): Update reference to compute_c_consts.
(main): Likewise.
* sysdeps/unix/sysv/linux/tst-signal-numbers.py: New file.
* sysdeps/unix/sysv/linux/tst-signal-numbers.sh: Remove.
* sysdeps/unix/sysv/linux/Makefile
($(objpfx)tst-signal-numbers.out): Use tst-signal-numbers.py.
Redirect stderr as well as stdout.
I have tested that this builds and the resulting program still work.
This was tested on gcc23.fsffrance.org, and for some reason the vdso
there seems unused even when using shared libraries.
[BZ #19767]
* sysdeps/unix/sysv/linux/mips/init-first.c: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/mips/libc-vdso.h: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
Along with posix_spawn_file_actions_addchdir,
posix_spawn_file_actions_addfchdir is the subject of a change proposal
for POSIX: <http://austingroupbugs.net/view.php?id=1208>
I have tested that this builds and the resulting program still work.
The kernel in gcc117 (which I ussed for testing) seems to be missing
https://patchwork.kernel.org/patch/10060431/, so the vdso is never used.
[BZ #19767]
* sysdeps/unix/sysv/linux/arm/init-first.c: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/arm/libc-vdso.h: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/arm/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
This patch uses posix_spawn on system implementation. On Linux this has
the advantage of much lower memory consumption (usually 32 Kb minimum for
the mmap stack area).
Although POSIX does not require, glibc system implementation aims to be
thread and cancellation safe. The cancellation code is moved to generic
implementation and enabled iff SIGCANCEL is defined (similar on how the
cancellation handler is enabled on nptl-init.c).
Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Use
__sigismember instead of sigismember.
* sysdeps/posix/system.c [SIGCANCEL] (cancel_handler_args,
cancel_handler): New definitions.
(CLEANUP_HANDLER, CLEANUP_RESET): Likewise.
(DO_LOCK, DO_UNLOCK, INIT_LOCK, ADD_REF, SUB_REF): Remove.
(do_system): Use posix_spawn instead of fork and execl and remove
reentracy code.
* sysdeps/generic/not-errno.h (__kill_noerrno): New prototype.
* sysdeps/unix/sysv/linux/not-errno.h (__kill_noerrno): Likewise.
* sysdeps/unix/sysv/linux/ia64/system.c: Remove file.
* sysdeps/unix/sysv/linux/s390/system.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/system.c: Likewise.
* sysdeps/unix/sysv/linux/system.c: Likewise.
All the required code already existed, and some of it was already
running.
AT_SYSINFO_EHDR is processed if NEED_DL_SYSINFO_DSO is defined, but it
looks like it always is. The call to setup_vdso is also unconditional,
so all that was left to do was setup the function pointers and use
them. This patch just deletes some #ifdef to enable that.
[BZ #19767]
* nptl/Makefile (tests-static): Add tst-cond11-static.
(tests): Likewise.
* nptl/tst-cond11-static.c: New File.
* sysdeps/unix/sysv/linux/Makefile (tests-static): Add
tst-affinity-static.
(tests): Likewise.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Check USE_VSYSCALL
instead of SHARED.
* sysdeps/unix/sysv/linux/sysdep.h (ALWAYS_USE_VSYSCALL): New.
(USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/tst-affinity-static.c: New file.
* sysdeps/unix/sysv/linux/x86/libc-vdso.h: Check USE_VSYSCALL
instead of SHARED.
* sysdeps/unix/sysv/linux/x86_64/init-first.c: Don't check
SHARED.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h (ALWAYS_USE_VSYSCALL):
New.
The generic kernel-features.h defines __ASSUME_COPY_FILE_RANGE for 4.5
and later kernels. However, for 32-bit Arm binaries running on 64-bit
Arm kernels, the syscall was only wired up in the 4.7 kernel, although
the 32-bit Arm kernel had the syscall from 4.5 onwards. This patch
corrects the Arm kernel-features.h to undefine the macro for
configured minimum kernel versions before 4.7.
Tested (compilation only) with a build-many-glibcs.py build for
arm-linux-gnueabi.
[BZ #23915]
* sysdeps/unix/sysv/linux/arm/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040700] (__ASSUME_COPY_FILE_RANGE):
Undefine.
Introduce new pow symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_pow.c and enabled for targets with their own pow implementation or
ifunc dispatch on __ieee754_pow by including math/w_pow.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously powl was an alias of pow, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __pow_finite symbol is now an alias of pow. Both __pow_finite and
pow set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that
may affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add pow.
* math/w_pow_compat.c (__pow_compat): Change to versioned compat
symbol.
* math/w_pow.c: New file.
* sysdeps/i386/fpu/w_pow.c: New file.
* sysdeps/ia64/fpu/e_pow.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Rename to __pow
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_pow.c: New file.
* sysdeps/m68k/m680x0/fpu/w_pow.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma.c (__ieee754_pow): Rename to
__pow.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma4.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_pow.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_pow.c: New file.
Introduce new log2 symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log2.c and enabled for targets with their own log2 implementation by
including math/w_log2.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously log2l was an alias of log2, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log2_finite symbol is now an alias of log2. Both __log2_finite
and log2 set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log2.
* math/w_log2_compat.c (__log2_compat): Change to versioned compat
symbol.
* math/w_log2.c: New file.
* sysdeps/i386/fpu/w_log2.c: New file.
* sysdeps/ia64/fpu/e_log2.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_log2.c (__ieee754_log2): Rename to __log2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
Introduce new log symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log.c and enabled for targets with their own log implementation by
including math/w_log.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously logl was an alias of log, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log_finite symbol is now an alias of log. Both __log_finite and
log set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log.
* math/w_log_compat.c (__log_compat): Change to versioned compat
symbol.
* math/w_log.c: New file.
* sysdeps/i386/fpu/w_log.c: New file.
* sysdeps/ia64/fpu/e_log.S: Update.
* sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Rename to __log
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_log-avx.c (__ieee754_log): Rename to
__log.
* sysdeps/x86_64/fpu/multiarch/e_log-fma.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log-fma4.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_log.c: New file.
Introduce new exp and exp2 symbol version that don't do SVID compatible
error handling. The standard errno and fp exception based error handling
is inline in the new code and does not have significant overhead.
The double precision wrappers are disabled for sysdeps/ieee754/dbl-64
by using empty w_exp.c and w_exp2.c files, the math/w_exp.c and
math/w_exp2.c files use the wrapper template and can be included by
targets that have their own exp and exp2 implementations or use ifunc
on the glibc internal __ieee754_exp symbol.
The compatibility symbol versions still use the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously expl and exp2l were aliases of exp and exp2,
now they point to the compatibility symbols with the wrapper, because
they still need the SVID compatible error handling. This affects
NO_LONG_DOUBLE (e.g arm) and LONG_DOUBLE_COMPAT (e.g. alpha) targets
as well.
The _finite symbols are now aliases of the standard symbols (they have
no performance advantage anymore). Both the standard symbols and
_finite symbols set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header (the new macro name is __exp instead of __ieee754_exp
which breaks some math.h macros).
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add exp and exp2.
* math/w_exp2_compat.c (__exp2_compat): Change to versioned compat
symbol, handle NO_LONG_DOUBLE and LONG_DOUBLE_COMPAT explicitly.
* math/w_exp_compat.c (__exp_compat): Likewise.
* math/w_exp.c: New file.
* math/w_exp2.c: New file.
* sysdeps/i386/fpu/w_exp.c: New file.
* sysdeps/i386/fpu/w_exp2.c: New file.
* sysdeps/ia64/fpu/e_exp.S: Add versioned symbols.
* sysdeps/ia64/fpu/e_exp2.S: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Rename to __exp
and add necessary aliases.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Rename to __exp2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_exp.c: New file.
* sysdeps/ieee754/dbl-64/w_exp2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_exp-avx.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp.c (__ieee754_exp): Rename to
__exp.
* sysdeps/x86_64/fpu/multiarch/w_exp.c: New file.
The __ASSUME_SOCKETCALL macro in kernel-features.h is no longer used
for anything. (It used to be used in defining other macros related to
accept4 / recvmmsg / sendmmsg availability, but the code in that area
was simplified once we could assume a kernel with those features,
whether through a syscall or through socketcall, so allowing those
functions to be handled much like other socket operations, without
requring __ASSUME_SOCKETCALL.) This patch removes that unused macro.
(Note: once we can assume a Linux 4.4 or later kernel, much of the
support for using socketcall at all can be removed from glibc,
although a few functions may need that support in glibc for longer.)
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/kernel-features.h: Remove comment about
__ASSUME_SOCKETCALL.
* sysdeps/unix/sysv/linux/i386/kernel-features.h
(__ASSUME_SOCKETCALL): Remove.
* sysdeps/unix/sysv/linux/m68k/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/s390/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
The generic kernel-features.h defines __ASSUME_MLOCK2 for 4.4 and
later kernels. However, for 32-bit ARM binaries running on 64-bit ARM
kernels, and for MicroBlaze, the syscall was only wired up in the 4.7
kernel. (32-bit ARM kernels did have the syscall from 4.4 onwards.)
This patch duly arranges for the macro to be undefined for those
architectures for kernels before 4.7.
Tested with build-many-glibcs.py for its ARM and MicroBlaze
configurations.
[BZ #23867]
* sysdeps/unix/sysv/linux/arm/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040700] (__ASSUME_MLOCK2): Undefine.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040700] (__ASSUME_MLOCK2): Undefine.
The SH kernel-features.h undefines __ASSUME_RENAMEAT2 for kernel
versions before 4.8, but fails to undefine __ASSUME_EXECVEAT,
__ASSUME_MLOCK2 and __ASSUME_COPY_FILE_RANGE, although all those
syscalls (and several others) were added for SH in the same Linux
kernel commit (first released in 4.8). This patch adds the proper
undefines of those macros.
Tested with build-many-glibcs.py for its SH configurations.
[BZ #23862]
* sysdeps/unix/sysv/linux/sh/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040800] (__ASSUME_EXECVEAT): Undefine.
[__LINUX_KERNEL_VERSION < 0x040800] (__ASSUME_MLOCK2): Likewise.
[__LINUX_KERNEL_VERSION < 0x040800] (__ASSUME_COPY_FILE_RANGE):
Likewise.
Looking at kernel-features.h files, I saw that SPARC was missing full
information on when it gained separate socket syscalls.
This patch adds such information to the SPARC kernel-features.h. It
also corrects what appear to be bugs in the existing code (that would
cause syscalls to be assumed to be present when not actually present).
Various __ASSUME_* macros, defined by default, were not undefined for
32-bit despite those syscalls only being added for 32-bit in Linux
4.4. Some syscalls were used in the SPARC64 syscalls.list but only
added in 4.4; this was harmless before the __NR_* macros were defined
at all, but once the macros were defined it means a build with
post-4.4 headers would assume the syscalls to be present regardless of
--enable-kernel version. Then, various __ASSUME_* macros were
previously not defined in cases where they could be defined (this part
of the patch is just an optimization, not a bug fix).
Note the observation in a comment in the patch that even the latest
Linux kernel for SPARC does not have getpeername and getsockname
syscalls in the compat syscall table for 32-bit binaries on 64-bit
kernels (so glibc can't assume those syscalls to be present for 32-bit
at all, although the 32-bit syscall table gained them in 4.4).
Tested (compilation only) for SPARC with build-many-glibcs.py.
[BZ #23848]
* sysdeps/unix/sysv/linux/sparc/kernel-features.h [!__arch64__ &&
__LINUX_KERNEL_VERSION < 0x040400] (__ASSUME_SENDMSG_SYSCALL):
Undefine.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_RECVMSG_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_SENDTO_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_ACCEPT_SYSCALL): Undefine under this condition, not just
[!__arch64__].
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_CONNECT_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_RECVFROM_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040400] (__ASSUME_BIND_SYSCALL):
Define.
[__LINUX_KERNEL_VERSION >= 0x040400] (__ASSUME_LISTEN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040400]
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/syscalls.list (bind):
Remove.
(listen): Likewise.
(setsockopt): Likewise.
The #else of two nested #if clauses were identical.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Simplify an #if #else
#endif.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This patch adds the IN_MASK_CREATE macro from Linux 4.19 to
sys/inotify.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/sys/inotify.h (IN_MASK_CREATE): New
macro.
To determine whether the default time_t interfaces are 32-bit
and so need conversions, or are 64-bit and so are compatible
with the internal 64-bit type without conversions, a macro
giving the size of the default time_t is also required.
This macro is called __TIMESIZE.
This macro can then be used instead of __WORDSIZE in msq-pad.h
and shm-pad.h files, which in turn allows removing their x86
variants, and in sem-pad.h files but keeping the x86 variant.
This patch was tested by running 'make check' on branch master
then applying this patch and running 'make check' again, and
checking that both 'make check' yield identical results.
This was done on x86_64-linux-gnu and i686-linux-gnu.
* bits/timesize.h: New file.
* stdlib/Makefile (headers): Add bits/timesize.h.
* sysdeps/unix/sysv/linux/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME): Use __TIMESIZE instead of __WORDSIZE.
* sysdeps/unix/sysv/linux/bits/sem-pad.h
(__SEM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h
(__SHM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME, __MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Delete file.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/timesize.h: New file.
Linux 4.19 does not add any new syscalls (some existing ones are added
to more architectures); this patch updates the version number in
syscall-names.list to reflect that it's still current for 4.19.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.19.
After my patch to move SHMLBA to its own header, the bits/shm.h
headers for architectures using the Linux kernel still vary in a few
ways: the use of __syscall_ulong_t; whether padding for 32-bit systems
is present before or after time fields, or missing altogether (mips,
x32); whether shm_segsz is before or after the time fields; whether,
if after time fields, there is extra padding before shm_segsz.
This patch arranges for a single header to be used. __syscall_ulong_t
is safe to use everywhere, while bits/shm-pad.h is added with new
macros __SHM_PAD_AFTER_TIME, __SHM_PAD_BEFORE_TIME,
__SHM_SEGSZ_AFTER_TIME and __SHM_PAD_BETWEEN_TIME_AND_SEGSZ to
describe the differences.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shm-pad.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shm-pad.h>.
(shmatt_t): Define as __syscall_ulong_t.
(__SHM_PAD_TIME): New macro, depending on [__SHM_PAD_BEFORE_TIME]
and [__SHM_PAD_AFTER_TIME].
(struct shmid_ds): Define time fields using __SHM_PAD_TIME.
Define shm_segsz and associated padding based on
[__SHM_SEGSZ_AFTER_TIME] and [__SHM_PAD_BETWEEN_TIME_AND_SEGSZ].
Use __syscall_ulong_t instead of unsigned long int.
[__USE_MISC] (struct shminfo): Use __syscall_ulong_t instead of
unsigned long int.
[__USE_MISC] (struct shm_info): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Likewise.
One difference between bits/shm.h headers for architectures using the
Linux kernel is the definition of SHMLBA. This was noted in
<https://sourceware.org/ml/libc-alpha/2018-09/msg00175.html> as a
reason why even a new architecture (C-SKY) might need its own
bits/shm.h; thus, splitting it out of bits/shm.h can allow less
duplication of headers for new architectures.
This patch moves that definition to its own header, bits/shmlba.h, to
allow more sharing of headers between architectures. That move allows
the arm, ia64 and sh variants of bits/shm.h to be removed, as they had
no other significant differences from the generic bits/shm.h; powerpc
and x86 have their own bits/shm.h but do not need to get their own
bits/shmlba.h because they use the same SHMLBA as the generic header.
Other architectures with their own bits/shm.h get their own
bits/shmlba.h without being able to remove their own bits/shm.h until
the generic one has been adapted to be able to handle more
architectures (where, in addition to the differences seen for
bits/msq.h and bits/sem.h, the position of shm_segsz in struct
shmid_ds also depends on the architecture).
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shmlba.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getshmlba): Remove function declaration.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/arm/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/ia64/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/bits/shmlba.h: New file.
* sysdeps/unix/sysv/linux/arm/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shmlba.h: Likewise.
The race leads either to pthread_mutex_destroy returning EBUSY
or triggering an assertion (See description in bugzilla).
This patch is fixing the race by ensuring that the elision path is
used in all cases if elision is enabled by the GLIBC_TUNABLES framework.
The __kind variable in struct __pthread_mutex_s is accessed concurrently.
Therefore we are now using the atomic macros.
The new testcase tst-mutex10 is triggering the race on s390x and intel.
Presumably also on power, but I don't have access to a power machine
with lock-elision. At least the code for power is the same as on the other
two architectures.
ChangeLog:
[BZ #23275]
* nptl/tst-mutex10.c: New File.
* nptl/Makefile (tests): Add tst-mutex10.
(tst-mutex10-ENV): New variable.
* sysdeps/unix/sysv/linux/s390/force-elision.h: (FORCE_ELISION):
Ensure that elision path is used if elision is available.
* sysdeps/unix/sysv/linux/powerpc/force-elision.h (FORCE_ELISION):
Likewise.
* sysdeps/unix/sysv/linux/x86/force-elision.h: (FORCE_ELISION):
Likewise.
* nptl/pthreadP.h (PTHREAD_MUTEX_TYPE, PTHREAD_MUTEX_TYPE_ELISION)
(PTHREAD_MUTEX_PSHARED): Use atomic_load_relaxed.
* nptl/pthread_mutex_consistent.c (pthread_mutex_consistent): Likewise.
* nptl/pthread_mutex_getprioceiling.c (pthread_mutex_getprioceiling):
Likewise.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full)
(__pthread_mutex_cond_lock_adjust): Likewise.
* nptl/pthread_mutex_setprioceiling.c (pthread_mutex_setprioceiling):
Likewise.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock): Likewise.
* nptl/pthread_mutex_trylock.c (__pthread_mutex_trylock): Likewise.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
* sysdeps/nptl/bits/thread-shared-types.h (struct __pthread_mutex_s):
Add comments.
* nptl/pthread_mutex_destroy.c (__pthread_mutex_destroy):
Use atomic_load_relaxed and atomic_store_relaxed.
* nptl/pthread_mutex_init.c (__pthread_mutex_init):
Use atomic_store_relaxed.
The bits/sem.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* The x86 header uses padding after time fields unconditionally
(including for both x86_64 ABIs), not just for 32-bit time (unlike
in msqid_ds where there is only padding for 32-bit time). Because
this padding is present for x32, and is __syscall_ulong_t there, it
does have to be __syscall_ulong_t, not unsigned long int.
* The MIPS header never uses padding around time fields, even when
32-bit (unlike in msqid_ds where it has endian-dependent padding for
32-bit time).
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other differences, this patch adds macros __SEM_PAD_BEFORE_TIME and
__SEM_PAD_AFTER_TIME in a new bits/sem-pad.h header, so that header is
the only one needing to be provided on architectures with differences
in this area, and everything else can go in a single common bits/sem.h
header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/sem-pad.h.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/sem-pad.h>
instead of <bits/wordsize.h>.
(__SEM_PAD_TIME): New macro, depending on [__SEM_PAD_BEFORE_TIME]
and [__SEM_PAD_AFTER_TIME].
(struct semid_ds): Define time fields using __SEM_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/sem-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem.h: Likewise.
The bits/msq.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* x32 has 64-bit time_t, so no padding around time fields despite
__WORDSIZE == 32.
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other two differences, this patch adds macros __MSQ_PAD_BEFORE_TIME
and __MSQ_PAD_AFTER_TIME in a new bits/msq-pad.h header, so that
header is the only one needing to be provided on architectures with
differences in this area, and everything else can go in a single
common bits/msq.h header. Once we have __TIMESIZE, the generic
bits/msq-pad.h can change to use that instead of __WORDSIZE, at which
point the x86 version of bits/msq-pad.h won't be needed either.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/msq-pad.h.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/msq-pad.h>
instead of <bits/wordsize.h>.
(msgqnum_t): Define as __syscall_ulong_t.
(msglen_t): Likewise.
(__MSQ_PAD_TIME): New macro, depending on [__MSQ_PAD_BEFORE_TIME]
and [__MSQ_PAD_AFTER_TIME].
(struct msqid_ds): Define time fields using __MSQ_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/msq-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq.h: Likewise.
sysdeps/unix/sysv/linux/bits/shm.h has padding after time fields in
struct shmid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/shm.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/shm.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha and s390
versions which are also no longer needed. The other
architecture-specific versions have different padding, layout, types
or SHMLBA definitions and so are still needed after this change.
This is essentially the same change for bits/shm.h as the bits/msq.h
patch and the bits/sem.h patch. However, the details of the padding
variations for the architectures that aren't changed are not all the
same between msqid_ds, shmid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/wordsize.h>.
(struct shmid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/shm.h: Likewise.
sysdeps/unix/sysv/linux/bits/sem.h has padding after time fields in
struct semid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/sem.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/sem.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
This is essentially the same change for bits/sem.h as the bits/msq.h
patch. However, the details of the padding variations for the
architectures that aren't changed are not all the same between
msqid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/wordsize.h>.
(struct semid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/sem.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/sem.h: Likewise.
sysdeps/unix/sysv/linux/bits/msq.h has padding after time fields in
struct msqid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/msq.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/msq.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/wordsize.h>.
(struct msqid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/msq.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/msq.h: Likewise.
hppa currently has a bits/mman.h that does not include
bits/mman-linux.h, unlike all other architectures using the Linux
kernel. This sort of variation between architectures is generally
unhelpful when making global changes for new constants added to new
Linux kernel releases.
This patch changes hppa to use bits/mman-linux.h, overriding constants
with different values as necessary (including with #undef after
bits/mman.h inclusion when needed, as already done for alpha). While
there could possibly be further improvements through e.g. splitting
more sets of definitions into separate bits/ headers, I think this is
still an improvement on the current state. diffstat shows 27 lines
added, 51 deleted (and some of that is actually existing lines moving
to a different place in the file).
Tested with build-many-glibcs.py for hppa-linux-gnu.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h: Include
<bits/mman-linux.h>.
(PROT_READ): Don't define here.
(PROT_WRITE): Likewise.
(PROT_EXEC): Likewise.
(PROT_NONE): Likewise.
(PROT_GROWSDOWN): Likewise.
(PROT_GROWSUP): Likewise.
(MAP_SHARED): Likewise.
(MAP_PRIVATE): Likewise.
[__USE_MISC] (MAP_SHARED_VALIDATE): Likewise.
[__USE_MISC] (MAP_FILE): Likewise.
[__USE_MISC] (MAP_ANONYMOUS): Likewise.
[__USE_MISC] (MAP_ANON): Likewise.
[__USE_MISC] (MAP_HUGE_SHIFT): Likewise.
[__USE_MISC] (MAP_HUGE_MASK): Likewise.
(MCL_CURRENT): Likewise.
(MCL_FUTURE): Likewise.
(MCL_ONFAULT): Likewise.
[__USE_MISC] (MADV_NORMAL): Likewise.
[__USE_MISC] (MADV_RANDOM): Likewise.
[__USE_MISC] (MADV_SEQUENTIAL): Likewise.
[__USE_MISC] (MADV_WILLNEED): Likewise.
[__USE_MISC] (MADV_DONTNEED): Likewise.
[__USE_MISC] (MADV_FREE): Likewise.
[__USE_MISC] (MADV_REMOVE): Likewise.
[__USE_MISC] (MADV_DONTFORK): Likewise.
[__USE_MISC] (MADV_DOFORK): Likewise.
[__USE_MISC] (MADV_HWPOISON): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_NORMAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_RANDOM): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_SEQUENTIAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_WILLNEED): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_DONTNEED): Likewise.
(__MAP_ANONYMOUS): New macro.
[__USE_MISC] (MAP_TYPE): Undefine and redefine after
<bits/mman-linux.h> inclusion.
(MAP_FIXED): Likewise.
(MS_SYNC): Likewise.
(MS_ASYNC): Likewise.
(MS_INVALIDATE): Likewise.
[__USE_MISC] (MADV_MERGEABLE): Likewise.
[__USE_MISC] (MADV_UNMERGEABLE): Likewise.
[__USE_MISC] (MADV_HUGEPAGE): Likewise.
[__USE_MISC] (MADV_NOHUGEPAGE): Likewise.
[__USE_MISC] (MADV_DONTDUMP): Likewise.
[__USE_MISC] (MADV_DODUMP): Likewise.
[__USE_MISC] (MADV_WIPEONFORK): Likewise.
[__USE_MISC] (MADV_KEEPONFORK): Likewise.
Since RTM intrinsics are supported in GCC 4.9, we can use them in
pthread mutex lock elision.
* sysdeps/unix/sysv/linux/x86/Makefile (CFLAGS-elision-lock.c):
Add -mrtm.
(CFLAGS-elision-unlock.c): Likewise.
(CFLAGS-elision-timed.c): Likewise.
(CFLAGS-elision-trylock.c): Likewise.
* sysdeps/unix/sysv/linux/x86/hle.h: Rewritten.
As POSIX states [1] a freopen call should first flush the stream as if by a
call fflush. C99 (n1256) and C11 (n1570) only states the function should
first close any file associated with the specific stream. Although current
implementation only follow C specification, current BSD and other libc
implementation (musl) are in sync with POSIX and fflush the stream.
This patch change freopen{64} to fflush the stream before actually reopening
it (or returning if the stream does not support reopen). It also changes the
Linux implementation to avoid a dynamic allocation on 'fd_to_filename'.
Checked on x86_64-linux-gnu.
[BZ #21037]
* libio/Makefile (tests): Add tst-memstream4 and tst-wmemstream4.
* libio/freopen.c (freopen): Sync stream before reopen and adjust to
new fd_to_filename interface.
* libio/freopen64.c (freopen64): Likewise.
* libio/tst-memstream.h: New file.
* libio/tst-memstream4.c: Likewise.
* libio/tst-wmemstream4.c: Likewise.
* sysdeps/generic/fd_to_filename.h (fd_to_filename): Change signature.
* sysdeps/unix/sysv/linux/fd_to_filename.h (fd_to_filename): Likewise
and remove internal dynamic allocation.
[1] http://pubs.opengroup.org/onlinepubs/9699919799/
The MREMAP_* flags are identical between bits/mman-linux.h and the
hppa bits/mman.h; thus, they should be in bits/mman-shared.h instead
to avoid unnecessary duplication. This patch moves them there.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-linux.h [__USE_GNU]
(MREMAP_MAYMOVE): Do not define here.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/bits/mman-shared.h [__USE_GNU]
(MREMAP_MAYMOVE): Define here instead.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_GNU]
(MREMAP_MAYMOVE): Remove.
[__USE_GNU] (MREMAP_FIXED): Likewise.
The fallback code of Linux wrapper for preadv2/pwritev2 executes
regardless of the errno code for preadv2, instead of the case where
the syscall is not supported.
This fixes it by calling the fallback code iff errno is ENOSYS. The
patch also adds tests for both invalid file descriptor and invalid
iov_len and vector count.
The only discrepancy between preadv2 and fallback code regarding
error reporting is when an invalid flags are used. The fallback code
bails out earlier with ENOTSUP instead of EINVAL/EBADF when the syscall
is used.
Checked on x86_64-linux-gnu on a 4.4.0 and 4.15.0 kernel.
[BZ #23579]
* misc/tst-preadvwritev2-common.c (do_test_with_invalid_fd): New
test.
* misc/tst-preadvwritev2.c, misc/tst-preadvwritev64v2.c (do_test):
Call do_test_with_invalid_fd.
* sysdeps/unix/sysv/linux/preadv2.c (preadv2): Use fallback code iff
errno is ENOSYS.
* sysdeps/unix/sysv/linux/preadv64v2.c (preadv64v2): Likewise.
* sysdeps/unix/sysv/linux/pwritev2.c (pwritev2): Likewise.
* sysdeps/unix/sysv/linux/pwritev64v2.c (pwritev64v2): Likewise.
Continuing bits/mman.h unification between architectures using the
Linux kernel, this patch arranges for the common set of MAP_* flags to
be used by two more architectures. That common set is moved to
bits/mman-map-flags-generic.h, which is included by bits/mman.h, to
allow architectures to use that common set even if they also have
architecture-specific additions to it. As well as the generic
bits/mman.h, the versions for x86 and ia64 are also then made to
include bits/mman-map-flags-generic.h, so while they still need
architecture-specific bits/mman.h (for MAP_32BIT and MAP_GROWSUP
respectively), they do not need to duplicate the generic flag
definitions in there.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-map-flags-generic.h: New
file. Most contents moved from ....
* sysdeps/unix/sysv/linux/bits/mman.h: ... here. Move contents to
and include <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/mman-map-flags-generic.h.
* sysdeps/unix/sysv/linux/ia64/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_GROWSUP): Only define this macro, not other
macros defined in <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/x86/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_32BIT): Only define this macro, not other macros
defined in <bits/mman-map-flags-generic.h>.
This patch completes the process of unifying sys/procfs.h headers for
architectures using the Linux kernel by making alpha use the generic
version.
That was previously deferred because alpha has different definitions
of prgregset_t and prfpregset_t from other architectures, so changing
to the common definitions would change C++ name mangling. To avoid
such a change, a header bits/procfs-prregset.h is added, and alpha
gets its own version of that header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-prregset.h>.
(prgregset_t): Define using __prgregset_t.
(prfpregset_t): Define using __prfpregset_t.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-prregset.h.
* sysdeps/unix/sysv/linux/bits/procfs-prregset.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/procfs-prregset.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/sys/procfs.h: Remove file.
This patch continues the process of unifying sys/procfs.h headers for
architectures using the Linux kernel.
A bits/procfs-id.h header is added to define __pr_uid_t and __pr_gid_t
for the types of pr_uid and pr_gid; the default version of this header
uses unsigned int. On some architectures, sys/procfs.h has copies of
32-bit structures for 64-bit builds; those move into a
bits/procfs-extra.h header (they can't go in bits/procfs.h because
they have to come *after* other declarations from sys/procfs.h).
Given appropriate versions of these headers, six more architectures
can then move to providing only bits/procfs*.h without duplicating the
rest of the contents of sys/procfs.h. Only alpha needs a further
bits/ header to be added before it can stop having its own
sys/procfs.h.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-id.h> and <bits/procfs-extra.h>.
(struct elf_prpsinfo): Use __pr_uid_t and __pr_gid_t as types of
pr_uid and pr_gid.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-id.h and bits/procfs-extra.h.
* sysdeps/unix/sysv/linux/bits/procfs-extra.h: New file.
* sysdeps/unix/sysv/linux/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/arm/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/arm/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs-extra.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs-extra.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/arm/sys/procfs.h: Remove file.
* sysdeps/unix/sysv/linux/m68k/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sh/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/x86/sys/procfs.h: Likewise.
As per recent discussions, this patch unifies some of the sys/procfs.h
headers for architectures using the Linux kernel, producing a generic
version that can hopefully be used by all new architectures as well.
The new generic version is based on the AArch64 one. The register
definitions, the only part that generally needs to vary by
architecture, go in a new bits/procfs.h header (which each
architecture using the generic version needs to provide); that header
also has any #includes that were in the architecture-specific
sys/procfs.h, where those includes went beyond the generic set.
The generic version is used for eight architectures where the generic
definitions were the same as the architecture-specific ones. (Some of
those architectures had #if 0 fields, now removed; some defined types
or fields using different type names which were typedefs for the same
underlying types.)
Six of the remaining architectures with their own sys/procfs.h use
unsigned short for pr_uid / pr_gid in some cases; moving those to the
generic header will require a bits/ header to define a typedef for the
type of those fields. In the case of alpha, the generic sys/procfs.h
uses elf_gregset_t (= unsigned long int[33]) to define prgregset_t and
elf_fpregset_t (= double[32]) to define prfpregset_t, but the alpha
version uses gregset_t (= long int[33]) and fpregset_t (= long
int[32]), so avoiding unnecessarily changing the underlying types (and
thus C++ name mangling) again means a bits/ header will need to be
able to define a different choice for those typedefs.
bits/procfs.h is included outside the __BEGIN_DECLS / __END_DECLS pair
(whereas the definitions it contains were previously inside that pair
in various sys/procfs.h headers), because it sometimes includes other
headers and putting those other #includes inside that pair seems
risky. Because none of the declarations in bits/procfs.h are of
functions or variables or involve function types, I don't think it
makes any difference whether they are inside or outside an extern "C"
context.
Tested with build-many-glibcs.py (again, that does not provide much
validation for the correctness of this patch).
* sysdeps/unix/sysv/linux/sys/procfs.h: Replace with file based on
AArch64 version. Include <bits/procfs.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs.h.
* sysdeps/unix/sysv/linux/bits/procfs.h: New file.
* sysdeps/unix/sysv/linux/aarch64/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/aarch64/sys/procfs.h: Remove file.
* sysdeps/unix/sysv/linux/hppa/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/mips/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/sys/procfs.h: Likewise.
Linux from 3.9 through 4.2 does not abort HTM transaction on syscalls,
instead it suspend and resume it when leaving the kernel. The
side-effects of the syscall will always remain visible, even if the
transaction is aborted. This is an issue when transaction is used along
with futex syscall, on pthread_cond_wait for instance, where the futex
call might succeed but the transaction is rolled back leading the
pthread_cond object in an inconsistent state.
Glibc used to prevent it by always aborting a transaction before issuing
a syscall. Linux 4.2 also decided to abort active transaction in
syscalls which makes the glibc workaround superfluous. Worse, glibc
transaction abortion leads to a performance issue on recent kernels
where the HTM state is saved/restore lazily (v4.9). By aborting a
transaction on every syscalls, regardless whether a transaction has being
initiated before, GLIBS makes the kernel always save/restore HTM state
(it can not even lazily disable it after a certain number of syscall
iterations).
Because of this shortcoming, Transactional Lock Elision is just enabled
when it has been explicitly set (either by tunables of by a configure
switch) and if kernel aborts HTM transactions on syscalls
(PPC_FEATURE2_HTM_NOSC). It is reported that using simple benchmark [1],
the context-switch is about 5% faster by not issuing a tabort in every
syscall in newer kernels.
Checked on powerpc64le-linux-gnu with 4.4.0 kernel (Ubuntu 16.04).
* NEWS: Add note about new TLE support on powerpc64le.
* sysdeps/powerpc/nptl/tcb-offsets.sym (TM_CAPABLE): Remove.
* sysdeps/powerpc/nptl/tls.h (tcbhead_t): Rename tm_capable to
__ununsed1.
(TLS_INIT_TP, TLS_DEFINE_INIT_TP): Remove tm_capable setup.
(THREAD_GET_TM_CAPABLE, THREAD_SET_TM_CAPABLE): Remove macros.
* sysdeps/powerpc/powerpc32/sysdep.h,
sysdeps/powerpc/powerpc64/sysdep.h (ABORT_TRANSACTION_IMPL,
ABORT_TRANSACTION): Remove macros.
* sysdeps/powerpc/sysdep.h (ABORT_TRANSACTION): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-conf.c (elision_init): Set
__pthread_force_elision iff PPC_FEATURE2_HTM_NOSC is set.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/sysdep.h,
sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h
sysdeps/unix/sysv/linux/powerpc/syscall.S (ABORT_TRANSACTION): Remove
usage.
* sysdeps/unix/sysv/linux/powerpc/not-errno.h: Remove file.
Reported-by: Breno Leitão <leitao@debian.org>
Many bits/mman.h headers for Linux architectures have exactly the same
contents, up to whitespace, comments and the number of leading 0s on
constants. Specifically, this applies to architectures that, in the
Linux kernel, either have no uapi/asm/mman.h, or have one that
includes asm-generic/mman.h without any changes or additions relevant
to glibc (this last case is the one that applies to Arm).
It's not useful to have to duplicate the set of MAP_* constants in
glibc for all such architectures and any new architectures with that
property. Thus, this patch creates a generic
sysdeps/unix/sysv/linux/bits/mman.h and removes all the
architecture-specific versions that become unnecessary.
Further unification remains possible after this patch. For example,
the new bits/mman.h could become bits/mman-map-flags-generic.h so that
it could also be used by architecture-specific bits/mman.h headers on
architectures that use the generic flags but add architecture-specific
ones to them. That would allow this common set of MAP_* definitions
to be used on ia64 and x86 as well (architectures that include
asm-generic/mman.h from their own uapi/asm/mman.h but define
additional MAP_* values of their own).
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman.h: New file.
* sysdeps/unix/sysv/linux/aarch64/bits/mman.h: Remove.
* sysdeps/unix/sysv/linux/arm/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/mman.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/mman.h: Likewise.
As of Linux 4.17, siginfo headers in the Linux kernel have been
largely unified across architectures (so various constants are defined
with common values in include/uapi/asm-generic/siginfo.h even if not
all architectures can generate those particular constants).
This patch makes glibc reflect that unification and the current set of
constants in that header as of Linux 4.18. Various constants are
added to bits/siginfo-consts.h (under the same feature test macro
conditions as the other constants with the same prefix), and removed
from the ia64 bits/siginfo-consts-arch.h where they were previously
there - this is not limited to constants added by the unification.
Nothing is done about macros that are defined in
include/uapi/asm-generic/siginfo.h with names with leading '__' (some
of those are ia64-specific ones that remain in the ia64
bits/siginfo-consts-arch.h without the leading '__' there).
A consequence of these changes is that TRAP_HWBKPT becomes available
on AArch64 and all other architectures as requested in bug 21286.
Tested for x86_64; tested with build-many-glibcs.py for ia64.
[BZ #21286]
* sysdeps/unix/sysv/linux/bits/siginfo-consts.h (SI_DETHREAD): New
constant.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (ILL_BADIADDR): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (FPE_FLTUNK): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (FPE_CONDTRAP): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (SEGV_ACCADI): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (SEGV_ADIDERR): Likewise.
[__USE_XOPEN_EXTENDED || __USE_XOPEN2K8] (SEGV_ADIPERR): Likewise.
[__USE_XOPEN_EXTENDED] (TRAP_BRANCH): Likewise.
[__USE_XOPEN_EXTENDED] (TRAP_HWBKPT): Likewise.
[__USE_XOPEN_EXTENDED] (TRAP_UNK): Likweise.
* sysdeps/unix/sysv/linux/ia64/bits/siginfo-consts-arch.h
(ILL_BADIADDR): Remove constant.
(TRAP_BRANCH): Likewise.
(TRAP_HWBKPT): Likewise.
As discussed at
<https://sourceware.org/ml/libc-alpha/2018-09/msg00191.html> and
followup discussions, the MIPS n32 definitions of pr_sigpend and
pr_sighold in struct elf_prstatus, and pr_flag in struct elf_prpsinfo,
are wrong to use unsigned long long int; actual n32 core dumps use a
32-bit type there, so userspace unsigned long int is correct for all
MIPS ABIs. This patch removes the conditionals (also thereby aligning
the structures with other architectures and so facilitating future
unification of different versions of this header).
Tested with build-many-glibcs.py for its MIPS configurations.
[BZ #23656]
* sysdeps/unix/sysv/linux/mips/sys/procfs.h (struct elf_prstatus):
Remove [_MIPS_SIM = _ABIN32] conditional case.
(struct elf_prpsinfo): Likewise.
As noted in
<https://sourceware.org/ml/libc-alpha/2018-09/msg00178.html>, glibc's
sys/procfs.h headers for microblaze, mips (n64), nios2 and riscv have
incorrect types for the pr_uid and pr_gid members of struct
elf_prpsinfo (as does the generic Linux version, but nothing uses
that).
This patch fixes those headers to use unsigned int. The generic Linux
version is also fixed, but I do *not* recommend making new
architectures use it yet. Rather, I think it should be reworked to
look more like a copy of the AArch64 version, but with a new
<bits/procfs.h> header included to provide register set definitions;
<bits/procfs.h> would then be architecture-specific while many
architectures could use the generic <sys/procfs.h>. This fix is
deliberately separate from any reworking to use a generic header more,
since it's possible there could be uses for backporting this fix but
not for backporting a subsequent cleanup.
Tested with build-many-glibcs.py. This of course doesn't provide much
validation of the structure layout; if the Linux kernel is fixed so
that "#include <linux/elfcore.h>" actually compiles with the headers
from "make headers_install" (and if the layout in both headers is
meant to be the same, whatever ABI we are building for), I have a test
that can be added to glibc to check the layout against that from the
Linux kernel.
[BZ #23649]
* sysdeps/unix/sysv/linux/microblaze/sys/procfs.h (struct
elf_prpsinfo): Use unsigned int for pr_uid and pr_gid.
* sysdeps/unix/sysv/linux/mips/sys/procfs.h (struct elf_prpsinfo):
Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/procfs.h (struct
elf_prpsinfo): Likewise.
* sysdeps/unix/sysv/linux/riscv/sys/procfs.h (struct
elf_prpsinfo): Likewise.
* sysdeps/unix/sysv/linux/sys/procfs.h (struct elf_prpsinfo):
Likewise.
If glibc is built with gcc 8 and -march=z900,
the testcase posix/tst-spawn4-compat crashes with a segfault.
In function maybe_script_execute, the new_argv array is dynamically
initialized on stack with (argc + 1) elements.
The function wants to add _PATH_BSHELL as the first argument
and writes out of bounds of new_argv.
There is an off-by-one because maybe_script_execute fails to count
the terminating NULL when sizing new_argv.
ChangeLog:
* sysdeps/unix/sysv/linux/spawni.c (maybe_script_execute):
Increment size of new_argv by one.
This patch adds the PF_XDP, AF_XDP and SOL_XDP macros from Linux 4.18 to
sysdeps/unix/sysv/linux/bits/socket.h.
* sysdeps/unix/sysv/linux/bits/socket.h (PF_MAX): Set to 45.
(PF_XDP): New macro.
(AF_XDP): New macro.
(SOL_XDP): New macro.
This patch updates struct signalfd_siginfo in sys/signalfd.h with new
members from Linux 4.18 (plus ssi_addr_lsb, added to the kernel in
2.6.37 without being added to sys/signalfd.h at that time). The
__pad2 member name follows the kernel and the existing __pad name.
Tested for x86_64.
* sysdeps/unix/sysv/linux/sys/signalfd.h (struct
signalfd_siginfo): Add ssi_addr_lsb, ssi_syscall, ssi_call_addr
and ssi_arch members.
This patch updates sysdeps/unix/sysv/linux/syscall-names.list for
Linux 4.18. The io_pgetevents and rseq syscalls are added to the
kernel on various architectures, so need to be mentioned in this file.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.18.
(io_pgetevents): New syscall.
(rseq): Likewise.
Commit 298d0e3129 ("Consolidate Linux
getdents{64} implementation") broke the implementation because it does
not take into account struct offset differences.
The new implementation is close to the old one, before the
consolidation, but has been cleaned up slightly.
* Since __fentry__ is almost the same as _mcount, reuse the code by
#including it twice with different #defines around.
* Remove LA usages - they are needed in 31-bit mode to clear the top
bit, but in 64-bit they appear to do nothing.
* Add CFI rule for the nonstandard return register. This rule applies
to the current function (binutils generates a new CIE - see
gas/dw2gencfi.c:select_cie_for_fde()), so it is not necessary to put
__fentry__ into a new file.
* Fix CFI offset for %r14.
* Add CFI rule for %r0.
* Fix unwound value of %r15 being off by 244 bytes.
* Unwinding in __fentry__@plt does not work, no plan to fix it - it
would require asking linker to generate CFI for return address in
%r0. From functional perspective keeping it broken is fine, since
the callee did not have a chance to do anything yet. From
convenience perspective it would be possible to enhance GDB in the
future to treat __fentry__@plt in a special way.
* Fix whitespace.
* Fix offsets in comments, which were copied from 32-bit code.
* 32-bit version will not be implemented, since it's not compatible
with the corresponding PLT stubs: they assume %r12 points to GOT,
which is not the case for gcc-emitted __fentry__ stub, which runs
before the prolog.
This patch adds the runtime support in glibc for the -mfentry
gcc feature introduced in [1] and [2].
[1] https://gcc.gnu.org/ml/gcc-patches/2018-07/msg00784.html
[2] https://gcc.gnu.org/ml/gcc-patches/2018-07/msg00912.html
ChangeLog:
* sysdeps/s390/s390-64/Versions (__fentry__): Add.
* sysdeps/s390/s390-64/s390x-mcount.S: Move the common
code to s390x-mcount.h and #include it.
* sysdeps/s390/s390-64/s390x-mcount.h: New file.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist
(__fentry__): Add.
The glibc.tune namespace is vaguely named since it is a 'tunable', so
give it a more specific name that describes what it refers to. Rename
the tunable namespace to 'cpu' to more accurately reflect what it
encompasses. Also rename glibc.tune.cpu to glibc.cpu.name since
glibc.cpu.cpu is weird.
* NEWS: Mention the change.
* elf/dl-tunables.list: Rename tune namespace to cpu.
* sysdeps/powerpc/dl-tunables.list: Likewise.
* sysdeps/x86/dl-tunables.list: Likewise.
* sysdeps/aarch64/dl-tunables.list: Rename tune.cpu to
cpu.name.
* elf/dl-hwcaps.c (_dl_important_hwcaps): Adjust.
* elf/dl-hwcaps.h (GET_HWCAP_MASK): Likewise.
* manual/README.tunables: Likewise.
* manual/tunables.texi: Likewise.
* sysdeps/powerpc/cpu-features.c: Likewise.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c
(init_cpu_features): Likewise.
* sysdeps/x86/cpu-features.c: Likewise.
* sysdeps/x86/cpu-features.h: Likewise.
* sysdeps/x86/cpu-tunables.c: Likewise.
* sysdeps/x86_64/Makefile: Likewise.
* sysdeps/x86/dl-cet.c: Likewise.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
GNU_PROPERTY_X86_FEATURE_1_AND may not be the first property item. We
need to check each property item until we reach the end of the property
or find GNU_PROPERTY_X86_FEATURE_1_AND.
This patch adds 2 tests. The first test checks if IBT is enabled and
the second test reads the output from the first test to check if IBT
is is enabled. The second second test fails if IBT isn't enabled
properly.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
[BZ #23467]
* sysdeps/unix/sysv/linux/x86/Makefile (tests): Add
tst-cet-property-1 and tst-cet-property-2 if CET is enabled.
(CFLAGS-tst-cet-property-1.o): New.
(ASFLAGS-tst-cet-property-dep-2.o): Likewise.
($(objpfx)tst-cet-property-2): Likewise.
($(objpfx)tst-cet-property-2.out): Likewise.
* sysdeps/unix/sysv/linux/x86/tst-cet-property-1.c: New file.
* sysdeps/unix/sysv/linux/x86/tst-cet-property-2.c: Likewise.
* sysdeps/unix/sysv/linux/x86/tst-cet-property-dep-2.S: Likewise.
* sysdeps/x86/dl-prop.h (_dl_process_cet_property_note): Parse
each property item until GNU_PROPERTY_X86_FEATURE_1_AND is found.
This patch make the OFD tests return unsupported if kernel does not
support OFD locks (it was added on 3.15).
Checked on a ia64-linux-gnu with Linux 3.14.
* sysdeps/unix/sysv/linux/tst-ofdlocks.c: Return unsupported if
kernel does not support OFD locks.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Likewise.
Verify that setcontext works with gaps above and below the newly
allocated shadow stack.
* sysdeps/unix/sysv/linux/x86/Makefile (tests): Add
tst-cet-setcontext-1 if CET is enabled.
(CFLAGS-tst-cet-setcontext-1.c): Add -mshstk.
* sysdeps/unix/sysv/linux/x86/tst-cet-setcontext-1.c: New file.
This patch adds a field to ucontext_t to save shadow stack:
1. getcontext and swapcontext are updated to save the caller's shadow
stack pointer and return addresses.
2. setcontext and swapcontext are updated to restore shadow stack and
jump to new context directly.
3. makecontext is updated to allocate a new shadow stack and set the
caller's return address to __start_context.
Since makecontext allocates a new shadow stack when making a new
context and kernel allocates a new shadow stack for clone/fork/vfork
syscalls, we track the current shadow stack base. In setcontext and
swapcontext, if the target shadow stack base is the same as the current
shadow stack base, we unwind the shadow stack. Otherwise it is a stack
switch and we look for a restore token.
We enable shadow stack at run-time only if program and all used shared
objects, including dlopened ones, are shadow stack enabled, which means
that they must be compiled with GCC 8 or above and glibc 2.28 or above.
We need to save and restore shadow stack only if shadow stack is enabled.
When caller of getcontext, setcontext, swapcontext and makecontext is
compiled with smaller ucontext_t, shadow stack won't be enabled at
run-time. We check if shadow stack is enabled before accessing the
extended field in ucontext_t.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86/sys/ucontext.h (ucontext_t): Add
__ssp.
* sysdeps/unix/sysv/linux/x86_64/__start_context.S: Include
<asm/prctl.h> and "ucontext_i.h" when shadow stack is enabled.
(__push___start_context): New.
* sysdeps/unix/sysv/linux/x86_64/getcontext.S: Include
<asm/prctl.h>.
(__getcontext): Record the current shadow stack base. Save the
caller's shadow stack pointer and base.
* sysdeps/unix/sysv/linux/x86_64/makecontext.c: Include
<pthread.h>, <libc-pointer-arith.h> and <sys/prctl.h>.
(__push___start_context): New prototype.
(__makecontext): Call __push___start_context to allocate a new
shadow stack, push __start_context onto the new stack as well
as the new shadow stack.
* sysdeps/unix/sysv/linux/x86_64/setcontext.S: Include
<asm/prctl.h>.
(__setcontext): Restore the target shadow stack.
* sysdeps/unix/sysv/linux/x86_64/swapcontext.S: Include
<asm/prctl.h>.
(__swapcontext): Record the current shadow stack base. Save
the caller's shadow stack pointer and base. Restore the target
shadow stack.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h
(STACK_SIZE_TO_SHADOW_STACK_SIZE_SHIFT): New.
* sysdeps/unix/sysv/linux/x86_64/ucontext_i.sym (oSSP): New.
CET arch_prctl bits should be defined in <asm/prctl.h> from Linux kernel
header files. Add x86 <include/asm/prctl.h> for pre-CET kernel header
files.
Note: sysdeps/unix/sysv/linux/x86/include/asm/prctl.h should be removed
if <asm/prctl.h> from the required kernel header files contains CET
arch_prctl bits.
/* CET features:
IBT: GNU_PROPERTY_X86_FEATURE_1_IBT
SHSTK: GNU_PROPERTY_X86_FEATURE_1_SHSTK
*/
/* Return CET features in unsigned long long *addr:
features: addr[0].
shadow stack base address: addr[1].
shadow stack size: addr[2].
*/
# define ARCH_CET_STATUS 0x3001
/* Disable CET features in unsigned int features. */
# define ARCH_CET_DISABLE 0x3002
/* Lock all CET features. */
# define ARCH_CET_LOCK 0x3003
/* Allocate a new shadow stack with unsigned long long *addr:
IN: requested shadow stack size: *addr.
OUT: allocated shadow stack address: *addr.
*/
# define ARCH_CET_ALLOC_SHSTK 0x3004
/* Return legacy region bitmap info in unsigned long long *addr:
address: addr[0].
size: addr[1].
*/
# define ARCH_CET_LEGACY_BITMAP 0x3005
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/x86/include/asm/prctl.h: New file.
* sysdeps/unix/sysv/linux/x86/cpu-features.c: Include
<sys/prctl.h> and <asm/prctl.h>.
(get_cet_status): Call arch_prctl with ARCH_CET_STATUS.
* sysdeps/unix/sysv/linux/x86/dl-cet.h: Include <sys/prctl.h>
and <asm/prctl.h>.
(dl_cet_allocate_legacy_bitmap): Call arch_prctl with
ARCH_CET_LEGACY_BITMAP.
(dl_cet_disable_cet): Call arch_prctl with ARCH_CET_DISABLE.
(dl_cet_lock_cet): Call arch_prctl with ARCH_CET_LOCK.
* sysdeps/x86/libc-start.c: Include <startup.h>.
The shadow stack prevents us from pushing the saved return PC onto
the stack and returning normally. Instead we pop the shadow stack
and return directly. This is the safest way to return and ensures
any stack manipulations done by the vfork'd child doesn't cause the
parent to terminate when CET is enabled.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/unix/sysv/linux/i386/vfork.S (SYSCALL_ERROR_HANDLER):
Redefine if shadow stack is enabled.
(SYSCALL_ERROR_LABEL): Likewise.
(__vfork): Pop shadow stack and jump back to to caller directly
when shadow stack is in use.
* sysdeps/unix/sysv/linux/x86_64/vfork.S (SYSCALL_ERROR_HANDLER):
Redefine if shadow stack is enabled.
(SYSCALL_ERROR_LABEL): Likewise.
(__vfork): Pop shadow stack and jump back to to caller directly
when shadow stack is in use.
Intel Control-flow Enforcement Technology (CET) instructions:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-en
forcement-technology-preview.pdf
includes Indirect Branch Tracking (IBT) and Shadow Stack (SHSTK).
GNU_PROPERTY_X86_FEATURE_1_IBT is added to GNU program property to
indicate that all executable sections are compatible with IBT when
ENDBR instruction starts each valid target where an indirect branch
instruction can land. Linker sets GNU_PROPERTY_X86_FEATURE_1_IBT on
output only if it is set on all relocatable inputs.
On an IBT capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable IBT and
lock IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the executable.
2. When loading an executable with an interpreter, enable IBT if
GNU_PROPERTY_X86_FEATURE_1_IBT is set on the interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_IBT isn't set on the executable,
disable IBT.
b. Lock IBT.
3. If IBT is enabled, when loading a shared object without
GNU_PROPERTY_X86_FEATURE_1_IBT:
a. If legacy interwork is allowed, then mark all pages in executable
PT_LOAD segments in legacy code page bitmap. Failure of legacy code
page bitmap allocation causes an error.
b. If legacy interwork isn't allowed, it causes an error.
GNU_PROPERTY_X86_FEATURE_1_SHSTK is added to GNU program property to
indicate that all executable sections are compatible with SHSTK where
return address popped from shadow stack always matches return address
popped from normal stack. Linker sets GNU_PROPERTY_X86_FEATURE_1_SHSTK
on output only if it is set on all relocatable inputs.
On a SHSTK capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on the executable.
2. When loading an executable with an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_SHSTK isn't set on the executable
or any shared objects loaded via the DT_NEEDED tag, disable SHSTK.
b. Otherwise lock SHSTK.
3. After SHSTK is enabled, it is an error to load a shared object
without GNU_PROPERTY_X86_FEATURE_1_SHSTK.
To enable CET support in glibc, --enable-cet is required to configure
glibc. When CET is enabled, both compiler and assembler must support
CET. Otherwise, it is a configure-time error.
To support CET run-time control,
1. _dl_x86_feature_1 is added to the writable ld.so namespace to indicate
if IBT or SHSTK are enabled at run-time. It should be initialized by
init_cpu_features.
2. For dynamic executables:
a. A l_cet field is added to struct link_map to indicate if IBT or
SHSTK is enabled in an ELF module. _dl_process_pt_note or
_rtld_process_pt_note is called to process PT_NOTE segment for
GNU program property and set l_cet.
b. _dl_open_check is added to check IBT and SHSTK compatibilty when
dlopening a shared object.
3. Replace i386 _dl_runtime_resolve and _dl_runtime_profile with
_dl_runtime_resolve_shstk and _dl_runtime_profile_shstk, respectively if
SHSTK is enabled.
CET run-time control can be changed via GLIBC_TUNABLES with
$ export GLIBC_TUNABLES=glibc.tune.x86_shstk=[permissive|on|off]
$ export GLIBC_TUNABLES=glibc.tune.x86_ibt=[permissive|on|off]
1. permissive: SHSTK is disabled when dlopening a legacy ELF module.
2. on: IBT or SHSTK are always enabled, regardless if there are IBT or
SHSTK bits in GNU program property.
3. off: IBT or SHSTK are always disabled, regardless if there are IBT or
SHSTK bits in GNU program property.
<cet.h> from CET-enabled GCC is automatically included by assembly codes
to add GNU_PROPERTY_X86_FEATURE_1_IBT and GNU_PROPERTY_X86_FEATURE_1_SHSTK
to GNU program property. _CET_ENDBR is added at the entrance of all
assembly functions whose address may be taken. _CET_NOTRACK is used to
insert NOTRACK prefix with indirect jump table to support IBT. It is
defined as notrack when _CET_NOTRACK is defined in <cet.h>.
[BZ #21598]
* configure.ac: Add --enable-cet.
* configure: Regenerated.
* elf/Makefille (all-built-dso): Add a comment.
* elf/dl-load.c (filebuf): Moved before "dynamic-link.h".
Include <dl-prop.h>.
(_dl_map_object_from_fd): Call _dl_process_pt_note on PT_NOTE
segment.
* elf/dl-open.c: Include <dl-prop.h>.
(dl_open_worker): Call _dl_open_check.
* elf/rtld.c: Include <dl-prop.h>.
(dl_main): Call _rtld_process_pt_note on PT_NOTE segment. Call
_rtld_main_check.
* sysdeps/generic/dl-prop.h: New file.
* sysdeps/i386/dl-cet.c: Likewise.
* sysdeps/unix/sysv/linux/x86/cpu-features.c: Likewise.
* sysdeps/unix/sysv/linux/x86/dl-cet.h: Likewise.
* sysdeps/x86/cet-tunables.h: Likewise.
* sysdeps/x86/check-cet.awk: Likewise.
* sysdeps/x86/configure: Likewise.
* sysdeps/x86/configure.ac: Likewise.
* sysdeps/x86/dl-cet.c: Likewise.
* sysdeps/x86/dl-procruntime.c: Likewise.
* sysdeps/x86/dl-prop.h: Likewise.
* sysdeps/x86/libc-start.h: Likewise.
* sysdeps/x86/link_map.h: Likewise.
* sysdeps/i386/dl-trampoline.S (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
(_dl_runtime_resolve_shstk): New.
(_dl_runtime_profile_shstk): Likewise.
* sysdeps/linux/x86/Makefile (sysdep-dl-routines): Add dl-cet
if CET is enabled.
(CFLAGS-.o): Add -fcf-protection if CET is enabled.
(CFLAGS-.os): Likewise.
(CFLAGS-.op): Likewise.
(CFLAGS-.oS): Likewise.
(asm-CPPFLAGS): Add -fcf-protection -include cet.h if CET
is enabled.
(tests-special): Add $(objpfx)check-cet.out.
(cet-built-dso): New.
(+$(cet-built-dso:=.note)): Likewise.
(common-generated): Add $(cet-built-dso:$(common-objpfx)%=%.note).
($(objpfx)check-cet.out): New.
(generated): Add check-cet.out.
* sysdeps/x86/cpu-features.c: Include <dl-cet.h> and
<cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New prototype.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
(init_cpu_features): Call get_cet_status to check CET status
and update dl_x86_feature_1 with CET status. Call
TUNABLE_CALLBACK (set_x86_ibt) and TUNABLE_CALLBACK
(set_x86_shstk). Disable and lock CET in libc.a.
* sysdeps/x86/cpu-tunables.c: Include <cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New function.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
* sysdeps/x86/sysdep.h (_CET_NOTRACK): New.
(_CET_ENDBR): Define if not defined.
(ENTRY): Add _CET_ENDBR.
* sysdeps/x86/dl-tunables.list (glibc.tune): Add x86_ibt and
x86_shstk.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
Since SHADOW_STACK_POINTER_OFFSET is defined in jmp_buf-ssp.h, we must
undef SHADOW_STACK_POINTER_OFFSET after including <jmp_buf-ssp.h>.
* sysdeps/unix/sysv/linux/x86_64/____longjmp_chk.S: Undef
SHADOW_STACK_POINTER_OFFSET after including <jmp_buf-ssp.h>.
Save and restore shadow stack pointer in setjmp and longjmp to support
shadow stack in Intel CET. Use feature_1 in tcbhead_t to check if
shadow stack is enabled before saving and restoring shadow stack pointer.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/i386/__longjmp.S: Include <jmp_buf-ssp.h>.
(__longjmp): Restore shadow stack pointer if shadow stack is
enabled, SHADOW_STACK_POINTER_OFFSET is defined and __longjmp
isn't defined for __longjmp_cancel.
* sysdeps/i386/bsd-_setjmp.S: Include <jmp_buf-ssp.h>.
(_setjmp): Save shadow stack pointer if shadow stack is enabled
and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/i386/bsd-setjmp.S: Include <jmp_buf-ssp.h>.
(setjmp): Save shadow stack pointer if shadow stack is enabled
and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/i386/setjmp.S: Include <jmp_buf-ssp.h>.
(__sigsetjmp): Save shadow stack pointer if shadow stack is
enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/unix/sysv/linux/i386/____longjmp_chk.S: Include
<jmp_buf-ssp.h>.
(____longjmp_chk): Restore shadow stack pointer if shadow stack
is enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/unix/sysv/linux/x86/Makefile (gen-as-const-headers):
Remove jmp_buf-ssp.sym.
* sysdeps/unix/sysv/linux/x86_64/____longjmp_chk.S: Include
<jmp_buf-ssp.h>.
(____longjmp_chk): Restore shadow stack pointer if shadow stack
is enabled and SHADOW_STACK_POINTER_OFFSET is defined.
* sysdeps/x86/Makefile (gen-as-const-headers): Add
jmp_buf-ssp.sym.
* sysdeps/x86/jmp_buf-ssp.sym: New dummy file.
* sysdeps/x86_64/__longjmp.S: Include <jmp_buf-ssp.h>.
(__longjmp): Restore shadow stack pointer if shadow stack is
enabled, SHADOW_STACK_POINTER_OFFSET is defined and __longjmp
isn't defined for __longjmp_cancel.
* sysdeps/x86_64/setjmp.S: Include <jmp_buf-ssp.h>.
(__sigsetjmp): Save shadow stack pointer if shadow stack is
enabled and SHADOW_STACK_POINTER_OFFSET is defined.
As pointed out in a libc-alpha thread [1], the misc/tst-ofdlocks-compat
may fail in some specific Linux releases. This patch adds a comment
along with a link to discussion in the test source code.
No changes are expected.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Add a comment about
a kernel issue which lead to test failure in some cases.
[1] https://sourceware.org/ml/libc-alpha/2018-07/msg00243.html
This enables searching shared libraries in atomics/ when the hardware
supports LSE atomics of armv8.1 so one can provide optimized variants
of libraries in a portable way.
LSE atomics does not affect library abi, the new instructions can
interoperate with old ones.
I considered the earlier comments on the patch
https://sourceware.org/ml/libc-alpha/2018-04/msg00400.htmlhttps://sourceware.org/ml/libc-alpha/2018-04/msg00625.html
It turns out that the way glibc dynamic linker decides on the search
path is not very flexible: it wants to use hwcap bits and associated
strings. So some targets reuse hwcap bits for glibc internal purposes
to affect the search logic. But hwcap is an interface with the kernel,
glibc should not allocate bits in it for its internal logic as that
limits future hwcap extensions and confusing to users who expect to see
hwcap bits in ifunc resolvers. Instead of rewriting the dynamic linker
path logic (which affects all targets) this patch just uses the existing
mechanism, however this means that the path name has to be the hwcap
name "atomics" and cannot be changed to something more meaningful to
users.
It is hard to tell how much performance benefit this can give, in
principle armv8.1 atomics can be better optimized in the hardware, so it
can make a difference for synchronization heavy code. On some systems
such multilib setup may be the only viable way to get optimized
libraries used.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT): Add
HWCAP_ATOMICS.
This partially reverts
commit f82e9672ad
Author: Siddhesh Poyarekar <siddhesh@sourceware.org>
aarch64: Allow overriding HWCAP_CPUID feature check using HWCAP_MASK
The idea was to make it possible to disable cpuid based ifunc resolution
in glibc by changing the hwcap mask which the user could already control.
However the hwcap mask has an orthogonal role: it specifies additional
library search paths for the dynamic linker. So "cpuid" got added to
the search paths when it was set in the default mask (HWCAP_IMPORTANT),
which is not useful behaviour, the hwcap masking should not be reused
in the cpu features code.
Meanwhile there is a tunable to set the cpu explicitly so it is possible
to disable the cpuid based dispatch without using a hwcap mask:
GLIBC_TUNABLES=glibc.tune.cpu=generic
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (init_cpu_features):
Use dl_hwcap without masking.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.h (HWCAP_IMPORTANT):
Remove HWCAP_CPUID.
Define a new ABSOLUTE ABI for static linker's use with EI_ABIVERSION
where correct absolute (SHN_ABS) symbol run-time load semantics is
required. This way it can be ensured at static link time that a program
or DSO will not suffer from previous semantics where absolute symbols
were relocated by the base address, or symbols whose `st_value' is zero
silently ignored leading to a confusing "undefined symbol" error message
at load time, and instead "ELF file ABI version invalid" is printed with
old dynamic loaders, making it clear that there is an ABI version
incompatibility.
[BZ #19818]
[BZ #23307]
* libc-abis (ABSOLUTE): New ABI.
* sysdeps/unix/sysv/linux/mips/libc-abis (ABSOLUTE): New ABI.
* NEWS: Mention the new ABI.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The implementation falls back to renameat if renameat2 is not available
in the kernel (or in the kernel headers) and the flags argument is zero.
Without kernel support, a non-zero argument returns EINVAL, not ENOSYS.
This mirrors what the kernel does for invalid renameat2 flags.
The __libc_freeres framework does not extend to non-libc.so objects.
This causes problems in general for valgrind and mtrace detecting
unfreed objects in both libdl.so and libpthread.so. This change is
a pre-requisite to properly moving the malloc hooks out of malloc
since such a move now requires precise accounting of all allocated
data before destructors are run.
This commit adds a proper hook in libc.so.6 for both libdl.so and
for libpthread.so, this ensures that shm-directory.c which uses
freeit () to free memory is called properly. We also remove the
nptl_freeres hook and fall back to using weak-ref-and-check idiom
for a loaded libpthread.so, thus making this process similar for
all DSOs.
Lastly we follow best practice and use explicit free calls for
both libdl.so and libpthread.so instead of the generic hook process
which has undefined order.
Tested on x86_64 with no regressions.
Signed-off-by: DJ Delorie <dj@redhat.com>
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
A lookup operation in map_newlink could turn into an insert because of
holes in the interface part of the map. This leads to incorrectly set
the name of the interface to NULL when the interface is not present
for the address being processed (most likely because the interface was
added between the RTM_GETLINK and RTM_GETADDR calls to the kernel).
When such changes are detected by the kernel, it'll mark the dump as
"inconsistent" by setting NLM_F_DUMP_INTR flag on the next netlink
message.
This patch checks this condition and retries the whole operation.
Hopes are that next time the interface corresponding to the address
entry is present in the list and correct name is returned.
This patch fixes the OFD ("file private") locks for architectures that
support non-LFS flock definition (__USE_FILE_OFFSET64 not defined). The
issue in this case is both F_OFD_{GETLK,SETLK,SETLKW} and
F_{SET,GET}L{W}K64 expects a flock64 argument and when using old
F_OFD_* flags with a non LFS flock argument the kernel might interpret
the underlying data wrongly. Kernel idea originally was to avoid using
such flags in non-LFS syscall, but since GLIBC uses fcntl with LFS
semantic as default it is possible to provide the functionality and
avoid the bogus struct kernel passing by adjusting the struct manually
for the required flags.
The idea follows other LFS interfaces that provide two symbols:
1. A new LFS fcntl64 is added on default ABI with the usual macros to
select it for FILE_OFFSET_BITS=64.
2. The Linux non-LFS fcntl use a stack allocated struct flock64 for
F_OFD_{GETLK,SETLK,SETLKW} copy the results on the user provided
struct.
3. Keep a compat symbol with old broken semantic for architectures
that do not define __OFF_T_MATCHES_OFF64_T.
So for architectures which defines __USE_FILE_OFFSET64, fcntl64 will
aliased to fcntl and no adjustment would be required. So to actually
use F_OFD_* with LFS support the source must be built with LFS support
(_FILE_OFFSET_BITS=64).
Also F_OFD_SETLKW command is handled a cancellation point, as for
F_SETLKW{64}.
Checked on x86_64-linux-gnu and i686-linux-gnu.
[BZ #20251]
* NEWS: Mention fcntl64 addition.
* csu/check_fds.c: Replace __fcntl_nocancel by __fcntl64_nocancel.
* login/utmp_file.c: Likewise.
* sysdeps/posix/fdopendir.c: Likewise.
* sysdeps/posix/opendir.c: Likewise.
* sysdeps/unix/pt-fcntl.c: Likewise.
* include/fcntl.h (__libc_fcntl64, __fcntl64,
__fcntl64_nocancel_adjusted): New prototype.
(__fcntl_nocancel_adjusted): Remove prototype.
* io/Makefile (routines): Add fcntl64.
(CFLAGS-fcntl64.c): New rule.
* io/Versions [GLIBC_2.28] (fcntl64): New symbol.
[GLIBC_PRIVATE] (__libc_fcntl): Rename to __libc_fcntl64.
* io/fcntl.h (fcntl64): Add prototype and redirect if
__USE_FILE_OFFSET64 is defined.
* io/fcntl64.c: New file.
* manual/llio.text: Add a note for which commands fcntl acts a
cancellation point.
* nptl/Makefile (CFLAGS-fcntl64.c): New rule.
* sysdeps/mach/hurd/fcntl.c: Alias fcntl to fcntl64 symbols.
* sysdeps/mach/hurd/i386/libc.abilist [GLIBC_2.28] (fcntl, fcntl64):
New symbols.
* sysdeps/unix/sysv/linux/fcntl.c (__libc_fcntl): Fix F_GETLK64,
F_OFD_GETLK, F_SETLK64, F_SETLKW64, F_OFD_SETLK, and F_OFD_SETLKW for
non-LFS case.
* sysdeps/unix/sysv/linux/fcntl64.c: New file.
* sysdeps/unix/sysv/linux/fcntl_nocancel.c (__fcntl_nocancel): Rename
to __fcntl64_nocancel.
(__fcntl_nocancel_adjusted): Rename to __fcntl64_nocancel_adjusted.
* sysdeps/unix/sysv/linux/not-cancel.h (__fcntl_nocancel): Rename
to __fcntl64_nocancel.
* sysdeps/unix/sysv/linux/tst-ofdlocks.c: New file.
* sysdeps/unix/sysv/linux/tst-ofdlocks-compat.c: Likewise.
* sysdeps/unix/sysv/linux/Makefile (tests): Add tst-ofdlocks.
(tests-internal): Add tst-ofdlocks-compat.
* sysdeps/unix/sysv/linux/aarch64/libc.abilist [GLIBC_2.28]
(fcntl64): New symbol.
* sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist: Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libc.abilist [GLIBC_2.28] (fcntl,
fcntl64): Likewise.
* sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libc.abilis: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise.
This patch updates the hppa definition of MAP_TYPE to reflect a
corresponding change in the Linux kernel in 4.17 (so the value now has
four bits set, as it does on other architectures, although they are
different from other architectures because of hppa differences in
other MAP_* bits).
Tested with build-many-glibcs.py for hppa.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_MISC]
(MAP_TYPE): Change value to 0x2b.
This patch uses an ifunc to implement gettimeofday in the shared libc.
This is faster compared to the vsyscall mechanism that has to check a
global pointer, demangle it and call it indirectly when the VDSO is
present. Resolving the gettimeofday symbol directly to the VDSO code
is safe because there are no failures that the libc has to handle by
setting errno like in a generic vsyscall (the only failure when the
VDSO code falls back to a syscall is EFAULT, but passing an invalid
pointer is undefined behaviour so returning -EFAULT is fine).
If the kernel supports the VDSO interface we use it for extern calls,
otherwise the old vsyscall method is used which falls back to a syscall.
The static version of gettimeofday continues to use a syscall, libc.so
internal calls use the old vsyscall method.
* sysdeps/unix/sysv/linux/aarch64/gettimeofday.c: New file.
Neither the <dlfcn.h> entry points, nor lazy symbol resolution, nor
initial shared library load-up, are cancellation points, so ld.so
should exclusively use I/O primitives that are not cancellable. We
currently achieve this by having the cancellation hooks compile as
no-ops when IS_IN(rtld); this patch changes to using exclusively
_nocancel primitives in the source code instead, which makes the
intent clearer and significantly reduces the amount of code compiled
under IS_IN(rtld) as well as IS_IN(libc) -- in particular,
elf/Makefile no longer thinks we require a copy of unwind.c in
rtld-libc.a. (The older mechanism is preserved as a backstop.)
The bulk of the change is splitting up the files that define the
_nocancel I/O functions, so they don't also define the variants that
*are* cancellation points; after which, the existing logic for picking
out the bits of libc that need to be recompiled as part of ld.so Just
Works. I did this for all of the _nocancel functions, not just the
ones used by ld.so, for consistency.
fcntl was a little tricky because it's only a cancellation point for
certain opcodes (F_SETLKW(64), which can block), and the existing
__fcntl_nocancel wasn't applying the FCNTL_ADJUST_CMD hook, which
strikes me as asking for trouble, especially as the only nontrivial
definition of FCNTL_ADJUST_CMD (for powerpc64) changes F_*LK* opcodes.
To fix this, fcntl_common moves to fcntl_nocancel.c along with
__fcntl_nocancel, and changes its name to the extern (but hidden)
symbol __fcntl_nocancel_adjusted, so that regular fcntl can continue
calling it. __fcntl_nocancel now applies FCNTL_ADJUST_CMD; so that
both both fcntl.c and fcntl_nocancel.c can see it, the only nontrivial
definition moves from sysdeps/u/s/l/powerpc/powerpc64/fcntl.c to
.../powerpc64/sysdep.h and becomes entirely a macro, instead of a macro
that calls an inline function.
The nptl version of libpthread also changes a little, because its
"compat-routines" formerly included files that defined all the
_nocancel functions it uses; instead of continuing to duplicate them,
I exported the relevant ones from libc.so as GLIBC_PRIVATE. Since the
Linux fcntl.c calls a function defined by fcntl_nocancel.c, it can no
longer be used from libpthread.so; instead, introduce a custom
forwarder, pt-fcntl.c, and export __libc_fcntl from libc.so as
GLIBC_PRIVATE. The nios2-linux ABI doesn't include a copy of vfork()
in libpthread, and it was handling that by manipulating
libpthread-routines in .../linux/nios2/Makefile; it is cleaner to do
what other such ports do, and have a pt-vfork.S that defines no symbols.
Right now, it appears that Hurd does not implement _nocancel I/O, so
sysdeps/generic/not-cancel.h will forward everything back to the
regular functions. This changed the names of some of the functions
that sysdeps/mach/hurd/dl-sysdep.c needs to interpose.
* elf/dl-load.c, elf/dl-misc.c, elf/dl-profile.c, elf/rtld.c
* sysdeps/unix/sysv/linux/dl-sysdep.c
Include not-cancel.h. Use __close_nocancel instead of __close,
__open64_nocancel instead of __open, __read_nocancel instead of
__libc_read, and __write_nocancel instead of __libc_write.
* csu/check_fds.c (check_one_fd)
* sysdeps/posix/fdopendir.c (__fdopendir)
* sysdeps/posix/opendir.c (__alloc_dir): Use __fcntl_nocancel
instead of __fcntl and/or __libc_fcntl.
* sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np)
* sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np)
* sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system):
Use __open64_nocancel instead of __open_nocancel.
* sysdeps/unix/sysv/linux/not-cancel.h: Move all of the
hidden_proto declarations to the end and issue them if either
IS_IN(libc) or IS_IN(rtld).
* sysdeps/unix/sysv/linux/Makefile [subdir=io] (sysdep_routines):
Add close_nocancel, fcntl_nocancel, nanosleep_nocancel,
open_nocancel, open64_nocancel, openat_nocancel, pause_nocancel,
read_nocancel, waitpid_nocancel, write_nocancel.
* io/Versions [GLIBC_PRIVATE]: Add __libc_fcntl,
__fcntl_nocancel, __open64_nocancel, __write_nocancel.
* posix/Versions: Add __nanosleep_nocancel, __pause_nocancel.
* nptl/pt-fcntl.c: New file.
* nptl/Makefile (pthread-compat-wrappers): Remove fcntl.
(libpthread-routines): Add pt-fcntl.
* include/fcntl.h (__fcntl_nocancel_adjusted): New function.
(__libc_fcntl): Remove attribute_hidden.
* sysdeps/unix/sysv/linux/fcntl.c (__libc_fcntl): Call
__fcntl_nocancel_adjusted, not fcntl_common.
(__fcntl_nocancel): Move to new file fcntl_nocancel.c.
(fcntl_common): Rename to __fcntl_nocancel_adjusted; also move
to fcntl_nocancel.c.
* sysdeps/unix/sysv/linux/fcntl_nocancel.c: New file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/fcntl.c: Remove file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h:
Define FCNTL_ADJUST_CMD here, as a self-contained macro.
* sysdeps/unix/sysv/linux/close.c: Move __close_nocancel to...
* sysdeps/unix/sysv/linux/close_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/nanosleep.c: Move __nanosleep_nocancel to...
* sysdeps/unix/sysv/linux/nanosleep_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/open.c: Move __open_nocancel to...
* sysdeps/unix/sysv/linux/open_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/open64.c: Move __open64_nocancel to...
* sysdeps/unix/sysv/linux/open64_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/openat.c: Move __openat_nocancel to...
* sysdeps/unix/sysv/linux/openat_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/openat64.c: Move __openat64_nocancel to...
* sysdeps/unix/sysv/linux/openat64_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/pause.c: Move __pause_nocancel to...
* sysdeps/unix/sysv/linux/pause_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/read.c: Move __read_nocancel to...
* sysdeps/unix/sysv/linux/read_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/waitpid.c: Move __waitpid_nocancel to...
* sysdeps/unix/sysv/linux/waitpid_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/write.c: Move __write_nocancel to...
* sysdeps/unix/sysv/linux/write_nocancel.c: ...this new file.
* sysdeps/unix/sysv/linux/nios2/Makefile: Don't override
libpthread-routines.
* sysdeps/unix/sysv/linux/nios2/pt-vfork.S: New file which
defines nothing.
* sysdeps/mach/hurd/dl-sysdep.c: Define __read instead of
__libc_read, and __write instead of __libc_write. Define
__open64 in addition to __open.