As discussed during development for glibc 2.29, when we increased the
required minimum GCC version for building glibc to GCC 5, working
purely based on the times at which such requirements have been
increased in the past it would be appropriate for glibc 2.30 to
require GCC 6 (matching GCC 4.9 having been required for glibc 2.26).
Naming 6.2 specifically as the minimum version then means a separate
version requirement no longer needs to be specified for powerpc64le.
Thus, this patch increases the minimum to 6.2, removing the
documentation of the separate requirement for powerpc64le. It does
not remove the powerpc64le configure test, or any __GNUC_PREREQ that
could be removed as not being in installed headers or files shared
with gnulib; I think such cleanups are best done separately.
Tested for x86_64.
* configure.ac (libc_cv_compiler_ok): Require GCC 6.2 or later.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Update minimum GCC
version.
* INSTALL: Regenerated.
Clock_gettime, settime and getres implementations are unncessarily
complex due to using defines and C file inclusion. Simplify the
code by replacing the redundant defines and removing the inclusion,
making it much easier to understand. No functional changes.
* sysdeps/posix/clock_getres.c (__clock_getres): Cleanup.
* sysdeps/unix/clock_gettime.c (__clock_gettime): Cleanup.
* sysdeps/unix/clock_settime.c (__clock_settime): Cleanup.
* sysdeps/unix/sysv/linux/clock_getres.c (__clock_getres): Cleanup.
* sysdeps/unix/sysv/linux/clock_gettime.c (__clock_gettime): Cleanup.
* sysdeps/unix/sysv/linux/clock_settime.c (__clock_settime): Cleanup.
This version uses general register based memory instruction to load
data, because vector register based is slightly slower in emag.
Character-matching is performed on 16-byte (both size and alignment)
memory block in parallel each iteration.
* sysdeps/aarch64/memchr.S (__memchr): Rename to MEMCHR.
[!MEMCHR](MEMCHR): Set to __memchr.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines):
Add memchr_generic and memchr_nosimd.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add memchr ifuncs.
* sysdeps/aarch64/multiarch/memchr.c: New file.
* sysdeps/aarch64/multiarch/memchr_generic.S: Likewise.
* sysdeps/aarch64/multiarch/memchr_nosimd.S: Likewise.
This version uses general register based memory store instead of
vector register based, for the former is faster than the latter
in emag.
The fact that DC ZVA size in emag is 64-byte, is used by IFUNC
dispatch to select this memset, so that cost of runtime-check on
DC ZVA size can be saved.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines):
Add memset_emag.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add __memset_emag to memset ifunc.
* sysdeps/aarch64/multiarch/memset.c (libc_ifunc):
Add IS_EMAG check for ifunc dispatch.
* sysdeps/aarch64/multiarch/memset_base64.S: New file.
* sysdeps/aarch64/multiarch/memset_emag.S: New file.
Emag is a 64-bit CPU core released by AmpereComputing.
Add its name to cpu list, and corresponding macro as utilities for
later IFUNC dispatch.
* manual/tunables.texi (Tunable glibc.cpu.name): Add emag.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add emag.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_EMAG):
New macro.
From time to time I get fails in tst-spawn like:
tst-spawn.c:111: numeric comparison failure
left: 0 (0x0); from: xlseek (fd2, 0, SEEK_CUR)
right: 28 (0x1c); from: strlen (fd2string)
error: 1 test failures
tst-spawn.c:252: numeric comparison failure
left: 1 (0x1); from: WEXITSTATUS (status)
right: 0 (0x0); from: 0
error: 1 test failures
It turned out, that a child process is testing it's open file descriptors
with e.g. a sequence of testing the current position, setting the position
to zero and reading a specific amount of bytes.
Unfortunately starting with commit 2a69f853c0
the test is spawning a second child process which is sharing some of the
file descriptors. If the test sequence as mentioned above is running in parallel
it leads to test failures.
As the second call of posix_spawn shall test a NULL pid argument,
this patch is just moving the waitpid of the first child
before the posix_spawn of the second child.
ChangeLog:
* posix/tst-spawn do_test(): Move waitpid before posix_spawn.
For a full analysis of both the pthread_rwlock_tryrdlock() stall
and the pthread_rwlock_trywrlock() stall see:
https://sourceware.org/bugzilla/show_bug.cgi?id=23844#c14
In the pthread_rwlock_trydlock() function we fail to inspect for
PTHREAD_RWLOCK_FUTEX_USED in __wrphase_futex and wake the waiting
readers.
In the pthread_rwlock_trywrlock() function we write 1 to
__wrphase_futex and loose the setting of the PTHREAD_RWLOCK_FUTEX_USED
bit, again failing to wake waiting readers during unlock.
The fix in the case of pthread_rwlock_trydlock() is to check for
PTHREAD_RWLOCK_FUTEX_USED and wake the readers.
The fix in the case of pthread_rwlock_trywrlock() is to only write
1 to __wrphase_futex if we installed the write phase, since all other
readers would be spinning waiting for this step.
We add two new tests, one exercises the stall for
pthread_rwlock_trywrlock() which is easy to exercise, and one exercises
the stall for pthread_rwlock_trydlock() which is harder to exercise.
The pthread_rwlock_trywrlock() test fails consistently without the fix,
and passes after. The pthread_rwlock_tryrdlock() test fails roughly
5-10% of the time without the fix, and passes all the time after.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Torvald Riegel <triegel@redhat.com>
Signed-off-by: Rik Prohaska <prohaska7@gmail.com>
Co-authored-by: Torvald Riegel <triegel@redhat.com>
Co-authored-by: Rik Prohaska <prohaska7@gmail.com>
GLIBC explicitly allows one to assign a new FILE pointer to stdout and
other standard streams. printf and wprintf were honouring assignment to
stdout and using the new value, but puts, putchar, and wide char variants
did not.
The stdout part is fixed here. The stdin part will be fixed in a followup.
Problem found by AddressSanitizer, reported by Hongxu Chen in:
https://debbugs.gnu.org/34140
* posix/regexec.c (proceed_next_node):
Do not read past end of input buffer.
If /etc/aliases ends with a continuation line (a line that starts
with whitespace) which does not have a trailing newline character,
the file parser would crash due to a null pointer dereference.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* NEWS: Add the list of bugs fixed in 2.29.
* manual/contrib.texi: Update contributors list with some more
names.
* manual/install.texi: Update latest versions of packages
tested.
* INSTALL: Regenerated.
There was missing restore of $f3 before the return from the function
via the $y_is_neg path. This caused the math/big testcase from Go-1.11
testsuite (that includes lots of corner cases that exercise remqu) FAIL.
[BZ #24130]
* sysdeps/alpha/remqu.S (__remqu): Add missing restore
of $f3 register on $y_is_neg path.
The full representation of the alternative calendar year (%EY)
typically includes an internal use of "%Ey". As a GNU extension,
apply any flags on "%EY" (e.g. "%_EY", "%-EY") to the internal "%Ey",
allowing users of "%EY" to control how the year is padded.
Reviewed-by: Rafal Luzynski <digitalfreak@lingonborough.com>
Reviewed-by: Zack Weinberg <zackw@panix.com>
ChangeLog:
[BZ #24096]
* manual/time.texi (strftime): Document "%EC" and "%EY".
* time/Makefile (tests): Add tst-strftime2.
(LOCALES): Add ja_JP.UTF-8, lo_LA.UTF-8, and th_TH.UTF-8.
* time/strftime_l.c (__strftime_internal): Add argument yr_spec to
override padding for "%Ey".
If an optional flag ('_' or '-') is specified to "%EY", interpret the
"%Ey" in the subformat as if decorated with that flag.
* time/tst-strftime2.c: New file.
In Japanese locales, strftime's alternative year format (%Ey) produces
a year numbered within a time period called an _era_. A new era
typically begins when a new emperor is enthroned. The result of "%Ey"
is therefore usually a one- or two-digit number.
Many programs that display Japanese era dates assume that the era year
is two digits wide. To improve how these programs display dates
during the first nine years of a new era, change "%Ey" to pad one-
digit numbers on the left with a zero. This change applies to all
locales. It is expected to be harmless for other locales that use the
alternative year format (e.g. lo_LA and th_TH, in which "%Ey" produces
the year of the Buddhist calendar) as those calendars' year numbers
are already more than two digits wide, and this is not expected to
change.
This change needs to be in place before 2019-05-01 CE, as a new era is
scheduled to begin on that date.
Reviewed-by: Zack Weinberg <zackw@panix.com>
Reviewed-by: Rafal Luzynski <digitalfreak@lingonborough.com>
ChangeLog:
[BZ #23758]
* manual/time.texi (strftime): Document "%Ey".
* time/strftime_l.c (__strftime_internal): Set the default width
padding with zero of "%Ey" to 2.
Hurd does not support MAP_NORESERVE and MAP_STACK.
Checked on i686-gnu build.
* support/xsigstack.c (MAP_NORESERVE, MAP_STACK): Define if they
are not defined.
* hurd/lookup-at.c (__file_name_lookup_at): When at_flags contains
AT_EMPTY_PATH, call __dir_lookup and __hurd_file_name_lookup_retry
directly instead of __hurd_file_name_lookup.
The IPv4 address parser in the getaddrinfo function is changed so that
it does not ignore trailing whitespace and all characters after it.
For backwards compatibility, the getaddrinfo function still recognizes
legacy name syntax, such as 192.000.002.010 interpreted as 192.0.2.8
(octal).
This commit does not change the behavior of inet_addr and inet_aton.
gethostbyname already had additional sanity checks (but is switched
over to the new __inet_aton_exact function for completeness as well).
To avoid sending the problematic query names over DNS, commit
6ca53a2453 ("resolv: Do not send queries
for non-host-names in nss_dns [BZ #24112]") is needed.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes strnlen/wcsnlen for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/strlen-avx2.S: Use RSI_LP for length.
Clear the upper 32 bits of RSI register.
* sysdeps/x86_64/strlen.S: Use RSI_LP for length.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-strnlen
and tst-size_t-wcsnlen.
* sysdeps/x86_64/x32/tst-size_t-strnlen.c: New file.
* sysdeps/x86_64/x32/tst-size_t-wcsnlen.c: Likewise.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes strncpy for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/strcpy-avx2.S: Use RDX_LP for length.
* sysdeps/x86_64/multiarch/strcpy-sse2-unaligned.S: Likewise.
* sysdeps/x86_64/multiarch/strcpy-ssse3.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-strncpy.
* sysdeps/x86_64/x32/tst-size_t-strncpy.c: New file.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes the strncmp family for x32. Tested on x86-64 and x32.
On x86-64, libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/strcmp-avx2.S: Use RDX_LP for length.
* sysdeps/x86_64/multiarch/strcmp-sse42.S: Likewise.
* sysdeps/x86_64/strcmp.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-strncasecmp,
tst-size_t-strncmp and tst-size_t-wcsncmp.
* sysdeps/x86_64/x32/tst-size_t-strncasecmp.c: New file.
* sysdeps/x86_64/x32/tst-size_t-strncmp.c: Likewise.
* sysdeps/x86_64/x32/tst-size_t-wcsncmp.c: Likewise.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memset/wmemset for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S: Use
RDX_LP for length. Clear the upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-wmemset.
* sysdeps/x86_64/x32/tst-size_t-memset.c: New file.
* sysdeps/x86_64/x32/tst-size_t-wmemset.c: Likewise.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memrchr for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/memrchr.S: Use RDX_LP for length.
* sysdeps/x86_64/multiarch/memrchr-avx2.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memrchr.
* sysdeps/x86_64/x32/tst-size_t-memrchr.c: New file.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memcpy for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/memcpy-ssse3-back.S: Use RDX_LP for
length. Clear the upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memcpy-ssse3.S: Likewise.
* sysdeps/x86_64/multiarch/memmove-avx512-no-vzeroupper.S:
Likewise.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memcpy.
tst-size_t-wmemchr.
* sysdeps/x86_64/x32/tst-size_t-memcpy.c: New file.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memcmp/wmemcmp for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/memcmp-avx2-movbe.S: Use RDX_LP for
length. Clear the upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memcmp-sse4.S: Likewise.
* sysdeps/x86_64/multiarch/memcmp-ssse3.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memcmp and
tst-size_t-wmemcmp.
* sysdeps/x86_64/x32/tst-size_t-memcmp.c: New file.
* sysdeps/x86_64/x32/tst-size_t-wmemcmp.c: Likewise.
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memchr/wmemchr for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ# 24097]
CVE-2019-6488
* sysdeps/x86_64/memchr.S: Use RDX_LP for length. Clear the
upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memchr and
tst-size_t-wmemchr.
* sysdeps/x86_64/x32/test-size_t.h: New file.
* sysdeps/x86_64/x32/tst-size_t-memchr.c: Likewise.
* sysdeps/x86_64/x32/tst-size_t-wmemchr.c: Likewise.
Before this commit, nss_dns would send a query which did not contain a
host name as the query name (such as invalid\032name.example.com) and
then reject the answer in getanswer_r and gaih_getanswer_slice, using
a check based on res_hnok. With this commit, no query is sent, and a
host-not-found error is returned to NSS without network interaction.
Commit 6923f6db1e ("malloc: Use current
(C11-style) atomics for fastbin access") caused a substantial
performance regression on POWER and Aarch64, and the old atomics,
while hard to prove correct, seem to work in practice.
Since MINSIGSTKSZ may not have sufficent stack space to allow lazy
binding, build tests for minimal signal handler with -Wl,-z,now to
disable lazy binding.
* signal/Makefile (LDFLAGS-tst-minsigstksz-1): New. Set to
-Wl,-z,now.
(LDFLAGS-tst-minsigstksz-2): Likewise.
(LDFLAGS-tst-minsigstksz-3): Likewise.
(LDFLAGS-tst-minsigstksz-3a): Likewise.
(LDFLAGS-tst-minsigstksz-4): Likewise.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
A single underscore was omitted in
sysdeps/powerpc/powerpc64/multiarch/strncmp.c, resulting in use of
power8 version of strncmp instead of power9 version, with significant
performance degradation.
* sysdeps/powerpc/powerpc64/multiarch/strncmp.c: Fix #ifdef.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
There is general agreement that the very short list of things that ISO
C says you can do in an async signal handler should all work when the
handler is running on an alternate signal stack with only MINSIGSTKSZ
space. This patch adds tests to make sure those things do work.
To facilitate this, there is a new set of test support routines for
setting up alternate signal stacks; see support/xsignal.h for the API.
* support/xsignal.h (xalloc_sigstack, xfree_sigstack)
(xget_sigstack_location): New test support functions.
* support/xsigstack.c: New file, implementing them.
* support/tst-xsigstack.c: New test for them.
* support/Makefile: Update.
* signal/tst-minsigstksz-1.c
* signal/tst-minsigstksz-2.c
* signal/tst-minsigstksz-3.c
* signal/tst-minsigstksz-3a.c
* signal/tst-minsigstksz-4.c: New tests.
* signal/Makefile: Run them.
Ignore 112 errors in math/test-ldouble-fma and math/test-ildouble-fma
when IBM 128-bit long double used.
These errors are caused by spurious overflows from libgcc.
* math/libm-test-fma.inc (fma_test_data): Set
XFAIL_ROUNDING_IBM128_LIBGCC to more tests.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
An error "impossible register constraint in 'asm'" was raised on POWER
5 and due to __vector __int128_t being used as operands without passing the
option -msvx to gcc.
This patch replaces "__vector __int128_t" with "__vector unsigned int"
which requires only -maltivec, available since POWER ISA 2.03, and which
is already passed to the compiler.
* sysdeps/powerpc/powerpc64/tst-ucontext-ppc64-vscr.c:
(do_test): Changed __vector __int128_t to __vector unsigned int.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Optimize x86-64 strcat/strncat, strcpy/strncpy and stpcpy/stpncpy with AVX2.
It uses vector comparison as much as possible. In general, the larger the
source string, the greater performance gain observed, reaching speedups of
1.6x compared to SSE2 unaligned routines. Select AVX2 strcat/strncat,
strcpy/strncpy and stpcpy/stpncpy on AVX2 machines where vzeroupper is
preferred and AVX unaligned load is fast.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add
strcat-avx2, strncat-avx2, strcpy-avx2, strncpy-avx2,
stpcpy-avx2 and stpncpy-avx2.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c:
(__libc_ifunc_impl_list): Add tests for __strcat_avx2,
__strncat_avx2, __strcpy_avx2, __strncpy_avx2, __stpcpy_avx2
and __stpncpy_avx2.
* sysdeps/x86_64/multiarch/{ifunc-unaligned-ssse3.h =>
ifunc-strcpy.h}: rename header for a more generic name.
* sysdeps/x86_64/multiarch/ifunc-strcpy.h:
(IFUNC_SELECTOR): Return OPTIMIZE (avx2) on AVX 2 machines if
AVX unaligned load is fast and vzeroupper is preferred.
* sysdeps/x86_64/multiarch/stpcpy-avx2.S: New file
* sysdeps/x86_64/multiarch/stpncpy-avx2.S: Likewise
* sysdeps/x86_64/multiarch/strcat-avx2.S: Likewise
* sysdeps/x86_64/multiarch/strcpy-avx2.S: Likewise
* sysdeps/x86_64/multiarch/strncat-avx2.S: Likewise
* sysdeps/x86_64/multiarch/strncpy-avx2.S: Likewise
This patch fix VSCR position on ucontext. VSCR was read in the wrong
position on ucontext structure because it was ignoring the machine
endianess.
[BZ #24088]
* sysdeps/unix/sysv/linux/powerpc/sys/ucontext.h (vscr_t): Added
ifdef to fix read of VSCR.
* sysdeps/powerpc/powerpc64/Makefile [$subdir == stdlib]: Add
tst-ucontext-ppc64-vscr.c to test list.
* sysdeps/powerpc/powerpc64/tst-ucontext-ppc64-vscr.c: New test file.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
With this patch applied, I get 13 glibc testsuite failures using
TIMEOUTFACTOR=4 on a HiFive Unleashed running Fedora Core 29, using top of
tree binutils and gcc. 5 of those failures are due to a kernel bug. Without
the patch, there are over a hundred failures.
This patch is incidentally similar to the powerpc-nofpu ulps update that
Joseph Myers added a few days ago.
* sysdeps/riscv/rv64/rvd/libm-test-ulps: Update.
Add Ares to the midr_el0 list and support ifunc dispatch. Since Ares
supports 2 128-bit loads/stores, use Neon registers for memcpy by
selecting __memcpy_falkor by default (we should rename this to
__memcpy_simd or similar).
* manual/tunables.texi (glibc.cpu.name): Add ares tunable.
* sysdeps/aarch64/multiarch/memcpy.c (__libc_memcpy): Use
__memcpy_falkor for ares.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_ARES):
Add new define.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.c (cpu_list):
Add ares cpu.
Commit 1294b1892e ("Add support for sqrt asm redirects") added the
-fno-math-errno flag to build most of the glibc in order to enable GCC
to inline math functions. Due to GCC bug #88576, saving and restoring
errno around calls to malloc are optimized-out. In turn this causes
strerror to set errno to ENOMEM if it get passed an invalid error number
and if malloc sets errno to ENOMEM (which might happen even if it
succeeds). This is not allowed by POSIX.
This patch changes the build flags, building only libm with
-fno-math-errno and all the remaining code with -fno-math-errno. This
should be safe as libm doesn't contain any code saving and restoring
errno around malloc. This patch can probably be reverted once the GCC
bug is fixed and available in stable releases.
Tested on x86-64, no regression in the testsuite.
Changelog:
[BZ #24024]
* Makeconfig: Build libm with -fno-math-errno but build the remaining
code with -fmath-errno.
* string/Makefile [$(build-shared)] (tests): Add test-strerror-errno.
[$(build-shared)] (LDLIBS-test-strerror-errno): New variable.
* string/test-strerror-errno.c: New file.
The en_US locale use a 12h am/pm format in both d_fmt and d_t_fmt, which
is correct, but does not define date_fmt. This causes the default value
to be used, which is in 24h format.
This patch adds the date_fmt entry to the en_US locale with the same
value as d_t_fmt as the latter already includes the timezone.
Changelog
[BZ #24046]
* localedata/locales/en_US (date_fmt): Add, set to
"%a %d %b %Y %r %Z".
@var is intended for placeholders (such as function parameters).
Actual variables need to use @code because @var causes upper-case
output, resulting in a different C identifier.
With -O included in CFLAGS it fails to build with:
../sysdeps/ieee754/ldbl-96/e_jnl.c: In function '__ieee754_jnl':
../sysdeps/ieee754/ldbl-96/e_jnl.c:146:20: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrtl (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/ldbl-96/e_jnl.c: In function '__ieee754_ynl':
../sysdeps/ieee754/ldbl-96/e_jnl.c:375:16: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrtl (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/dbl-64/e_jn.c: In function '__ieee754_jn':
../sysdeps/ieee754/dbl-64/e_jn.c:113:20: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrt (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/dbl-64/e_jn.c: In function '__ieee754_yn':
../sysdeps/ieee754/dbl-64/e_jn.c:320:16: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrt (x);
~~~~~~~~~~^~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os:
https://sourceware.org/ml/libc-alpha/2018-09/msg00539.html
[BZ #19444]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Use
__builtin_unreachable for default case in switch.
(__ieee754_yn): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
An attempt to re-create a different PTY under the same name can fail
if the PTY has a very high number. Try to increase the file
descriptor limit in this case, and bail out if this still does not
allow the test to proceed.
This patch wraps all uses of *_{enable,disable}_asynccancel and
and *_CANCEL_{ASYNC,RESET} in either already provided macros
(lll_futex_timed_wait_cancel) or creates new ones if the
functionality is not provided (SYSCALL_CANCEL_NCS, lll_futex_wait_cancel,
and lll_futex_timed_wait_cancel).
Also for some generic implementations, the direct call of the macros
are removed since the underlying symbols are suppose to provide
cancellation support.
This is a priliminary patch intended to simplify the work required
for BZ#12683 fix. It is a refactor change, no semantic changes are
expected.
Checked on x86_64-linux-gnu and i686-linux-gnu.
* nptl/pthread_join_common.c (__pthread_timedjoin_ex): Use
lll_wait_tid with timeout.
* nptl/sem_wait.c (__old_sem_wait): Use lll_futex_wait_cancel.
* sysdeps/nptl/aio_misc.h (AIO_MISC_WAIT): Use
futex_reltimed_wait_cancelable for cancelabla mode.
* sysdeps/nptl/gai_misc.h (GAI_MISC_WAIT): Likewise.
* sysdeps/posix/open64.c (__libc_open64): Do not call cancelation
macros.
* sysdeps/posix/sigwait.c (__sigwait): Likewise.
* sysdeps/posix/waitid.c (__sigwait): Likewise.
* sysdeps/unix/sysdep.h (__SYSCALL_CANCEL_CALL,
SYSCALL_CANCEL_NCS): New macro.
* sysdeps/nptl/lowlevellock.h (lll_wait_tid): Add timeout argument.
(lll_timedwait_tid): Remove macro.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h (lll_wait_tid):
Likewise.
(lll_timedwait_tid): Likewise.
* sysdeps/unix/sysv/linux/sparc/lowlevellock.h (lll_wait_tid):
Likewise.
(lll_timedwait_tid): Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h (lll_wait_tid):
Likewise.
(lll_timedwait_tid): Likewise.
* sysdeps/unix/sysv/linux/clock_nanosleep.c (__clock_nanosleep):
Use INTERNAL_SYSCALL_CANCEL.
* sysdeps/unix/sysv/linux/futex-internal.h
(futex_reltimed_wait_cancelable): Use LIBC_CANCEL_{ASYNC,RESET}
instead of __pthread_{enable,disable}_asynccancel.
* sysdeps/unix/sysv/linux/lowlevellock-futex.h
(lll_futex_wait_cancel): New macro.
The x86 defines optimized THREAD_ATOMIC_* macros where reference always
the current thread instead of the one indicated by input 'descr' argument.
It work as long the input is the self thread pointer, however it generates
wrong code if the semantic is to set a bit atomicialy from another thread.
This is not an issue for current GLIBC usage, however the new cancellation
code expects that some synchronization code to atomically set bits from
different threads.
If some usage indeed proves to be a hotspot we can add an extra macro
with a more descriptive name (THREAD_ATOMIC_BIT_SET_SELF for instance)
where i386 might optimize it.
Checked on i686-linux-gnu.
* sysdeps/i686/nptl/tls.h (THREAD_ATOMIC_CMPXCHG_VAL,
THREAD_ATOMIC_AND, THREAD_ATOMIC_BIT_SET): Remove macros.
The x86 defines optimized THREAD_ATOMIC_* macros where reference always
the current thread instead of the one indicated by input 'descr' argument.
It work as long the input is the self thread pointer, however it generates
wrong code if the semantic is to set a bit atomicialy from another thread.
This is not an issue for current GLIBC usage, however the new cancellation
code expects that some synchronization code to atomically set bits from
different threads.
The generic code generates an additional load to reference to TLS segment,
for instance the code:
THREAD_ATOMIC_BIT_SET (THREAD_SELF, cancelhandling, CANCELED_BIT);
Compiles to:
lock;orl $4, %fs:776
Where with patch changes it now compiles to:
mov %fs:16,%rax
lock;orl $4, 776(%rax)
If some usage indeed proves to be a hotspot we can add an extra macro
with a more descriptive name (THREAD_ATOMIC_BIT_SET_SELF for instance)
where x86_64 might optimize it.
Checked on x86_64-linux-gnu.
* sysdeps/x86_64/nptl/tls.h (THREAD_ATOMIC_CMPXCHG_VAL,
THREAD_ATOMIC_AND, THREAD_ATOMIC_BIT_SET): Remove macros.
With upcoming fix for BZ#12683, pthread cancellation does not act for:
1. If syscall is blocked but with some side effects already having
taken place (e.g. a partial read or write).
2. After the syscall has returned.
The main change is due the fact programs need to act in syscalls with
side-effects (for instance, to avoid leak of allocated resources or
handle partial read/write).
This patch changes the NPTL testcase that assumes the old behavior and
also changes the tst-backtrace{5,6} to ignore the cancellable wrappers.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
aarch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
powerpc-linux-gnu, sparcv9-linux-gnu, and sparc64-linux-gnu.
* debug/tst-backtrace5.c (handle_signal): Avoid cancellable wrappers
in backtrace analysis.
* nptl/tst-cancel4.c (tf_write): Handle cancelled syscall with
side-effects.
(tf_send): Likewise.
bits/hwcap.h should be updated together with dl-procinfo.c.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h: Add comment.
* sysdeps/unix/sysv/linux/aarch64/dl-procinfo.c (_DL_HWCAP_COUNT):
Update.
Austin Group issue #411 [1] proposes that posix_spawn file action
posix_spawn_file_actions_adddup2 resets the close-on-exec when
source and destination refer to same file descriptor.
It solves the issue on multi-thread applications which uses
close-on-exec as default, and want to hand-chose specifically
file descriptor to purposefully inherited into a child process.
Current approach to achieve this scenario is to use two adddup2 file
actions and a temporary file description which do not conflict with
any other, coupled with a close file action to avoid leaking the
temporary file descriptor. This approach, besides being complex,
may fail with EMFILE/ENFILE file descriptor exaustion.
This can be more easily accomplished with an in-place removal of
FD_CLOEXEC. Although the resulting adddup2 semantic is slight
different than dup2 (equal file descriptors should be handled as
no-op), the proposed possible solution are either more complex
(fcntl action which a limited set of operations) or results in
unrequired operations (dup3 which also returns EINVAL for same
file descriptor).
Checked on aarch64-linux-gnu.
[BZ #23640]
* posix/tst-spawn.c (do_prepare, handle_restart, do_test): Add
posix_spawn_file_actions_adddup2 test to check O_CLOCEXEC reset.
* sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Add
close-on-exec reset for adddup2 file action.
* sysdeps/posix/spawni.c (__spawni_child): Likewise.
[1] http://austingroupbugs.net/view.php?id=411
The only difference between noncompliant and C99-compliant scanf is
that the former accepts the archaic GNU extension '%as' (also %aS and
%a[...]) meaning to allocate space for the input string with malloc.
This extension conflicts with C99's use of %a as a format _type_
meaning to read a floating-point number; POSIX.1-2008 standardized
equivalent functionality using the modifier letter 'm' instead (%ms,
%mS, %m[...]).
The extension was already disabled in most conformance modes:
specifically, any mode that doesn't involve _GNU_SOURCE and _does_
involve either strict conformance to C99 or loose conformance to both
C99 and POSIX.1-2001 would get the C99-compliant scanf. With
compilers new enough to use -std=gnu11 instead of -std=gnu89, or
equivalent, that includes the default mode.
With this patch, we now provide C99-compliant scanf in all
configurations except when _GNU_SOURCE is defined *and*
__STDC_VERSION__ or __cplusplus (whichever is relevant) indicates
C89/C++98. This leaves the old scanf available under e.g. -std=c89
-D_GNU_SOURCE, but removes it from e.g. -std=gnu11 -D_GNU_SOURCE (it
was already not present under -std=gnu11 without -D_GNU_SOURCE) and
from -std=gnu89 without -D_GNU_SOURCE.
There needs to be an internal override so we can compile the
noncompliant scanf itself. This is the same problem we had when we
removed 'gets' from _GNU_SOURCE and it's dealt with the same way:
there's a new __GLIBC_USE symbol, DEPRECATED_SCANF, which defaults to
off under the appropriate conditions for external code, but can be
overridden by individual files within stdio.
We also run into problems with PLT bypass for internal uses of sscanf,
because libc_hidden_proto uses __REDIRECT and so does the logic in
stdio.h for choosing which implementation of scanf to use; __REDIRECT
isn't transitive, so include/stdio.h needs to bridge the gap with a
macro. As far as I can tell, sscanf is the only function in this
family that's internally called by unrelated code.
Finally, there are several tests in stdio-common that use the
extension. bug21.c is a regression test for a crash; it still
exercises the relevant code when changed to use %ms instead of %as.
scanf14.c through scanf17.c are more complicated since they are
actually testing the subtleties of the extension - under what
circumstances is 'a' treated as a modifier letter, etc. I changed all
of them to use %ms instead of %as as well, but duplicated scanf14.c
and scanf16.c as scanf14a.c and scanf16a.c. These still use %as and
are compiled with -std=gnu89 to access the old extension. A bunch of
diagnostic overrides and manual workarounds for the old stdio.h
behavior become unnecessary. Yay!
* include/features.h (__GLIBC_USE_DEPRECATED_SCANF): New __GLIBC_USE
parameter. Only use deprecated scanf when __USE_GNU is defined
and __STDC_VERSION__ is less than 199901L or __cplusplus is less
than 201103L, whichever is relevant for the language being compiled.
* libio/stdio.h, libio/bits/stdio-ldbl.h: Decide whether to redirect
scanf, fscanf, sscanf, vscanf, vfscanf, and vsscanf to their
__isoc99_ variants based only on __GLIBC_USE (DEPRECATED_SCANF).
* wcsmbs/wchar.h: wcsmbs/bits/wchar-ldbl.h: Likewise for
wscanf, fwscanf, swscanf, vwscanf, vfwscanf, and vswscanf.
* libio/iovsscanf.c
* libio/fwscanf.c
* libio/iovswscanf.c
* libio/swscanf.c
* libio/vscanf.c
* libio/vwscanf.c
* libio/wscanf.c
* stdio-common/fscanf.c
* stdio-common/scanf.c
* stdio-common/vfscanf.c
* stdio-common/vfwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-compat.c
* sysdeps/ieee754/ldbl-opt/nldbl-fscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-fwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-iovfscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-scanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-sscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-swscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vfscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vfwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vsscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vswscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-wscanf.c:
Override __GLIBC_USE_DEPRECATED_SCANF to 1.
* stdio-common/sscanf.c: Likewise. Remove ldbl_hidden_def for __sscanf.
* stdio-common/isoc99_sscanf.c: Add libc_hidden_def for __isoc99_sscanf.
* include/stdio.h: Provide libc_hidden_proto for __isoc99_sscanf,
not sscanf.
[!__GLIBC_USE (DEPRECATED_SCANF)]: Define sscanf as __isoc99_scanf
with a preprocessor macro.
* stdio-common/bug21.c, stdio-common/scanf14.c:
Use %ms instead of %as, %mS instead of %aS, %m[] instead of %a[];
remove DIAG_IGNORE_NEEDS_COMMENT for -Wformat.
* stdio-common/scanf16.c: Likewise. Add __attribute__ ((format (scanf)))
to xscanf, xfscanf, xsscanf.
* stdio-common/scanf14a.c: New copy of scanf14.c which still uses
%as, %aS, %a[]. Remove DIAG_IGNORE_NEEDS_COMMENT for -Wformat.
* stdio-common/scanf16a.c: New copy of scanf16.c which still uses
%as, %aS, %a[]. Add __attribute__ ((format (scanf))) to xscanf,
xfscanf, xsscanf.
* stdio-common/scanf15.c, stdio-common/scanf17.c: No need to
override feature selection macros or provide definitions of u_char etc.
* stdio-common/Makefile (tests): Add scanf14a and scanf16a.
(CFLAGS-scanf15.c, CFLAGS-scanf17.c): Remove.
(CFLAGS-scanf14a.c, CFLAGS-scanf16a.c): New. Compile these files
with -std=gnu89.
This patch consolidates the Linux termios.h by removing the arch-specific
one.
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/termios-misc.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Remove file.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios-misc.h: New file.
* sysdeps/unix/sysv/linux/bits/termios.h: Include termios-misc.h.
It is used only on hurd.
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/bits/termios.h (_IOT_termios): Remove.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants for use with tcflow
in its own header. The Linux generic implementation values match the
kernel UAPI and each architecture with deviate values have their own
implementation (currently only mips).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-tcflow.h.
* sysdeps/unix/sysv/linux/bits/termios-tcflow.h: New file.
* sysdeps/unix/sysv/linux/mips/bits/termios-tcflow.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (TCSANOW, TCSADRAIN,
TCSAFLUSH): Move to termios-tcflow.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for local
mode with c_lflag member on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha, mips, and powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-c_lflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_lflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_lflag.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios-c_lflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_lflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (ISIG, ISCANON, ECHO, ECHOE,
ECHOK, ECHONL, NOFLSH, TOSTOP, IEXTEN): Move to termios-c_lflag.h.
[__USE_MISC || (__USE_XOPEN && !__USE_XOPEN2K)] (XCASE): Likewise.
[__USE_MISC] (ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, PENDIN, EXTPROC):
Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for output
mode with c_cflag memver on its own header. The Linux generic
implementation values match the kernel UAPI and each architecture with
deviate values have their own implementation (in this case alpha and
powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-c_cflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_cflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_cflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_cflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (CSIZE, CS5, CS6, CS7, CS8,
CSTOPB, CREAD, PARENB, PARODD, HUPCL, CLOCAL): Move to
termios-c_cflag.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for baud rates
selection used along with speed_t on its own header. The Linux generic
implementation values match the kernel UAPI and each architecture with
deviate values have their own implementation (in this case alpha and
powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
[BZ #23783]
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-baud.h.
* sysdeps/unix/sysv/linux/bits/termios-baud.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-baud.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-baud.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-baud.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h (B57600, B115200,
B230400, B460800, B500000, B576000, B921600, B1000000, B1152000,
B1500000, B2000000, B2500000, B3000000, B3500000, B4000000,
__MAX_BAUD): Move to termios-baud.h.
[__USE_MISC] (CBAUD, CBAUDEX): Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used for ouput
modes with c_oflag member on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha, powerpc, and sparc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdep_routines): Add
termios-c_oflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_oflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_oflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_oflag.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-c_oflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (OPOST, OLCUC, ONLCR, OCRNL,
ONOCR, ONLRET, OFILL, OFDEL, VTDLY, VT0, VT1): Move to
termios-c_oflag.h.
[__USE_MISC || __USE_XOPEN] (NLDLY, NL0, NL1, CRDLY, CR0, CR1, CR2,
CR3, TABDLY, TAB0, TAB1, TAB2, TAB3, BSDLY, BS0, BS1, FFDLY, FF0,
FFR1): Likewise.
[USE_MISC] (XTABS): Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h Likewise.
This patch consolidates the termios symbolic constants used for input
modes with c_iflag member on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha and powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_headers): Add
termios-c_iflag.h.
* sysdeps/unix/sysv/linux/bits/termios-c_iflag.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_iflag.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_iflag.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (IGNBRK, BRKINT, IGNPAR, PARMRK,
INPCK, ISTRIP, INLCR, IGNCR, ICRNL, IXON, IXOFF, IXANY, IUCLC, IMAXBEL,
IUTF8): Move to termios-c_iflag.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the termios symbolic constants used as subscript
for the array c_cc on its own header. The Linux generic implementation
values match the kernel UAPI and each architecture with deviate values
have their own implementation (in this case alpha, mips64, sparc64, and
powerpc).
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_headers): Add
termios-cc.h.
* sysdeps/unix/sysv/linux/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/termios-c_cc.h: New file.
* sysdeps/unix/sysv/linux/mips/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-c_cc.h: Likewise.
* sysdeps/unix/sysv/linux/bits/termios.h (VINTR, VQUIT, VERASE,
VKILL, VEOF, VTIME, VMIN, VSWTC, VSTART, VSTOP, VSUSP, VEOL,
VREPRINT, VDISCARD, VWERASE, VLNEXT, VEOLF2): Move to termios-cc.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h: Likewise.
This patch consolidates the struct termios definition on its own header
and adds arch-defined ones for ABIs that deviate from generic
implementation. They are:
- alpha which has a slight different layout than generic one (c_cc
field is defined prior c_line).
- sparc and mips which do not have the c_ispeed/c_ospeed fields.
No semantic change is expected, checked on a build against x86_64-linux-gnu,
alpha-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/bits/termios-struct.h: New file.
* sysdeps/unix/sysv/linux/bits/termios-struct.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios-struct.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios-struct.h: Likewise.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
termios-struct.h.
* sysdeps/unix/sysv/linux/bits/termios.h (struct termios): Move to
termios-struct.h.
* sysdeps/unix/sysv/linux/alpha/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/mips/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h (struct termios):
Likewise.
* sysdeps/unix/sysv/linux/kernel_termios.h (_HAVE_C_ISPEED,
_HAVE_C_OSPEED): Define.
* sysdeps/unix/sysv/linux/mips/kernel_termios.h (_HAVE_C_ISPEED,
_HAVE_C_OSPEED): Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel_termios.h (_HAVE_C_ISPEED,
_HAVE_C_OSPEED): Likewise.
* sysdeps/unix/sysv/linux/speed.c [_HAVE_STRUCT_TERMIOS_C_OSPEED]
(cfsetospeed): Check for define value instead of existence.
[_HAVE_STRUCT_TERMIOS_C_ISPEED] (cfsetispeed): Likewise.
* sysdeps/unix/sysv/linux/tcgetattr.c [_HAVE_STRUCT_TERMIOS_C_ISPEED
&& _HAVE_C_ISPEED] (__tcgetattr): Likewise.
* sysdeps/unix/sysv/linux/tcsetattr.c [_HAVE_STRUCT_TERMIOS_C_ISPEED
&& _HAVE_C_ISPEED] (__tcsetattr): Likewise.
This patch defines TIOCSER_TEMT on all architectures using the __USE_MISC
guards similar to BZ#17782 fix. Latest Linux UAPI defines TIOCSER_TEMT
with the same value for all architectures, so it is safe to use the value
as default for all ABIs.
Checked on x86_64linux-gnu and build against sparc64-linux-gnu and
powerpc64le-linux-gnu.
[BZ #17783]
* sysdeps/unix/sysv/linux/bits/termios.h [__USE_MISC] (TIOCSER_TEMT):
Define.
* sysdeps/unix/sysv/linux/powerpc/bits/termios.h [__USE_MISC]
(TIOCSER_TEMT): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/termios.h [__USE_MISC]
(TEOCSER_TEMT): Likewise.
This patch updates the Linux kernel version in tst-mman-consts.py to
4.20 (meaning that's the version for which glibc is expected to have
the same constants as the kernel, up to the exceptions listed in the
test). (Once we have more such tests sharing common infrastructure, I
expect the kernel version will be something set in the infrastructure
shared by all such tests, rather than something needing updating
separately for each test for each new kernel version.)
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/tst-mman-consts.py (main): Expect
constants to match with Linux 4.20.
The pre-ARMv7 CPUs are missing atomic compare and exchange and/or
barrier instructions. Therefore those are implemented using kernel
assistance, calling a kernel function at a specific address, and passing
the arguments in the r0 to r4 registers. This is done by specifying
registers for local variables. The a_ptr variable is placed in the r2
register and declared with __typeof (mem). According to the GCC
documentation on local register variables, if mem is a constant pointer,
the compiler may substitute the variable with its initializer in asm
statements, which may cause the corresponding operand to appear in a
different register.
This happens in __libc_start_main with the pointer to the thread counter
for static binaries (but not the shared ones):
# ifdef SHARED
unsigned int *ptr = __libc_pthread_functions.ptr_nthreads;
# ifdef PTR_DEMANGLE
PTR_DEMANGLE (ptr);
# endif
# else
extern unsigned int __nptl_nthreads __attribute ((weak));
unsigned int *const ptr = &__nptl_nthreads;
# endif
This causes static binaries using threads to crash when the GNU libc is
built with GCC 8 and most notably tst-cancel21-static.
To fix that, use the same trick than for the volatile qualifier,
defining a_ptr as a union.
Changelog:
[BZ #24034]
* sysdeps/unix/sysv/linux/arm/atomic-machine.h
(__arm_assisted_compare_and_exchange_val_32_acq): Use uint32_t rather
than __typeof (...) for the a_ptr variable.
According to ISO C99, passing the same buffer as source and destination
to sprintf, snprintf, vsprintf, or vsnprintf has undefined behavior.
Until the commit
commit 4e2f43f842
Author: Zack Weinberg <zackw@panix.com>
Date: Wed Mar 7 14:32:03 2018 -0500
Use PRINTF_FORTIFY instead of _IO_FLAGS2_FORTIFY (bug 11319)
a call to sprintf or vsprintf with overlapping buffers, for instance
vsprintf (buf, "%sTEXT", buf), would append `TEXT' into buf, while a
call to snprintf or vsnprintf would override the contents of buf.
After the aforementioned commit, the behavior of sprintf and vsprintf
changed (so that they also override the contents of buf).
This patch reverts this behavioral change, because it will likely break
applications that rely on the previous behavior, even though it is
undefined by ISO C. As noted by Szabolcs Nagy, this is used in SPEC2017
507.cactuBSSN_r/src/PUGH/PughUtils.c:
sprintf(mess," Size:");
for (i=0;i<dim+1;i++)
{
sprintf(mess,"%s %d",mess,pughGH->GFExtras[dim]->nsize[i]);
}
More important to notice is the fact that the overwriting of the
destination buffer is not the only behavior affected by the refactoring.
Before the refactoring, sprintf and vsprintf would use _IO_str_jumps,
whereas __sprintf_chk and __vsprintf_chk would use _IO_str_chk_jumps.
After the refactoring, all use _IO_str_chk_jumps, which would make
sprintf and vsprintf report buffer overflows and terminate the program.
This patch also reverts this behavior, by installing the appropriate
jump table for each *sprintf functions.
Apart from reverting the changes, this patch adds a test case that has
the old behavior hardcoded, so that regressions are noticed if something
else unintentionally changes the behavior.
Tested for powerpc64le.
This patch adds the IPV6_MULTICAST_ALL constant from Linux 4.20 to
bits/in.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/bits/in.h (IPV6_MULTICAST_ALL): New
macro.
This patch adds the PACKET_IGNORE_OUTGOING constant from Linux 4.20 to
netpacket/packet.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/netpacket/packet.h
(PACKET_IGNORE_OUTGOING): New macro.
This patch adds the HWCAP_SSBS constant from Linux 4.20 to the AArch64
bits/hwcap.h.
Tested with build-many-glibcs.py for aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h (HWCAP_SSBS): New
macro.
This patch updates sysdeps/unix/sysv/linux/syscall-names.list for
Linux 4.20. Although there are no new syscalls, the
riscv_flush_icache syscall has moved to asm/unistd.h (previously in
asm/syscalls.h) and so now needs to be added to the list.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.20.
(riscv_flush_icache): New syscall.
This patch updates some miscellaneous files from their upstream
sources (thereby bringing in copyright date updates for some of those
files).
Tested for x86_64, including "make pdf".
* manual/texinfo.tex: Update to version 2018-12-28.17 with
trailing whitespace removed.
* scripts/config.guess: Update to version 2019-01-01.
* scripts/config.sub: Update to version 2019-01-01.
* scripts/move-if-change: Update from gnulib.
This patch updates files coming from tzcode to the versions in tzcode
2018i. No changes elsewhere in glibc were needed.
Tested for x86_64.
* timezone/zdump.c: Update from tzcode 2018i.
* timezone/zic.c: Likewise.
From the glibc point of view, this removes duplicate macro
definitions and is obviously safe.
From the Gnulib point of view, this pacifies xlc 12.01 on AIX 7.1.
* posix/regex_internal.h:
(__attribute__, __attribute_warn_unused_result__):
Remove; already defined elsewhere.
This commit removes the custom memcpy implementation from _int_realloc
for small chunk sizes. The ncopies variable has the wrong type, and
an integer wraparound could cause the existing code to copy too few
elements (leaving the new memory region mostly uninitialized).
Therefore, removing this code fixes bug 24027.
<asm/syscalls.h> has been removed by
commit 27f8899d6002e11a6e2d995e29b8deab5aa9cc25
Author: David Abdurachmanov <david.abdurachmanov@gmail.com>
Date: Thu Nov 8 20:02:39 2018 +0100
riscv: add asm/unistd.h UAPI header
Marcin Juszkiewicz reported issues while generating syscall table for riscv
using 4.20-rc1. The patch refactors our unistd.h files to match some other
architectures.
- Add asm/unistd.h UAPI header, which has __ARCH_WANT_NEW_STAT only for 64-bit
- Remove asm/syscalls.h UAPI header and merge to asm/unistd.h
- Adjust kernel asm/unistd.h
So now asm/unistd.h UAPI header should show all syscalls for riscv.
<asm/syscalls.h> may be restored by
Subject: [PATCH] riscv: restore asm/syscalls.h UAPI header
Date: Tue, 11 Dec 2018 09:09:35 +0100
UAPI header asm/syscalls.h was merged into UAPI asm/unistd.h header,
which did resolve issue with missing syscalls macros resulting in
glibc (2.28) build failure. It also broke glibc in a different way:
asm/syscalls.h is being used by glibc. I noticed this while doing
Fedora 30/Rawhide mass rebuild.
The patch returns asm/syscalls.h header and incl. it into asm/unistd.h.
I plan to send a patch to glibc to use asm/unistd.h instead of
asm/syscalls.h
In the meantime, we use __has_include__, which was added to GCC 5, to
check if <asm/syscalls.h> exists before including it. Tested with
build-many-glibcs.py for riscv against kernel 4.19.12 and 4.20-rc7.
[BZ #24022]
* sysdeps/unix/sysv/linux/riscv/flush-icache.c: Check if
<asm/syscalls.h> exists with __has_include__ before including it.
* hurd/lookup-retry: Include <unistd.h>.
(__hurd_file_name_lookup_retry): Keep a ref on last result in `lastdir'.
Release it on return. Handle "pid" magical lookup retry.
It has been discovered that some locales use the 12-hour time formats but
do not use any AM/PM indicator thus making the time ambiguous. This
commit adds "%p" wherever it was missing. In some cases it has been
identified that a locale should use 24-hour time format rather than
12-hour. All time formats come from CLDR but this commit introduces as
few changes as possible (for example, it tries not to change the time zone
display). For the locales which are not supported by CLDR the consistency
with similar locales (which means the same language or the same country)
has been preserved: if the time formats were the same before the change
then they are still the same after the change.
The time format updates can be roughly summarized as follows:
* Most of the locales of Djibouti, Eritrea, and Ethiopia now use
"%l:%M:%S %p".
* Most of the locales of India and some surrounding countries (Bangladesh,
Nepal etc.) now use "%I:%M:%S %p %Z".
* Most of the Arabic locales now use "%Z %I:%M:%S %p".
* Ge'ez language (Eritrea and Ethiopia) now uses "%l:%M:%S፡%p" (note the
consistent use of Ethiopic wordspace character).
* Tamil (India) now uses "%p %I:%M:%S %Z".
* Chinese (Hong Kong) t_fmt now uses "%p %I<U6642>%M<U5206>%S<U79D2> %Z".
* Additionally, the following locales have been switched from 12-hour time
formats to 24-hour, according to CLDR: Arabic (Morocco), Maltese, Somali
(Kenya), and Tamil (Sri Lanka).
* Finally, the Bulgarian, Czech, and Slovak locales used 24-hour time
format correctly but their t_fmt_ampm field was not empty containing
12-hour time format which was incorrect so it is now replaced with an
empty string.
[BZ #10496]
* localedata/locales/aa_DJ (t_fmt): Set to "%l:%M:%S %p".
(t_fmt_ampm): Likewise.
* localedata/locales/aa_ER (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/aa_ER@saaho (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/aa_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/am_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/byn_ER (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/om_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/sid_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/so_DJ (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/so_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/so_SO (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/ti_ER (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/ti_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/tig_ER (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/wal_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/anp_IN (t_fmt): Set to "%I:%M:%S %p %Z".
* localedata/locales/ar_IN (t_fmt): Likewise.
* localedata/locales/bhb_IN (t_fmt): Likewise.
* localedata/locales/bho_IN (t_fmt): Likewise.
* localedata/locales/bi_VU (t_fmt): Likewise.
* localedata/locales/bn_BD (t_fmt): Likewise.
* localedata/locales/bn_IN (t_fmt): Likewise.
* localedata/locales/brx_IN (t_fmt): Likewise.
* localedata/locales/doi_IN (t_fmt): Likewise.
* localedata/locales/en_HK (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/en_IN (t_fmt): Likewise.
* localedata/locales/en_PH (t_fmt): Likewise.
* localedata/locales/gu_IN (t_fmt): Likewise.
* localedata/locales/hi_IN (t_fmt): Likewise.
* localedata/locales/hif_FJ (t_fmt): Likewise.
* localedata/locales/hne_IN (t_fmt): Likewise.
* localedata/locales/kn_IN (t_fmt): Likewise.
* localedata/locales/kok_IN (t_fmt): Likewise.
* localedata/locales/ks_IN (t_fmt): Likewise.
* localedata/locales/ks_IN@devanagari (t_fmt): Likewise.
* localedata/locales/mag_IN (t_fmt): Likewise.
* localedata/locales/mai_IN (t_fmt): Likewise.
* localedata/locales/mjw_IN (t_fmt): Likewise.
* localedata/locales/ml_IN (t_fmt): Likewise.
* localedata/locales/mni_IN (t_fmt): Likewise.
* localedata/locales/mr_IN (t_fmt): Likewise.
* localedata/locales/ms_MY (t_fmt): Likewise.
* localedata/locales/pa_IN (t_fmt): Likewise.
* localedata/locales/raj_IN (t_fmt): Likewise.
* localedata/locales/sa_IN (t_fmt): Likewise.
* localedata/locales/sat_IN (t_fmt): Likewise.
* localedata/locales/sd_IN (t_fmt): Likewise.
* localedata/locales/sd_IN@devanagari (t_fmt): Likewise.
* localedata/locales/tcy_IN (t_fmt): Likewise.
* localedata/locales/the_NP (t_fmt): Likewise.
* localedata/locales/to_TO (t_fmt): Likewise.
* localedata/locales/ur_IN (t_fmt): Likewise.
* localedata/locales/hif_FJ (d_t_fmt): Set to
"%A %d %b %Y %I:%M:%S %p".
(date_fmt): Add, set to "%A %d %b %Y %I:%M:%S %p %Z".
* localedata/locales/ar_AE (t_fmt): Set to "%Z %I:%M:%S %p".
* localedata/locales/ar_BH (t_fmt): Likewise.
* localedata/locales/ar_DZ (t_fmt): Likewise.
* localedata/locales/ar_EG (t_fmt): Likewise.
* localedata/locales/ar_IQ (t_fmt): Likewise.
* localedata/locales/ar_JO (t_fmt): Likewise.
* localedata/locales/ar_KW (t_fmt): Likewise.
* localedata/locales/ar_LB (t_fmt): Likewise.
* localedata/locales/ar_LY (t_fmt): Likewise.
* localedata/locales/ar_OM (t_fmt): Likewise.
* localedata/locales/ar_QA (t_fmt): Likewise.
* localedata/locales/ar_SD (t_fmt): Likewise.
* localedata/locales/ar_SS (t_fmt): Likewise.
* localedata/locales/ar_SY (t_fmt): Likewise.
* localedata/locales/ar_TN (t_fmt): Likewise.
* localedata/locales/ar_YE (t_fmt): Likewise.
* localedata/locales/gez_ER (t_fmt): Set to "%l:%M:%S<U1361>%p".
(t_fmt_ampm): Likewise.
* localedata/locales/gez_ET (t_fmt): Likewise.
(t_fmt_ampm): Likewise.
* localedata/locales/ta_IN (t_fmt): Set to "%p %I:%M:%S %Z".
(t_fmt_ampm): Likewise.
(d_t_fmt): Set to "%A %d %B %Y %p %I:%M:%S %Z".
* localedata/locales/zh_HK (t_fmt):
Set to "%p %I<U6642>%M<U5206>%S<U79D2> %Z".
* localedata/locales/ar_MA (t_fmt_ampm): Set to "" (empty string)
because this locale does not use the 12-hour clock.
(t_fmt): Set to "%Z %H:%M:%S".
(d_t_fmt): Set to "%d %b, %Y %Z %H:%M:%S".
* localedata/locales/mt_MT (t_fmt_ampm): Set to "" (empty string)
because this locale does not use the 12-hour clock.
(t_fmt): Set to "%H:%M:%S %Z".
(d_t_fmt): Set to "%A, %d ta %b, %Y %H:%M:%S %Z".
* localedata/locales/so_KE (t_fmt_ampm): Set to "" (empty string)
because this locale does not use the 12-hour clock.
(t_fmt): Set to "%T".
(d_t_fmt): Set to "%A, %B %e, %Y %X %Z".
(date_fmt): Set to "%A, %B %e, %X %Z %Y".
* localedata/locales/ta_LK (t_fmt_ampm): Set to "" (empty string)
because this locale does not use the 12-hour clock.
(t_fmt): Set to "%H:%M:%S %Z".
(d_t_fmt): Set to "%A %d %B %Y %H:%M:%S %Z".
* localedata/locales/bg_BG (t_fmt_ampm): Set to "" (empty string)
because this locale does not use the 12-hour clock.
* localedata/locales/cs_CZ (t_fmt_ampm): Likewise.
* localedata/locales/sk_SK (t_fmt_ampm): Likewise.
Albanian locale uses the 12-hour clock but some time formats did not
use any AM/PM indicator making the time ambiguous. This commit adds
"%p" wherever it was missing.
It also sets the correct date format because the old "%Y-%b-%d" produced
rather weird results like "2018-Sht-28".
All time formats come from CLDR but as few changes have been introduced
by this commit as possible. Some articles from MSDN and other available
online sources have been also taken into account.
[BZ #10496]
[BZ #23724]
* localedata/locales/sq_AL (t_fmt): Set to "%I:%M:%S.%p %Z".
(t_fmt_ampm): Likewise.
(d_t_fmt): Set to "%a %-d %b %Y %I:%M:%S.%p".
(date_fmt): Add, set to "%a %-d %b %Y %I:%M:%S.%p %Z".
(d_fmt): Set to "%-d.%-m.%y".
This simplifies the code, by removing stuff intended for porting
to Gnulib but no longer needed there.
* posix/regcomp.c [!_LIBC]: No need to put #ifdef _LIBC around
uses of libc_hidden_def, weak_alias.
* posix/regcomp.c, posix/regexec.c: Use __restrict rather than
_Restrict_ except for public-facing headers.
* posix/regex_internal.h (attribute_hidden) [!_LIBC]:
Remove; already defined elsewhere.
* posix/regex.c, posix/regex_internal.h:
Use __GNUC_PREREQ instead of rolling our own.
* posix/regex_internal.h (__GNUC_PREREQ): Remove duplicate defn.
The current bench-strlen compares against a slow byte-oriented strlen which
is not useful given it's too easy to beat. Remove it and compare against the
generic C strlen version and memchr.
* benchtests/bench-strlen.c (generic_strlen): New function.
(memchr_strlen): New function.
The current s_sincosf.c is faster than s_sincosf-sse2.S. On Broadwell
with FMA disabled, bench-sincosf shows:
Before After Improvement
max 154.032 114.517 34%
min 6.25 5.609 11%
mean 14.8728 12.8589 15%
* sysdeps/x86_64/fpu/s_sincosf.S: Removed.
* sysdeps/x86_64/fpu/multiarch/s_sincosf-sse2.S: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_sincosf-sse2.c: New file.
Add <sincosf_poly.h> and include it in s_sincosf.h to allow vectorized
sincosf_poly. Add x86 sincosf_poly.h to vectorize sincosf_poly. On
Broadwell, bench-sincosf shows:
Before After Improvement
max 160.273 114.198 40%
min 6.25 5.625 11%
mean 13.0325 10.6462 22%
Vectorized sincosf_poly shows
Before After Improvement
max 138.653 114.198 21%
min 5.004 5.625 -11%
mean 11.5934 10.6462 9%
Tested on x86-64 and i686 as well as with build-many-glibcs.py.
* sysdeps/ieee754/flt-32/s_sincosf.h: Include <sincosf_poly.h>.
(sincos_t, sincosf_poly, sinf_poly): Moved to ...
* sysdeps/ieee754/flt-32/sincosf_poly.h: Here. New file.
* sysdeps/x86/fpu/s_sincosf_data.c: New file.
* sysdeps/x86/fpu/sincosf_poly.h: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: Just include
<sysdeps/ieee754/flt-32/s_sincosf.c>.
The recent difftime changes introduced localplt test failures on nios2
and sparc32, two configurations where some soft-fp functions are
defined in / exported from libc.so, and where the difftime changes
affected the particular set of floating-point operations used in
libc.so. This patch adds those functions to localplt.data, alongside
other such functions already there. (In the sparc32 case, and more
generally on any platform where long double is a software
floating-point type, it would probably be more efficient to avoid
using long double at all in difftime, but that's a pre-existing
issue.)
Tested with build-many-glibcs.py for its nios2 and sparcv9
configurations.
[BZ #24023]
* sysdeps/unix/sysv/linux/nios2/localplt.data: Allow __floatundidf
PLT reference in libc.so.
* sysdeps/unix/sysv/linux/sparc/sparc32/localplt.data: Allow
_Q_lltoq and _Q_qtod PLT references in libc.so.
This patch updates longlong.h from GCC. There were no local changes
in glibc (the previous version was identical to the r232143 GCC
version, apart from copyright dates which had been updated in both
places), so this patch makes it identical to the version in GCC again.
Tested for x86_64 and x86. Also tested with build-many-glibcs.py for
its RISC-V configurations, as the glibc architecture with the most
substantial changes in longlong.h in this patch.
* stdlib/longlong.h: Update from GCC.
We know that building glibc with GCC 4.9 is broken on various
platforms (bug 23993). As it's more than a year since we last
increased the minimum GCC version to build glibc, this patch changes
the requirement to be GCC 5 or later (indeed, based on 4.9 having been
required for building 2.26, it would be consistent in terms of timing
to require GCC 6 or later from the 2.30 release onwards). It
deliberately just updates the configure test and corresponding
documentation, leaving removal of no-longer-needed __GNUC_PREREQ tests
for a separate patch.
In the NEWS entry, the requirement for a newer GCC version for
powerpc64le is reiterated (as in the entry for the 4.9 requirement in
2.26) to avoid suggesting the version requirement there has gone down.
(If that version goes up further as part of support for binary128 long
double, of course the wording would change at that time.)
Tested for x86_64.
[BZ #23993]
* configure.ac (libc_cv_compiler_ok): Require GCC 5 or later.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Update minimum GCC
version.
* INSTALL: Regenerated.
Provide a 64-bit-time version of __difftime (but do not assume
__time64_t is a signed int so that Gnulib can reuse the code)
and make the 32-bit version a wrapper of it.
Current difftime expects two time_t arguments and returns a
double. To preserve source-code compatibility, its 64-bit-time
equivalent expects two __time64_t arguments but still returns
a double.
This patch was tested by running 'make check' on branch
master then applying this patch and its two predecessors and
running 'make check' again, and checking that both 'make check'
yield identical results. This was done on x86_64-linux-gnu and
i686-linux-gnu.
This patch was also functionally tested with an ad hoc userland
C program which checks the result of difftime for various pairs
of 32-bit and, for 64-bit builds, of 64-bit time_t values too.
The program was built and run against a glibc with and without
the patch, and the results compared to ensure the patch does
not change the behavior of difftime.
* include/time.h (__difftime64): Add.
* time/difftime.c (subtract): convert to 64-bit time.
* time/difftime.c (__difftime64): Add.
* time/difftime.c (__difftime): Wrap around __difftime64.
After previous cleanups, the only code in the x86 bits/mathinline.h
that is relevant with current compilers is the inline of
__ieee754_atan2l that is conditional on __LIBC_INTERNAL_MATH_INLINES
(i.e. for when libm itself is being built).
This inline is something that does belong in glibc not GCC, since
__ieee754_atan2l is a purely internal function name. This patch moves
that inline to a new sysdeps/x86/fpu/math_private.h, removing the
bits/mathinline.h header.
Note that previously the inline was only for non-SSE 32-bit x86. That
condition does not make sense, however, for a long double function; if
it's not inlined, exactly the same x87 instruction will end up getting
used by the out-of-line function, for both 32-bit and 64-bit. So that
condition is not retained in the new version.
Tested for x86_64 and x86. As expected, installed stripped shared
libraries are unchanged for 32-bit x86, but installed stripped libm.so
is changed for x86_64 because calls to __ieee754_atan2l start being
inlined where previously they were out of line calls. (The same
change to start inlining the function would presumably also apply for
32-bit built with -mfpmath=sse, but that's not a configuration I've
tested.)
* sysdeps/x86/fpu/math_private.h: New file.
* sysdeps/x86/fpu/bits/mathinline.h: Remove.
Continuing the removal of bits/mathinline.h inlines that would better
be done by the compiler, this patch removes x86 inlines for sinh, cosh
and tanh functions (inlines only previously present for fast-math,
non-SSE 32-bit x86). I've filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88556> for adding such
inlines as an optimization in GCC.
I believe the only remaining part of the x86 bits/mathinline.h that
does anything useful with current compilers after this patch is the
__LIBC_INTERNAL_MATH_INLINES inline of __ieee754_atan2l; I intend to
remove the whole header and move that inline to a sysdeps
math_private.h header in a subsequent patch.
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h (sinh): Remove inline
definition.
(cosh): Likewise.
(tanh): Likewise.
Add support for AT_L1I_CACHESIZE, AT_L1I_CACHEGEOMETRY,
AT_L1D_CACHESIZE, AT_L1D_CACHEGEOMETRY, AT_L2_CACHESIZE,
AT_L2_CACHEGEOMETRY, AT_L3_CACHESIZE and AT_L3_CACHEGEOMETRY when
LD_SHOW_AUXV=1.
AT_L*_CACHESIZE is printed as decimal and represent the number of
bytes of the cache.
AT_L*_CACHEGEOMETRY is treated in order to specify the cache line size
and its associativity.
Example output from a POWER8:
AT_L1I_CACHESIZE: 32768
AT_L1I_CACHEGEOMETRY: 128B line size, 8-way set associative
AT_L1D_CACHESIZE: 65536
AT_L1D_CACHEGEOMETRY: 128B line size, 8-way set associative
AT_L2_CACHESIZE: 524288
AT_L2_CACHEGEOMETRY: 128B line size, 8-way set associative
AT_L3_CACHESIZE: 8388608
AT_L3_CACHEGEOMETRY: 128B line size, 8-way set associative
Some of the new types are longer than the previous ones, requiring to
increase the indentation in order to keep the values aligned.
* elf/dl-sysdep.c (auxvars): Add AT_L1I_CACHESIZE,
AT_L1I_CACHEGEOMETRY, AT_L1D_CACHESIZE, AT_L1D_CACHEGEOMETRY,
AT_L2_CACHESIZE, AT_L2_CACHEGEOMETRY, AT_L3_CACHESIZE and
AT_L3_CACHEGEOMETRY. Fix indentation when printing the other
fields.
(_dl_show_auxv): Give a special treatment to
AT_L1I_CACHEGEOMETRY, AT_L1D_CACHEGEOMETRY, AT_L2_CACHEGEOMETRY
and AT_L3_CACHEGEOMETRY.
* sysdeps/powerpc/dl-procinfo.h (cache_geometry): New function.
(_dl_procinfo): Fix indentation when printing AT_HWCAP and
AT_HWCAP2. Add support for AT_L1I_CACHEGEOMETRY,
AT_L1D_CACHEGEOMETRY, AT_L2_CACHEGEOMETRY and AT_L3_CACHEGEOMETRY.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__ctime64_r): Add.
* time/ctime_r.c
(__ctime64_r): Add.
[__TIMESIZE != 64] (__ctime_r): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__ctime64): Add.
* time/gmtime.c
(__ctime64): Add.
[__TIMESIZE != 64] (ctime): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__gmtime64_r): Add.
* time/gmtime.c
(__gmtime64_r): Add.
[__TIMESIZE != 64] (__gmtime): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__gmtime64): Add.
* time/gmtime.c
(__gmtime64): Add.
[__TIMESIZE != 64] (__gmtime): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__localtime64_r): Add.
* time/localtime.c
(__localtime64_r): Add.
[__TIMESIZE != 64] (__localtime_r): Turn into a wrapper.
S390 kernel sigaction is the same as the Linux generic one.
Checked with a s390-linux-gnu and s390x-linux-gnu build.
* sysdeps/unix/sysv/linux/s390/kernel_sigaction.h: Use Linux generic
kernel_sigction definition.
IA64 kernel_sigaction.h definition is the sama as the Linux generic
one.
Checked on ia64-linux-gnu.
* sysdeps/unix/sysv/linux/ia64/kernel_sigaction.h: Remove file.
HPPA kernel_sigaction.h definition is the sama as the Linux generic
one and old_kernel_sigaction is not used.
Checked on hppa-linux-gnu.
* sysdeps/unix/sysv/linux/hppa/kernel_sigaction.h: Remove file.
Alpha rt_sigaction syscall uses a slight different kernel ABI than
generic one:
arch/alpha/kernel/signal.c
90 SYSCALL_DEFINE5(rt_sigaction, int, sig, const struct sigaction __user *, act,
91 struct sigaction __user *, oact,
92 size_t, sigsetsize, void __user *, restorer)
Similar as sparc, the syscall expects a restorer function. However
different than sparc, alpha defines the restorer as the 5th argument
(sparc defines as the 4th).
This patch removes the arch-specific alpha sigaction implementation,
adapt the Linux generic one to different restore placements (through
STUB macro), and make alpha use the Linux generic kernel_sigaction
definition.
Checked on alpha-linux-gnu and x86_64-linux-gnu (for sanity).
* sysdeps/unix/sysv/linux/alpha/Makefile: Update comment about
__syscall_rt_sigaction.
* sysdeps/unix/sysv/linux/alpha/kernel_sigaction.h
(kernel_sigaction): Use Linux generic defintion.
(STUB): Define.
(__syscall_rt_sigreturn, __syscall_sigreturn): Add prototype.
* sysdeps/unix/sysv/linux/alpha/rt_sigaction.S
(__syscall_rt_sigaction): Remove implementation.
(__syscall_sigreturn, __syscall_rt_sigreturn): Define as global and
hidden.
* sysdeps/unix/sysv/linux/alpha/sigaction.c: Remove file.
* sysdeps/unix/sysv/linux/alpha/sysdep.h (INLINE_SYSCALL,
INTERNAL_SYSCALL): Remove definitions.
* sysdeps/unix/sysv/linux/sigaction.c: Define STUB to accept both the
action and signal set size.
* sysdeps/unix/sysv/linux/sparc/sparc32/sigaction.c (STUB): Redefine.
* sysdeps/unix/sysv/linux/sparc/sparc64/sigaction.c (STUB): Likewise.
Commit b4a5d26d88 (linux: Consolidate sigaction implementation) added
a wrong kernel_sigaction definition for m68k, meant for __NR_sigaction
instead of __NR_rt_sigaction as used on generic Linux sigaction
implementation. This patch fixes it by using the Linux generic
definition meant for the RT kernel ABI.
Checked the signal tests on emulated m68-linux-gnu (Aranym). It fixes
the faulty signal/tst-sigaction and man works as expected.
Adhemerval Zanella <adhemerval.zanella@linaro.org>
James Clarke <jrtc27@jrtc27.com>
[BZ #23960]
* sysdeps/unix/sysv/linux/kernel_sigaction.h (HAS_SA_RESTORER):
Define if SA_RESTORER is defined.
(kernel_sigaction): Define sa_restorer if HAS_SA_RESTORER is defined.
(SET_SA_RESTORER, RESET_SA_RESTORER): Define iff the macro are not
already defined.
* sysdeps/unix/sysv/linux/m68k/kernel_sigaction.h (SA_RESTORER,
kernel_sigaction, SET_SA_RESTORER, RESET_SA_RESTORER): Remove
definitions.
(HAS_SA_RESTORER): Define.
* sysdeps/unix/sysv/linux/sparc/kernel_sigaction.h (SA_RESTORER,
SET_SA_RESTORER, RESET_SA_RESTORER): Remove definition.
(HAS_SA_RESTORER): Define.
* sysdeps/unix/sysv/linux/nios2/kernel_sigaction.h: Include generic
kernel_sigaction after define SET_SA_RESTORER and RESET_SA_RESTORER.
* sysdeps/unix/sysv/linux/powerpc/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigaction.c: Likewise.
kernel-features.h has a macro __ASSUME_ST_INO_64_BIT, with a comment
"However, SH is lame, and still does not have a 64-bit inode field.".
The macro is, in fact, defined to 0 by Alpha as well as SH. The Alpha
case is, however, trivially useless: none of the files that test
__ASSUME_ST_INO_64_BIT are built for Alpha (which gained kernel
support for stat64 syscalls, with a 64-bit st_ino field, in Linux
2.6.4; the define to 0 for Alpha in glibc predates that).
The SH kernel gained support for a 64-bit st_ino in struct stat64 in
commit 760bcb1deec13c50e20399c84cb6a8ea41cc2820 ("sh: Fix fstatat64()
syscall."), which is in Linux 2.6.22 and later. So the redefinition
of __ASSUME_ST_INO_64_BIT to 0 is of no use for SH either; three of
the files testing it do so immediately after a stat64-family syscall
has been used, which will always have set the 64-bit st_ino correctly
(in addition to the 32-bit __st_ino), while the relevant code
__xstat32_conv executes only after such a syscall in the function
calling __xstat32_conv.
Thus this patch removes __ASSUME_ST_INO_64_BIT and code testing it.
Removing the useless [!__ASSUME_ST_INO_64_BIT] code in __xstat32_conv
renders the [_HAVE_STAT64___ST_INO] and [!_HAVE_STAT64___ST_INO] cases
around it identical, so that conditional is also removed.
Tested compilation with build-many-glibcs.py for its Alpha and SH
configurations; also ran the glibc testsuite for x86_64 and x86.
* sysdeps/unix/sysv/linux/kernel-features.h
(__ASSUME_ST_INO_64_BIT): Remove macro definition.
* sysdeps/unix/sysv/linux/alpha/kernel-features.h
(__ASSUME_ST_INO_64_BIT): Do not undefine and define.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
(__ASSUME_ST_INO_64_BIT): Likewise.
* sysdeps/unix/sysv/linux/fxstat64.c: Do not include
<kernel-features.h>.
(___fxstat64) [_HAVE_STAT64___ST_INO && !__ASSUME_ST_INO_64_BIT]:
Remove conditional code.
* sysdeps/unix/sysv/linux/lxstat64.c: Do not include
<kernel-features.h>.
(___lxstat64) [_HAVE_STAT64___ST_INO && !__ASSUME_ST_INO_64_BIT]:
Remove conditional code.
* sysdeps/unix/sysv/linux/xstat64.c: Do not include
<kernel-features.h>.
(___xstat64) [_HAVE_STAT64___ST_INO && !__ASSUME_ST_INO_64_BIT]:
Remove conditional code.
* sysdeps/unix/sysv/linux/xstatconv.c: Do not include
<kernel-features.h>.
(__xstat32_conv) [_HAVE_STAT64___ST_INO]: Remove conditional code.
[!_HAVE_STAT64___ST_INO]: Make code unconditional.
The ifunc macros s390_vx_libc* are no longer used and
can be removed as all users are now relying on
s390_libc_ifunc_expr.
The same applies to s390_libc_ifunc. The macro
s390_libc_ifunc_init is now renamed to
s390_libc_ifunc_expr_stfle_init and the users are
adjusted accordingly.
ChangeLog:
* sysdeps/s390/multiarch/ifunc-resolve.h
(s390_vx_libc_ifunc, s390_vx_libc_ifunc_redirected,
s390_vx_libc_ifunc2, s390_vx_libc_ifunc_init,
s390_vx_libc_ifunc2_redirected, s390_libc_ifunc):
Delete macro definition.
(s390_libc_ifunc_init): Rename to
s390_libc_ifunc_expr_stfle_init.
* sysdeps/s390/bzero: Use
s390_libc_ifunc_expr_stfle_init instead of
s390_libc_ifunc_init.
* sysdeps/s390/memcmp.c: Likewise.
* sysdeps/s390/memcpy.c: Likewise.
* sysdeps/s390/mempcpy.c: Likewise.
* sysdeps/s390/memset.c: Likewise.
The ifunc handling for various __gconv_transform_* functions
which are using IFUNC on s390x are adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Instead those functions are just an alias to the vector variants.
Furthermore the ifunc-macro s390_libc_ifunc_expr is now used instead of
s390_vx_libc_ifunc.
ChangeLog:
* sysdeps/s390/multiarch/gconv_simple.c (ICONV_VX_IFUNC):
Define macro dependent on HAVE_S390_MIN_Z13_ZARCH_ASM_SUPPORT.
The ifunc handling for wmemcmp is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wmemcmp variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wmemcmp variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wmemcmp.
* sysdeps/s390/multiarch/wmemcmp-c.c: Move to ...
* sysdeps/s390/wmemcmp-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wmemcmp-vx.S: Move to ...
* sysdeps/s390/wmemcmp-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wmemcmp.c: Move to ...
* sysdeps/s390/wmemcmp.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wmemcmp.h: New file.
The ifunc handling for wmemset is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
Glibc internal calls will use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wmemset variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wmemset variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wmemset.
* sysdeps/s390/multiarch/wmemset-c.c: Move to ...
* sysdeps/s390/wmemset-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wmemset-vx.S: Move to ...
* sysdeps/s390/wmemset-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wmemset.c: Move to ...
* sysdeps/s390/wmemset.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wmemset.h: New file.
The ifunc handling for wmemchr is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
Glibc internal calls will use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wmemchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wmemchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wmemchr.
* sysdeps/s390/multiarch/wmemchr-c.c: Move to ...
* sysdeps/s390/wmemchr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wmemchr-vx.S: Move to ...
* sysdeps/s390/wmemchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wmemchr.c: Move to ...
* sysdeps/s390/wmemchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wmemchr.h: New file.
The ifunc handling for wcscspn is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcscspn variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcscspn variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcscspn.
* sysdeps/s390/multiarch/wcscspn-c.c: Move to ...
* sysdeps/s390/wcscspn-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscspn-vx.S: Move to ...
* sysdeps/s390/wcscspn-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscspn.c: Move to ...
* sysdeps/s390/wcscspn.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcscspn.h: New file.
The ifunc handling for wcspbrk is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
Glibc internal calls will use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcspbrk variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcspbrk variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcspbrk.
* sysdeps/s390/multiarch/wcspbrk-c.c: Move to ...
* sysdeps/s390/wcspbrk-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcspbrk-vx.S: Move to ...
* sysdeps/s390/wcspbrk-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcspbrk.c: Move to ...
* sysdeps/s390/wcspbrk.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcspbrk.h: New file.
The ifunc handling for wcsspn is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
Glibc internal calls will use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcsspn variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcsspn variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcsspn.
* sysdeps/s390/multiarch/wcsspn-c.c: Move to ...
* sysdeps/s390/wcsspn-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsspn-vx.S: Move to ...
* sysdeps/s390/wcsspn-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsspn.c: Move to ...
* sysdeps/s390/wcsspn.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcsspn.h: New file.
The ifunc handling for wcsrchr is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcsrchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcsrchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcsrchr.
* sysdeps/s390/multiarch/wcsrchr-c.c: Move to ...
* sysdeps/s390/wcsrchr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsrchr-vx.S: Move to ...
* sysdeps/s390/wcsrchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsrchr.c: Move to ...
* sysdeps/s390/wcsrchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcsrchr.h: New file.
The ifunc handling for wcschrnul is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcschrnul variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcschrnul variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcschrnul.
* sysdeps/s390/multiarch/wcschrnul-c.c: Move to ...
* sysdeps/s390/wcschrnul-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcschrnul-vx.S: Move to ...
* sysdeps/s390/wcschrnul-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcschrnul.c: Move to ...
* sysdeps/s390/wcschrnul.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcschrnul.h: New file.
The ifunc handling for wcschr is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
Glibc internal calls will use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcschr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcschr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcschr.
* sysdeps/s390/multiarch/wcschr-c.c: Move to ...
* sysdeps/s390/wcschr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcschr-vx.S: Move to ...
* sysdeps/s390/wcschr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcschr.c: Move to ...
* sysdeps/s390/wcschr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcschr.h: New file.
The ifunc handling for wcsncmp is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcsncmp variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcsncmp variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcsncmp.
* sysdeps/s390/multiarch/wcsncmp-c.c: Move to ...
* sysdeps/s390/wcsncmp-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsncmp-vx.S: Move to ...
* sysdeps/s390/wcsncmp-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsncmp.c: Move to ...
* sysdeps/s390/wcsncmp.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcsncmp.h: New file.
The ifunc handling for wcscmp is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcscmp variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcscmp variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcscmp.
* sysdeps/s390/multiarch/wcscmp-c.c: Move to ...
* sysdeps/s390/wcscmp-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscmp-vx.S: Move to ...
* sysdeps/s390/wcscmp-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscmp.c: Move to ...
* sysdeps/s390/wcscmp.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcscmp.h: New file.
The ifunc handling for wcsncat is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcsncat variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcsncat variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcsncat.
* sysdeps/s390/multiarch/wcsncat-c.c: Move to ...
* sysdeps/s390/wcsncat-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsncat-vx.S: Move to ...
* sysdeps/s390/wcsncat-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsncat.c: Move to ...
* sysdeps/s390/wcsncat.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcsncat.h: New file.
The ifunc handling for wcscat is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcscat variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcscat variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcscat.
* sysdeps/s390/multiarch/wcscat-c.c: Move to ...
* sysdeps/s390/wcscat-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscat-vx.S: Move to ...
* sysdeps/s390/wcscat-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscat.c: Move to ...
* sysdeps/s390/wcscat.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcscat.h: New file.
The ifunc handling for wcpncpy is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcpncpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcpncpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcpncpy.
* sysdeps/s390/multiarch/wcpncpy-c.c: Move to ...
* sysdeps/s390/wcpncpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcpncpy-vx.S: Move to ...
* sysdeps/s390/wcpncpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcpncpy.c: Move to ...
* sysdeps/s390/wcpncpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcpncpy.h: New file.
The ifunc handling for wcsncpy is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcsncpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcsncpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcsncpy.
* sysdeps/s390/multiarch/wcsncpy-c.c: Move to ...
* sysdeps/s390/wcsncpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsncpy-vx.S: Move to ...
* sysdeps/s390/wcsncpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsncpy.c: Move to ...
* sysdeps/s390/wcsncpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcsncpy.h: New file.
The ifunc handling for wcpcpy is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcpcpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcpcpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcpcpy.
* sysdeps/s390/multiarch/wcpcpy-c.c: Move to ...
* sysdeps/s390/wcpcpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcpcpy-vx.S: Move to ...
* sysdeps/s390/wcpcpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcpcpy.c: Move to ...
* sysdeps/s390/wcpcpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcpcpy.h: New file.
The ifunc handling for wcscpy is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcscpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcscpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcscpy.
* sysdeps/s390/multiarch/wcscpy-c.c: Move to ...
* sysdeps/s390/wcscpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscpy-vx.S: Move to ...
* sysdeps/s390/wcscpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcscpy.c: Move to ...
* sysdeps/s390/wcscpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcscpy.h: New file.
The ifunc handling for wcsnlen is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
Glibc internal calls will use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcsnlen variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcsnlen variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcsnlen.
* sysdeps/s390/multiarch/wcsnlen-c.c: Move to ...
* sysdeps/s390/wcsnlen-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsnlen-vx.S: Move to ...
* sysdeps/s390/wcsnlen-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcsnlen.c: Move to ...
* sysdeps/s390/wcsnlen.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcsnlen.h: New file.
The ifunc handling for wcslen is adjusted in order to omit ifunc
if the minimum architecture level already supports newer CPUs by default.
Unfortunately the c ifunc variant can't be omitted at all as it is used
by the z13 ifunc variant as fallback if the pointers are not 4-byte aligned.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove wcslen variants.
* sysdeps/s390/Makefile (sysdep_routines): Add wcslen variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for wcslen.
* sysdeps/s390/multiarch/wcslen-c.c: Move to ...
* sysdeps/s390/wcslen-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcslen-vx.S: Move to ...
* sysdeps/s390/wcslen-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/wcslen.c: Move to ...
* sysdeps/s390/wcslen.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-wcslen.h: New file.
The ifunc handling for memrchr is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove memrchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add memrchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for memrchr.
* sysdeps/s390/multiarch/memrchr-c.c: Move to ...
* sysdeps/s390/memrchr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/memrchr-vx.S: Move to ...
* sysdeps/s390/memrchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/memrchr.c: Move to ...
* sysdeps/s390/memrchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-memrchr.h: New file.
The ifunc handling for memccpy is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove memccpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add memccpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for memccpy.
* sysdeps/s390/multiarch/memccpy-c.c: Move to ...
* sysdeps/s390/memccpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/memccpy-vx.S: Move to ...
* sysdeps/s390/memccpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/memccpy.c: Move to ...
* sysdeps/s390/memccpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-memccpy.h: New file.
The ifunc handling for rawmemchr is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove rawmemchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add rawmemchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for rawmemchr.
* sysdeps/s390/multiarch/rawmemchr-c.c: Move to ...
* sysdeps/s390/rawmemchr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/rawmemchr-vx.S: Move to ...
* sysdeps/s390/rawmemchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/rawmemchr.c: Move to ...
* sysdeps/s390/rawmemchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-rawmemchr.h: New file.
The ifunc handling for memchr is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
Note: The fallback s390-32/s390-64 ifunc variants with srst instruction
are now moved to the unified memchr-z900.S file which can be used for
31/64bit. The s390-32/s390-64 files multiarch/memchr.c and memchr.S
are deleted.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove memchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add memchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for memchr.
* sysdeps/s390/multiarch/memchr-vx.S: Move to ...
* sysdeps/s390/memchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/memchr.c: Move to ...
* sysdeps/s390/memchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-memchr.h: New file.
* sysdeps/s390/s390-64/memchr.S: Move to ...
* sysdeps/s390/memchr-z900.S: ... here and adjust to be usable
for 31/64bit and ifunc handling.
* sysdeps/s390/s390-32/multiarch/memchr.c: Delete file.
* sysdeps/s390/s390-64/multiarch/memchr.c: Likewise.
* sysdeps/s390/s390-32/memchr.S: Likewise.
The ifunc handling for strcspn is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strcspn variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strcspn variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strcspn.
* sysdeps/s390/multiarch/strcspn-c.c: Move to ...
* sysdeps/s390/strcspn-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strcspn-vx.S: Move to ...
* sysdeps/s390/strcspn-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strcspn.c: Move to ...
* sysdeps/s390/strcspn.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strcspn.h: New file.
The ifunc handling for strpbrk is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strpbrk variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strpbrk variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strpbrk.
* sysdeps/s390/multiarch/strpbrk-c.c: Move to ...
* sysdeps/s390/strpbrk-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strpbrk-vx.S: Move to ...
* sysdeps/s390/strpbrk-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strpbrk.c: Move to ...
* sysdeps/s390/strpbrk.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strpbrk.h: New file.
The ifunc handling for strspn is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strspn variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strspn variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strspn.
* sysdeps/s390/multiarch/strspn-c.c: Move to ...
* sysdeps/s390/strspn-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strspn-vx.S: Move to ...
* sysdeps/s390/strspn-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strspn.c: Move to ...
* sysdeps/s390/strspn.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strspn.h: New file.
The ifunc handling for strrchr is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strrchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strrchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strrchr.
* sysdeps/s390/multiarch/strrchr-c.c: Move to ...
* sysdeps/s390/strrchr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strrchr-vx.S: Move to ...
* sysdeps/s390/strrchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strrchr.c: Move to ...
* sysdeps/s390/strrchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strrchr.h: New file.
The ifunc handling for strchrnul is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strchrnul variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strchrnul variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strchrnul.
* sysdeps/s390/multiarch/strchrnul-c.c: Move to ...
* sysdeps/s390/strchrnul-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strchrnul-vx.S: Move to ...
* sysdeps/s390/strchrnul-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strchrnul.c: Move to ...
* sysdeps/s390/strchrnul.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strchrnul.h: New file.
The ifunc handling for strchr is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strchr variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strchr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strchr.
* sysdeps/s390/multiarch/strchr-c.c: Move to ...
* sysdeps/s390/strchr-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strchr-vx.S: Move to ...
* sysdeps/s390/strchr-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strchr.c: Move to ...
* sysdeps/s390/strchr.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strchr.h: New file.
The ifunc handling for strncmp is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strncmp variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strncmp variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strncmp.
* sysdeps/s390/multiarch/strncmp-c.c: Move to ...
* sysdeps/s390/strncmp-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strncmp-vx.S: Move to ...
* sysdeps/s390/strncmp-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strncmp.c: Move to ...
* sysdeps/s390/strncmp.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strncmp.h: New file.
The ifunc handling for strcmp is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
Note: The fallback s390-32/s390-64 ifunc variants with clst instruction
are now moved to the unified strcmp-z900.S file which can be used for
31/64bit. The s390-32/s390-64 files multiarch/strcmp.c and strcmp.S
are deleted.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strcmp variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strcmp variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strcmp.
* sysdeps/s390/multiarch/strcmp-vx.S: Move to ...
* sysdeps/s390/strcmp-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strcmp.c: Move to ...
* sysdeps/s390/strcmp.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strcmp.h: New file.
* sysdeps/s390/s390-64/strcmp.S: Move to ...
* sysdeps/s390/strcmp-z900.S: ... here and adjust to be usable
for 31/64bit and ifunc handling.
* sysdeps/s390/s390-32/multiarch/strcmp.c: Delete file.
* sysdeps/s390/s390-64/multiarch/strcmp.c: Likewise.
* sysdeps/s390/s390-32/strcmp.S: Likewise.
The ifunc handling for strncat is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strncat variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strncat variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strncat.
* sysdeps/s390/multiarch/strncat-c.c: Move to ...
* sysdeps/s390/strncat-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strncat-vx.S: Move to ...
* sysdeps/s390/strncat-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strncat.c: Move to ...
* sysdeps/s390/strncat.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strncat.h: New file.
The ifunc handling for strcat is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strcat variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strcat variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strcat.
* sysdeps/s390/multiarch/strcat-c.c: Move to ...
* sysdeps/s390/strcat-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strcat-vx.S: Move to ...
* sysdeps/s390/strcat-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strcat.c: Move to ...
* sysdeps/s390/strcat.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strcat.h: New file.
The ifunc handling for stpncpy is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove stpncpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add stpncpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for stpncpy.
* sysdeps/s390/multiarch/stpncpy-c.c: Move to ...
* sysdeps/s390/stpncpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/stpncpy-vx.S: Move to ...
* sysdeps/s390/stpncpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/stpncpy.c: Move to ...
* sysdeps/s390/stpncpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-stpncpy.h: New file.
The ifunc handling for strncpy is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
Note: The fallback s390-32/s390-64 ifunc variants are now moved to
the strncpy-z900.S files. The s390-32/s390-64 files multiarch/strncpy.c
and strncpy.S are deleted.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strncpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strncpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strncpy.
* sysdeps/s390/multiarch/strncpy-vx.S: Move to ...
* sysdeps/s390/strncpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strncpy.c: Move to ...
* sysdeps/s390/strncpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strncpy.h: New file.
* sysdeps/s390/s390-64/strncpy.S: Move to ...
* sysdeps/s390/s390-64/strncpy-z900.S: ... here
and adjust ifunc handling.
* sysdeps/s390/s390-32/strncpy.S: Move to ...
* sysdeps/s390/s390-32/strncpy-z900.S: ... here
and adjust ifunc handling.
* sysdeps/s390/s390-32/multiarch/strncpy.c: Delete file.
* sysdeps/s390/s390-64/multiarch/strncpy.c: Likewise.
The ifunc handling for stpcpy is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove stpcpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add stpcpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for stpcpy.
* sysdeps/s390/multiarch/stpcpy-c.c: Move to ...
* sysdeps/s390/stpcpy-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/stpcpy-vx.S: Move to ...
* sysdeps/s390/stpcpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/stpcpy.c: Move to ...
* sysdeps/s390/stpcpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-stpcpy.h: New file.
The ifunc handling for strcpy is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
Note: The fallback s390-32/s390-64 ifunc variants with mvst instruction
are now moved to the unified strcpy-z900.S file which can be used for
31/64bit. The s390-32/s390-64 files multiarch/strcpy.c and strcpy.S
are deleted.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strcpy variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strcpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strcpy.
* sysdeps/s390/multiarch/strcpy-vx.S: Move to ...
* sysdeps/s390/strcpy-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strcpy.c: Move to ...
* sysdeps/s390/strcpy.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strcpy.h: New file.
* sysdeps/s390/s390-64/strcpy.S: Move to ...
* sysdeps/s390/strcpy-z900.S: ... here and adjust to be usable
for 31/64bit and ifunc handling.
* sysdeps/s390/s390-32/multiarch/strcpy.c: Delete file.
* sysdeps/s390/s390-64/multiarch/strcpy.c: Likewise.
* sysdeps/s390/s390-32/strcpy.S: Likewise.
The ifunc handling for strnlen is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strnlen variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strnlen variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strnlen.
* sysdeps/s390/multiarch/strnlen-c.c: Move to ...
* sysdeps/s390/strnlen-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strnlen-vx.S: Move to ...
* sysdeps/s390/strnlen-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strnlen.c: Move to ...
* sysdeps/s390/strnlen.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strnlen.h: New file.
The ifunc handling for strlen is adjusted in order to omit ifunc
variants if those will never be used as the minimum architecture level
already supports newer CPUs by default.
Glibc internal calls will then also use the "newer" ifunc variant.
ChangeLog:
* sysdeps/s390/multiarch/Makefile
(sysdep_routines): Remove strlen variants.
* sysdeps/s390/Makefile (sysdep_routines): Add strlen variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Refactor ifunc handling for strlen.
* sysdeps/s390/multiarch/strlen-c.c: Move to ...
* sysdeps/s390/strlen-c.c: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strlen-vx.S: Move to ...
* sysdeps/s390/strlen-vx.S: ... here and adjust ifunc handling.
* sysdeps/s390/multiarch/strlen.c: Move to ...
* sysdeps/s390/strlen.c: ... here and adjust ifunc handling.
* sysdeps/s390/ifunc-strlen.h: New file.
The new vector variant of memmem is using the common code
implementation, but instead of calling the default
mem* functions, the vector variants are called.
ChangeLog:
* sysdeps/s390/Makefile (sysdep_routines): Add memmem variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add ifunc variants for memmem.
* sysdeps/s390/ifunc-memmem.h: New file.
* sysdeps/s390/memmem.c: Likewise.
* sysdeps/s390/memmem-c.c: Likewise.
* sysdeps/s390/memmem-vx.c: Likewise.
The new vector variant of strstr is using the common code
implementation, but instead of calling the default
str* / mem* functions, the vector variants are called.
ChangeLog:
* sysdeps/s390/Makefile (sysdep_routines): Add strstr variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add ifunc variants for strstr.
* sysdeps/s390/ifunc-strstr.h: New file.
* sysdeps/s390/strstr.c: Likewise.
* sysdeps/s390/strstr-c.c: Likewise.
* sysdeps/s390/strstr-vx.c: Likewise.
This patch introduces a z13 specific ifunc variant for memmove.
As the common code implementation, it checks if we can copy from
the beginning to the end - with z196 memcpy implementation - or
if we have to copy from the end to the beginning.
The latter case is done by using vector load/store instructions.
If vector instructions are not available, the common-code is
used as fallback. Therefore it is implemented in memmove-c with
a different name.
Furthermore the ifunc logic decides if we need the common-code
implementation at all. If vector instructions are supported
due to the minimum architecture level set we can skip the
common-code ifunc variant.
ChangeLog:
* sysdeps/s390/Makefile (sysdep_routines): Add memmove-c.
* sysdeps/s390/ifunc-memcpy.h (HAVE_MEMMOVE_IFUNC,
HAVE_MEMMOVE_IFUNC_AND_VX_SUPPORT, MEMMOVE_DEFAULT,
HAVE_MEMMOVE_C, MEMMOVE_C, HAVE_MEMMOVE_Z13, MEMMOVE_Z13):
New defines.
* sysdeps/s390/memcpy-z900.S: Add z13 memmove implementation.
* sysdeps/s390/memmove-c.c: New file.
* sysdeps/s390/memmove.c: Likewise.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Add ifunc variants for memmove.
Add a configure check for z13 in the same way as done for z196.
ChangeLog:
* config.h.in (HAVE_S390_MIN_Z13_ZARCH_ASM_SUPPORT): New undefine.
* sysdeps/s390/configure.ac: Add check for z13 support.
* sysdeps/s390/configure: Regenerated.
The s390/s390x memcpy implementations are safe to be
used by memmove. Starting with this commit, memmove is
using memcpy for the forward cases on s390.
ChangeLog:
* sysdeps/s390/memcopy.h: New file.
Nowadays gcc is automatically replacing a call to bcopy
with a call to memmove. Thus only old binaries will call
the s390 specific bcopy implementation.
The s390 specific implementation is using an own
implementation for memcpy in the forward case and is
relying on memmove in the backward case.
After removing the s390 specific bcopy, the common code
bcopy is used. It just performs a tail call to memmove.
ChangeLog:
* sysdeps/s390/s390-32/bcopy.S: Remove.
* sysdeps/s390/s390-64/bcopy.S: Likewise.
This patch moves all ifunc variants for memcpy/mempcpy
to sysdeps/s390/memcpy-z900.S. The configure-check/preprocessor logic
in sysdeps/s390/ifunc-memcpy.h decides if ifunc is needed at all
and which ifunc variants should be available.
E.g. if the compiler/assembler already supports z196 by default,
the older ifunc variants are not included.
If we only need the newest ifunc variant,
then we can skip ifunc at all.
Therefore the ifunc-resolvers and __libc_ifunc_impl_list are adjusted
in order to handle only the available ifunc variants.
ChangeLog:
* sysdeps/s390/ifunc-memcpy.h: New File.
* sysdeps/s390/memcpy.S: Move to ...
* sysdeps/s390/memcpy-z900.S ... here.
Move implementations from memcpy-s390x.s to here.
* sysdeps/s390/multiarch/memcpy-s390x.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines):
Remove memcpy/mempcpy variants.
* sysdeps/s390/Makefile (sysdep_routines):
Add memcpy/mempcpy variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Adjust ifunc variants for
memcpy and mempcpy.
* sysdeps/s390/multiarch/memcpy.c: Move ifunc resolver
to ...
* sysdeps/s390/memcpy.c: ... here.
Adjust ifunc variants for memcpy.
* sysdeps/s390/multiarch/mempcpy.c: Move to ...
* sysdeps/s390/mempcpy.c: ... here.
Adjust ifunc variants for mempcpy.
* sysdeps/s390/mempcpy.S: Delete file.
The implementation of memcpy/mempcpy for s390-32 (31bit)
and s390-64 (64bit) is nearly the same.
This patch unifies it for maintability reasons.
__mem[p]cpy_z10 and __mem[p]cpy_z196 differs between 31 and 64bit:
-31bit needs .machinemode "zarch_nohighgprs" and llgfr %r4,%r4
-lr vs lgr; lgr can be also used on 31bit as this ifunc variant
is only called if we are on a zarch machine.
__mem[p]cpy_default differs between 31 and 64bit:
-Some 31bit vs 64bit instructions (e.g. ltr vs ltgr.
Solved with 31/64 specific instruction macros).
-The address of mvc instruction is setup in different ways
(larl vs bras). Solved with #if defined __s390x__.
__memcpy_mvcle differs between 31 and 64bit:
-lr vs lgr; ahi vs aghi;
Solved with 31/64bit specific instruction macros.
Otherwise 31/64bit implementation has the same structure of the code.
ChangeLog:
* sysdeps/s390/s390-64/memcpy.S: Move to ...
* sysdeps/s390/memcpy.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/memcpy.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines): Add memcpy.
* sysdeps/s390/s390-32/multiarch/Makefile: Delete file.
* sysdeps/s390/s390-64/multiarch/Makefile: Likewise.
* sysdeps/s390/s390-64/multiarch/memcpy-s390x.S: Move to ...
* sysdeps/s390/multiarch/memcpy-s390x.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/multiarch/memcpy-s390.S: Delete File.
* sysdeps/s390/s390-64/multiarch/memcpy.c: Move to ...
* sysdeps/s390/multiarch/memcpy.c: ... here.
* sysdeps/s390/s390-32/multiarch/memcpy.c: Delete File.
This patch moves all ifunc variants for memcmp
to sysdeps/s390/memcmp-z900.S. The configure-check/preprocessor logic
in sysdeps/s390/ifunc-memcmp.h decides if ifunc is needed at all
and which ifunc variants should be available.
E.g. if the compiler/assembler already supports z196 by default,
the older ifunc variants are not included.
If we only need the newest ifunc variant,
then we can skip ifunc at all.
Therefore the ifunc-resolvers and __libc_ifunc_impl_list are adjusted
in order to handle only the available ifunc variants.
ChangeLog:
* sysdeps/s390/ifunc-memcmp.h: New File.
* sysdeps/s390/memcmp.S: Move to ...
* sysdeps/s390/memcmp-z900.S ... here.
Move implementations from memcmp-s390x.s to here.
* sysdeps/s390/multiarch/memcmp-s390x.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines):
Remove memcmp variants.
* sysdeps/s390/Makefile (sysdep_routines):
Add memcmp variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Adjust ifunc variants for
memcmp.
* sysdeps/s390/multiarch/memcmp.c: Move ifunc resolver
to ...
* sysdeps/s390/memcmp.c: ... here.
Adjust ifunc variants for memcmp.
The implementation of memcmp for s390-32 (31bit) and
s390-64 (64bit) is nearly the same.
This patch unifies it for maintability reasons.
__memcmp_z10 and __memcmp_z196 differs between 31 and 64bit:
-31bit needs .machinemode "zarch_nohighgprs" and llgfr %r4,%r4
-lr vs lgr and some other instructions:
But lgr and co can be also used on 31bit as this ifunc variant
is only called if we are on a zarch machine.
__memcmp_default differs between 31 and 64bit:
-Some 31bit vs 64bit instructions (e.g. ltr vs ltgr.
Solved with 31/64 specific instruction macros).
-The address of mvc instruction is setup in different ways
(larl vs bras). Solved with #if defined __s390x__.
Otherwise 31/64bit implementation has the same structure of the code.
ChangeLog:
* sysdeps/s390/s390-64/memcmp.S: Move to ...
* sysdeps/s390/memcmp.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/memcmp.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines): Add memcmp.
* sysdeps/s390/s390-32/multiarch/Makefile (sysdep_routines):
Remove memcmp.
* sysdeps/s390/s390-64/multiarch/Makefile: Likewise.
* sysdeps/s390/s390-64/multiarch/memcmp-s390x.S: Move to ...
* sysdeps/s390/multiarch/memcmp-s390x.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/multiarch/memcmp-s390.S: Delete File.
* sysdeps/s390/s390-64/multiarch/memcmp.c: Move to ...
* sysdeps/s390/multiarch/memcmp.c: ... here.
* sysdeps/s390/s390-32/multiarch/memcmp.c: Delete File.
This patch moves all ifunc variants for memset
to sysdeps/s390/memset-z900.S. The configure-check/preprocessor logic
in sysdeps/s390/ifunc-memset.h decides if ifunc is needed at all
and which ifunc variants should be available.
E.g. if the compiler/assembler already supports z196 by default,
the older ifunc variants are not included.
If we only need the newest ifunc variant,
then we can skip ifunc at all.
Therefore the ifunc-resolvers and __libc_ifunc_impl_list are adjusted
in order to handle only the available ifunc variants.
ChangeLog:
* sysdeps/s390/ifunc-memset.h: New File.
* sysdeps/s390/memset.S: Move to ...
* sysdeps/s390/memset-z900.S ... here.
Move implementations from memset-s390x.s to here.
* sysdeps/s390/multiarch/memset-s390x.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines):
Remove memset variants.
* sysdeps/s390/Makefile (sysdep_routines):
Add memset variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Adjust ifunc variants for
memset.
* sysdeps/s390/multiarch/memset.c: Move ifunc resolver
to ...
* sysdeps/s390/memset.c: ... here.
Adjust ifunc variants for memset.
The implementation of memset for s390-32 (31bit) and
s390-64 (64bit) is nearly the same.
This patch unifies it for maintability reasons.
__memset_z10 and __memset_z196 differs between 31 and 64bit:
-31bit needs .machinemode "zarch_nohighgprs" and llgfr %r4,%r4
-lr vs lgr and some other instructions:
But lgr and co can be also used on 31bit as this ifunc variant
is only called if we are on a zarch machine.
__memset_default differs between 31 and 64bit:
-Some 31bit vs 64bit instructions (e.g. ltr vs ltgr.
Solved with 31/64 specific instruction macros).
-The address of mvc instruction is setup in different ways
(larl vs bras). Solved with #if defined __s390x__.
Otherwise 31/64bit implementation has the same structure of the code.
ChangeLog:
* sysdeps/s390/s390-64/memset.S: Move to ...
* sysdeps/s390/memset.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/memset.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines): Add memset.
* sysdeps/s390/s390-32/multiarch/Makefile (sysdep_routines):
Remove memset.
* sysdeps/s390/s390-64/multiarch/Makefile: Likewise.
* sysdeps/s390/s390-64/multiarch/memset-s390x.S: Move to ...
* sysdeps/s390/multiarch/memset-s390x.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/multiarch/memset-s390.S: Delete File.
* sysdeps/s390/s390-64/multiarch/memset.c: Move to ...
* sysdeps/s390/multiarch/memset.c: ... here.
* sysdeps/s390/s390-32/multiarch/memset.c: Delete File.
The renaming of hwcap arguments in ifunc-resolvers is needed
in order to prepare for further commits which refactors
ifunc handling for memset, memcmp, and memcpy. Now you are able
to use s390_libc_ifunc_init which stores the stfle bits
within the expression for an ifunc-resolver generated by
s390_libc_ifunc_expr.
ChangeLog:
* sysdeps/s390/multiarch/ifunc-resolve.h
(s390_libc_ifunc_init, s390_libc_ifunc,
s390_vx_libc_ifunc2_redirected): Use hwcap instead of dl_hwcap.
Add a configure check for z10 in the same way as done for z196.
ChangeLog:
* config.h.in (HAVE_S390_MIN_Z10_ZARCH_ASM_SUPPORT): New undefine.
* sysdeps/s390/configure.ac: Add check for z10 support.
* sysdeps/s390/configure: Regenerated.
Merge i386 and x86_64 atomic-machine.h to x86 atomic-machine.h.
Tested on i686 and x86_64 as well as with build-many-glibcs.py.
* sysdeps/i386/atomic-machine.h: Merged with ...
* sysdeps/x86_64/atomic-machine.h: To ...
* sysdeps/x86/atomic-machine.h: This. New file.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__localtime64): Add.
* manual/maint.texi: Document Y2038 symbol handling.
* time/localtime.c
(__localtime64): Add.
[__TIMERSIZE != 64] (__localtime): Turn into a wrapper.
GCC mainline now gives errors for an asm that clobbers the stack
pointer. According to
<https://gcc.gnu.org/ml/gcc-patches/2018-12/msg00932.html> GCC
previously ignored such a clobber; thus, this patch removes it from
the clobbers for ia64 syscalls.
Tested with build-many-glibcs.py for ia64-linux-gnu.
* sysdeps/unix/sysv/linux/ia64/sysdep.h (ASM_CLOBBERS_6_COMMON):
Do not clobber r12.
Continuing the process of building up and using Python infrastructure
for extracting and using values in headers, this patch adds a test
that MAP_* constants from sys/mman.h agree with those in the Linux
kernel headers. (Other sys/mman.h constants could be added to the
test separately.)
This set of constants has grown over time, so the generic code is
enhanced to allow saying extra constants are OK on either side of the
comparison (where the caller sets those parameters based on the Linux
kernel headers version, compared with the version the headers were
last updated from). Although the test is a custom Python file, my
intention is to move in future to a single Python script for such
tests and text files it takes as inputs, once there are enough
examples to provide a guide to the common cases in such tests (I'd
like to end up with most or all such sets of constants copied from
kernel headers having such tests, and likewise for structure layouts
from the kernel).
The Makefile code is essentially the same as for tst-signal-numbers,
but I didn't try to find an object file to depend on to represent the
dependency on the headers used by the test (the conform/ tests don't
try to represent such header dependencies at all, for example).
Tested with build-many-glibcs.py, and also for x86_64 with older
kernel headers.
* scripts/glibcextract.py (compare_macro_consts): Take parameters
to allow extra macros from first or second sources.
* sysdeps/unix/sysv/linux/tst-mman-consts.py: New file.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(tests-special): Add $(objpfx)tst-mman-consts.out.
($(objpfx)tst-mman-consts.out): New makefile target.
Linux kernel have remove stat64 family from default syscall set, new
implementations with statx is needed when __ARCH_WANT_STAT64 is not
define. This patch add conditionals for relevant functions, using statx
system call to get information and then copy to the return buf, ref to
include/linux/fs.h from linux kernel.
* sysdeps/unix/sysv/linux/Makefile: Add statx_cp.c.
* sysdeps/unix/sysv/linux/fxstat64.c: Add conditionals for kernel
without stat64 system call support.
* sysdeps/unix/sysv/linux/fxstatat64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/fxstat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/fxstatat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/lxstat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/lxstat64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/xstat.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/xstat64.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/statx_cp.c: New file.
* sysdeps/unix/sysv/linux/statx_cp.c: Likewise.
* sysdeps/unix/sysv/linux/statx_cp.h: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/statx_cp.c: Likewise.
[BZ #18040]
Problem reported by Saito Takaaki <tails.saito@gmail.com> in
https://debbugs.gnu.org/32592
Call stack get_subexp->get_subexp_sub->clean_state_log_if_needed may
call extend_buffers which reallocates the re_string_t internal buffer.
Local variable 'buf' was not updated in such case, resulting in
use-after-free.
* posix/regexec.c (get_subexp): Update 'buf' after call to
get_subexp_sub.
Continuing the removal of bits/mathinline.h inlines that would better
be done by the compiler, this patch removes x86 inlines for asinh,
acosh and atanh functions (only for fast-math, non-SSE 32-bit x86).
I've filed <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88502> for
adding such inlines as an optimization in GCC.
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h (asinh): Remove inline
definition.
(acosh): Likewise.
(atanh): Likewise.
The test case misc/tst-efgcvt.c only tests the double variants of the
Old-fashioned System V number-to-string functions: ecvt, fcvt, and their
re-entrant counterparts. With a few macros, the code can be reused for
the long double versions of these functions. A future patch will reuse
it again for IEEE long double on powerpc64le.
Tested for powerpc and powerpc64le.
Sometimes tst-nss-test3 fails with:
error: test-container.c:386: unable to open .../nss/libnss_test1.so for reading
The test tst-nss-test3 which runs in a container needs
libnss_test[12].so. (see e.g. tst-nss-test3.script).
Before this test was moved from tests to tests-container variable,
the requirement was met. Thus this patch adds this requirement
also for tests in tests-container.
ChangeLog:
* nss/Makefile (tst-nss-test3.out): New rule.
GCC mainline now gives errors for an asm that clobbers the stack
pointer. According to
<https://gcc.gnu.org/ml/gcc-patches/2018-12/msg00932.html> GCC
previously ignored such a clobber; thus, this patch removes it from
_hurd_stack_setup.
Tested with build-many-glibcs.py for i686-gnu.
* sysdeps/mach/hurd/i386/init-first.c (_hurd_stack_setup): Do not
clobber sp.
This patch fix Hygon Dhyana processor CPU Vendor ID detection
problem in glibc sysdep module, current glibc codes doesn't
recognize Dhyana CPU Vendor ID("HygonGenuine") and set kind to
arch_kind_other, which result to incorrect zero value for
__cache_sysconf() syscall. As Hygon Dhyana share most
architecture feature as AMD Family 17h, this patch add Hygon CPU
Vendor ID check and setup kind to arch_kind_amd and reuse AMD
code path, which lead to correct return value in
__cache_sysconf() syscall. we run the glibc test suite for both
Hygon Dhyana and AMD EPYC and found no failure case.
Background:
Chengdu Haiguang IC Design Co., Ltd (Hygon) is a Joint Venture
between AMD and Haiguang Information Technology Co.,Ltd., aims at
providing high performance x86 processor for China server market.
Its first generation processor codename is Dhyana, which
originates from AMD technology and shares most of the
architecture with AMD's family 17h, but with different CPU Vendor
ID("HygonGenuine")/Family series number(Family 18h).
Related Hygon kernel patch can be found on
http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
Signed-off-by: fanjinke <fanjinke@hygon.cn>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
In the read lock function (__pthread_rwlock_rdlock_full) there was a
code path which would fail to reload __readers while waiting for
PTHREAD_RWLOCK_RWAITING to change. This failure to reload __readers
into a local value meant that various conditionals used the old value
of __readers and with only two threads left it could result in an
indefinite stall of one of the readers (waiting for PTHREAD_RWLOCK_RWAITING
to go to zero, but it never would).
Continuing the removal of bits/mathinline.h inlines that would better
be done by the compiler, this patch removes an x86 inline for hypot
functions (only for fast-math, only for non-SSE 32-bit x86). I've
filed <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88474> for adding
such an inline as an optimization in GCC.
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h (hypot): Remove inline
definition.
Non-consumable data, alias data not related to benchmarks, should be sent to
the standard error, thus pipelines can work as expected.
* benchtests/scripts/compare_bench.py (do_compare): write to stderr in case
stat is not present.
* benchtests/scripts/compare_bench.py (plot_graphs): write to stderr in case
timings field is not present. Also string showing the output filename goes
into the stderr.
Allows user to pick a statistic, defaulting to min and mean, from command
line. At the same time, if stat does not exit, catch the run-time exception
and keep comparing the rest of benchmarked functions. Finally, take care of
division-by-zero exceptions and as the latter, keep comparing the rest of the
functions, turning the script a bit more fault tolerant thus useful.
* benchtests/scripts/compare_bench.py (do_compare): Catch KeyError and
ZeroDivisorError exceptions.
* benchtests/scripts/compare_bench.py (compare_runs): Use stats argument to
loop through user provided statistics.
* benchtests/scripts/compare_bench.py (main): Include the --stats argument.
Allows other functions to be processed, making the script a bit more fault
tolerant thus useful.
* benchtests/scripts/compare_bench.py (compare_runs): Continue instead of return.
The “any later version” clause was missing. This change was approved
in principle by the FSF in RT ticket #1316403.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Add CFI information about the offset of registers stored in the stack
frame.
[BZ #23614]
* sysdeps/powerpc/powerpc64/addmul_1.S (FUNC): Add CFI offset for
registers saved in the stack frame.
* sysdeps/powerpc/powerpc64/lshift.S (__mpn_lshift): Likewise.
* sysdeps/powerpc/powerpc64/mul_1.S (__mpn_mul_1): Likewise.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Reviewed-by: Gabriel F. T. Gomes <gabriel@inconstante.eti.br>
On some platforms, long double may have either the same format as double
or another, wider format, such as the Quadruple IEC 60559 long double
format or the IBM Extended Precision format (both 128-bits wide).
Selecting between the available formats is done by using one of the
following compiler switches: -mlong-double-128, for the wider format, or
-mlong-double-64, for the narrower. On all platforms that provide this
choice, the wider format is the default.
When the non-default format is selected by user code (i.e.: when
building with -mlong-double-64) calls to functions that take long double
parameters or return a long double type (e.g.: strfroml) are redirected
to a compat function, via assembler redirection, by headers such as
bits/stdlib-ldbl.h or bits/misc-ldbl.h.
In glibc builds, however, these headers are currently being read from
the system directories (/usr/include/bits) rather than from the source
directory. Although this works correctly today, it raises
reproducibility concerns. Besides that, builds for powerpc64le will
need these files from the source directory, because on powerpc64le, the
new redirections for long double with IEEE binary128 format will be
implemented in these headers.
Tested for powerpc64 and powerpc64le.
Since the commit
commit 698fb75b9f
Author: Zack Weinberg <zackw@panix.com>
Date: Wed Mar 7 14:32:01 2018 -0500
Add __v*printf_internal with flags arguments
_IO_vfprintf is gone. This did not trigger any test case failures on
powerpc and powerpc64le, because there were no tests that covered it.
However, new test cases for nldbl versions of argp.h functions exposed
the problem.
Tested for powerpc64 and powerpc64le.
The threshold value at which powf overflows depends on the rounding mode
and the current check did not take this into account. So when the result
was rounded away from zero it could become infinity without setting
errno to ERANGE.
Example: pow(0x1.7ac7cp+5, 23) is 0x1.fffffep+127 + 0.1633ulp
If the result goes above 0x1.fffffep+127 + 0.5ulp then errno is set,
which is fine in nearest rounding mode, but
powf(0x1.7ac7cp+5, 23) is inf in upward rounding mode
powf(-0x1.7ac7cp+5, 23) is -inf in downward rounding mode
and the previous implementation did not set errno in these cases.
The fix tries to avoid affecting the common code path or calling a
function that may introduce a stack frame, so float arithmetics is used
to check the rounding mode and the threshold is selected accordingly.
[BZ #23961]
* math/auto-libm-test-in: Add new test case.
* math/auto-libm-test-out-pow: Regenerated.
* sysdeps/ieee754/flt-32/e_powf.c (__powf): Fix overflow check.
During postclean.req testing it was found that the fork in the
parent process (after the unshare syscall) would fail with ENOMEM
(see recursive_remove() in test-container.c). While failing with
ENOMEM is certainly unexpected, it is simply easier to refactor
the design and have the parent remain outside of the namespace.
This change moves the postclean.req processing to a distinct
process (the parent) that then forks the test process (which will
have to fork once more to complete uid/gid transitions). When the
test process exists the cleanup process will ensure all files are
deleted when a post clean is requested.
Signed-off-by: DJ Delorie <dj@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
[BZ #23948]
* support/test-container.c: Move postclean step to before we
change namespaces.
This patch eliminates the gen-py-const.awk variant of gen-as-const,
switching to use of gnu-as-const.py (with a new --python option) to
process .pysym files (i.e., to generate nptl_lock_constants.py), as
the syntax of those files is identical to that of .sym files.
Note that the generated nptl_lock_constants.py is *not* identical to
the version generated by the awk script. Apart from the trivial
changes (comment referencing the new script, and output being sorted),
the constant FUTEX_WAITERS, PTHREAD_MUTEXATTR_FLAG_BITS,
PTHREAD_MUTEXATTR_FLAG_PSHARED and PTHREAD_MUTEX_PRIO_CEILING_MASK are
now output as positive rather than negative constants (on x86_64
anyway; maybe not necessarily on 32-bit systems):
< FUTEX_WAITERS = -2147483648
---
> FUTEX_WAITERS = 2147483648
< PTHREAD_MUTEXATTR_FLAG_BITS = -251662336
< PTHREAD_MUTEXATTR_FLAG_PSHARED = -2147483648
---
> PTHREAD_MUTEXATTR_FLAG_BITS = 4043304960
> PTHREAD_MUTEXATTR_FLAG_PSHARED = 2147483648
< PTHREAD_MUTEX_PRIO_CEILING_MASK = -524288
---
> PTHREAD_MUTEX_PRIO_CEILING_MASK = 4294443008
This is because gen-as-const has a cast of the constant value to long
int, which gen-py-const lacks.
I think the positive values are more logically correct, since the
constants in question are in fact unsigned in C. But to reliably
produce gen-as-const.py output for constants that always (in C and
Python) reflects the signedness of values with the high bit of "long
int" set would mean more complicated logic needs to be used in
computing values.
The more correct positive values by themselves produce a failure of
nptl/test-mutexattr-printers, because masking with
~PTHREAD_MUTEXATTR_FLAG_BITS & ~PTHREAD_MUTEX_NO_ELISION_NP now leaves
a bit -1 << 32 in the Python value, resulting in a KeyError exception.
To avoid that, places masking with ~ of one of the constants in
question are changed to mask with 0xffffffff as well (this reflects
how ~ in Python applies to an infinite-precision integer whereas ~ in
C does not do any promotions beyond the width of int).
Tested for x86_64.
* scripts/gen-as-const.py (main): Handle --python option.
* scripts/gen-py-const.awk: Remove.
* Makerules (py-const-script): Use gen-as-const.py.
($(py-const)): Likewise.
* nptl/nptl-printers.py (MutexPrinter.read_status_no_robust): Mask
with 0xffffffff together with ~(PTHREAD_MUTEX_PRIO_CEILING_MASK).
(MutexAttributesPrinter.read_values): Mask with 0xffffffff
together with ~PTHREAD_MUTEXATTR_FLAG_BITS and
~PTHREAD_MUTEX_NO_ELISION_NP.
* manual/README.pretty-printers: Update reference to
gen-py-const.awk.
This patch converts the tst-signal-numbers test from shell + awk to
Python.
As with gen-as-const, the point is not so much that shell and awk are
problematic for this code, as that it's useful to build up general
infrastructure in Python for use of a range of code involving
extracting values from C headers. This patch moves some code from
gen-as-const.py to a new glibcextract.py, which also gains functions
relating to listing macros, and comparing the values of a set of
macros from compiling two different pieces of code.
It's not just signal numbers that should have such tests; pretty much
any case where glibc copies constants from Linux kernel headers should
have such tests that the values and sets of constants agree except
where differences are known to be OK. Much the same also applies to
structure layouts (although testing those without hardcoding lists of
fields to test will be more complicated).
Given this patch, another test for a set of macros would essentially
be just a call to glibcextract.compare_macro_consts (plus boilerplate
code - and we could move to having separate text files defining such
tests, like the .sym inputs to gen-as-const, so that only a single
Python script is needed for most such tests). Some such tests would
of course need new features, e.g. where the set of macros changes in
new kernel versions (so you need to allow new macro names on the
kernel side if the kernel headers are newer than the version known to
glibc, and extra macros on the glibc side if the kernel headers are
older). tst-syscall-list.sh could become a Python script that uses
common code to generate lists of macros but does other things with its
own custom logic.
There are a few differences from the existing shell + awk test.
Because the new test evaluates constants using the compiler, no
special handling is needed any more for one signal name being defined
to another. Because asm/signal.h now needs to pass through the
compiler, not just the preprocessor, stddef.h is included as well
(given the asm/signal.h issue that it requires an externally provided
definition of size_t). The previous code defined __ASSEMBLER__ with
asm/signal.h; this is removed (__ASSEMBLY__, a different macro,
eliminates the requirement for stddef.h on some but not all
architectures).
Tested for x86_64, and with build-many-glibcs.py.
* scripts/glibcextract.py: New file.
* scripts/gen-as-const.py: Do not import os.path, re, subprocess
or tempfile. Import glibcexctract.
(compute_c_consts): Remove. Moved to glibcextract.py.
(gen_test): Update reference to compute_c_consts.
(main): Likewise.
* sysdeps/unix/sysv/linux/tst-signal-numbers.py: New file.
* sysdeps/unix/sysv/linux/tst-signal-numbers.sh: Remove.
* sysdeps/unix/sysv/linux/Makefile
($(objpfx)tst-signal-numbers.out): Use tst-signal-numbers.py.
Redirect stderr as well as stdout.
I have tested that this builds and the resulting program still work.
This was tested on gcc23.fsffrance.org, and for some reason the vdso
there seems unused even when using shared libraries.
[BZ #19767]
* sysdeps/unix/sysv/linux/mips/init-first.c: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/mips/libc-vdso.h: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
This patch updates files coming from tzcode to the versions in tzcode
2018g. No changes elsewhere in glibc were needed.
Tested for x86_64.
* timezone/private.h: Update from tzcode 2018g.
* timezone/tzfile.h: Likewise.
* timezone/tzselect.ksh: Likewise.
* timezone/zdump.c: Likewise.
* timezone/zic.c: Likewise.
This one tests for BZ#23907 where the double free
test didn't check the tcache bin bounds before dereferencing
the bin.
[BZ #23907]
* malloc/tst-tcfree3.c: New.
* malloc/Makefile: Add it.
We can't use "__typeof__ (getcpu)" since getcpu is Linux specific and
Hurd doesn't have it.
Tested with build-many-glibcs.py.
* include/sched.h (__getcpu): Don't use __typeof__ (getcpu).
On powerpc64le, long double can currently take two formats: the same as
double (-mlong-double-64) or IBM Extended Precision (default with
-mlong-double-128 or explicitly with -mabi=ibmlongdouble). The internal
implementation of scanf-like functions is aware of these possibilites
and, based on the format in use, properly calls __strtold_internal or
__strtod_internal, saving the return to a variable of type double or
long double.
When library support for TS 18661-3 was added to glibc, a new function,
__strtof128_internal, was added to enable reading of floating-point
values with IEEE binary128 format into the _Float128 type. Now that
powerpc64le is getting support for its third long double format, and
taking into account that this format is the same as the format of
_Float128, this patch extends __vfscanf_internal and __vfwscanf_internal
to call __strtof128_internal or __wcstof128_internal when appropriate.
The result gets saved into a variable of _Float128 type.
Tested for powerpc64le.
Along with posix_spawn_file_actions_addchdir,
posix_spawn_file_actions_addfchdir is the subject of a change proposal
for POSIX: <http://austingroupbugs.net/view.php?id=1208>
This patch updates various miscellaneous files from their upstream
sources.
Tested for x86_64, including "make pdf".
* manual/texinfo.tex: Update to version 2018-09-21.20 with
trailing whitespace removed.
* scripts/config.guess: Update to version 2018-11-28.
* scripts/config.sub: Update to version 2018-11-28.
* scripts/install-sh: Update to version 2018-03-11.20.
* scripts/mkinstalldirs: Update to version 2018-03-07.03.
* scripts/move-if-change: Update to version 2018-03-07 03:47.
After all that prep work, nldbl-compat.c can now use PRINTF_LDBL_IS_DBL
instead of __no_long_double to control the behavior of printf-like
functions; this is the last thing we needed __no_long_double for, so it
can go away entirely.
Tested for powerpc and powerpc64le.
The _chk variants of all of the printf functions become much simpler.
This is the last thing that we needed _IO_acquire_lock_clear_flags2
for, so it can go as well. I took the opportunity to make the headers
included and the names of all local variables consistent across all the
affected files.
Since we ultimately want to get rid of __no_long_double as well, it
must be possible to get all of the nontrivial effects of the _chk
functions by calling the _internal functions with appropriate flags.
For most of the __(v)xprintf_chk functions, this is covered by
PRINTF_FORTIFY plus some up-front argument checks that can be
duplicated. However, __(v)sprintf_chk installs a custom jump table so
that it can crash instead of overflowing the output buffer. This
functionality is moved to __vsprintf_internal, which now has a
'maxlen' argument like __vsnprintf_internal; to get the unsafe
behavior of ordinary (v)sprintf, pass -1 for that argument.
obstack_printf_chk and obstack_vprintf_chk are no longer in the same
file.
As a side-effect of the unification of both fortified and non-fortified
vdprintf initialization, this patch fixes bug 11319 for __dprintf_chk
and __vdprintf_chk, which was previously fixed only for dprintf and
vdprintf by the commit
commit 7ca890b88e
Author: Ulrich Drepper <drepper@redhat.com>
Date: Wed Feb 24 16:07:57 2010 -0800
Fix reporting of I/O errors in *dprintf functions.
This patch adds a test case to avoid regressions.
Tested for powerpc and powerpc64le.
__nldbl___vsyslog_chk will ultimately want to pass PRINTF_LDBL_IS_DBL
down to __vfprintf_internal *as well as* possibly setting PRINTF_FORTIFY.
To make that possible, we need a __vsyslog_internal that takes the
same flags as printf. The code in misc/syslog.c does also get a
little simpler.
Tested for powerpc and powerpc64le.
There are a lot more printf variants than there are scanf variants,
and the code for setting up and tearing down their custom FILE
variants around the call to __vf(w)printf is more complicated and
variable. Therefore, I have added _internal versions of all the
v*printf variants, rather than introducing helper routines so that
they can all directly call __vf(w)printf_internal, as was done with
scanf.
As with the scanf changes, in this patch the _internal functions still
look at the environmental mode bits and all callers pass 0 for the
flags parameter.
Several of the affected public functions had _IO_ name aliases that
were not exported (but, in one case, appeared in libio.h anyway);
I was originally planning to leave them as aliases to avoid having
to touch internal callers, but it turns out ldbl_*_alias only work
for exported symbols, so they've all been removed instead. It also
turns out there were hardly any internal callers. _IO_vsprintf and
_IO_vfprintf *are* exported, so those two stick around.
Summary for the changes to each of the affected symbols:
_IO_vfprintf, _IO_vsprintf:
All internal calls removed, thus the internal declarations, as well
as uses of libc_hidden_proto and libc_hidden_def, were also removed.
The external symbol is now exposed via uses of ldbl_strong_alias
to __vfprintf_internal and __vsprintf_internal, respectively.
_IO_vasprintf, _IO_vdprintf, _IO_vsnprintf,
_IO_vfwprintf, _IO_vswprintf,
_IO_obstack_vprintf, _IO_obstack_printf:
All internal calls removed, thus declaration in internal headers
were also removed. They were never exported, so there are no
aliases tying them to the internal functions. I.e.: entirely gone.
__vsnprintf:
Internal calls were always preceded by macros such as
#define __vsnprintf _IO_vsnprintf, and
#define __vsnprintf vsnprintf
The macros were removed and their uses replaced with calls to the
new internal function __vsnprintf_internal. Since there were no
internal calls, the internal declaration was also removed. The
external symbol is preserved with ldbl_weak_alias to ___vsnprintf.
__vfwprintf:
All internal calls converted into calls to __vfwprintf_internal,
thus the internal declaration was removed. The function is now a
wrapper that calls __vfwprintf_internal. The external symbol is
preserved.
__vswprintf:
Similarly, but no external symbol.
__vasprintf, __vdprintf, __vfprintf, __vsprintf:
New internal wrappers. Not exported.
vasprintf, vdprintf, vfprintf, vsprintf, vsnprintf,
vfwprintf, vswprintf,
obstack_vprintf, obstack_printf:
These functions used to be aliases to the respective _IO_* function,
they are now aliases to their respective __* functions.
Tested for powerpc and powerpc64le.
Change the callers of __vfscanf_internal and __vfwscanf_internal that
want to treat 'long double' as another name for 'double' (all of which
happen to be in sysdeps/ieee754/ldbl-opt/nldbl-compat.c) to communicate
this via the new flags argument, instead of the per-thread variable
__no_long_double and its __ldbl_is_dbl wrapper macro.
Tested for powerpc and powerpc64le.
Change the callers of __vfscanf_internal and __vfwscanf_internal that
want C99-compliant behavior to communicate this via the new flags
argument, rather than setting bits on the FILE object. This also
means these functions do not need to do their own locking.
Tested for powerpc and powerpc64le.
There are two flags currently defined: SCANF_LDBL_IS_DBL is the mode
used by __nldbl_ scanf variants, and SCANF_ISOC99_A is the mode used
by __isoc99_ scanf variants. In this patch, the new functions honor
these flag bits if they're set, but they still also look at the
corresponding bits of environmental state, and callers all pass zero.
The new functions do *not* have the "errp" argument possessed by
_IO_vfscanf and _IO_vfwscanf. All internal callers passed NULL for
that argument. External callers could theoretically exist, so I
preserved wrappers, but they are flagged as compat symbols and they
don't preserve the three-way distinction among types of errors that
was formerly exposed. These functions probably should have been in
the list of deprecated _IO_ symbols in 2.27 NEWS -- they're not just
aliases for vfscanf and vfwscanf.
(It was necessary to introduce ldbl_compat_symbol for _IO_vfscanf.
Please check that part of the patch very carefully, I am still not
confident I understand all of the details of ldbl-opt.)
This patch also introduces helper inlines in libio/strfile.h that
encapsulate the process of initializing an _IO_strfile object for
reading. This allows us to call __vfscanf_internal directly from
sscanf, and __vfwscanf_internal directly from swscanf, without
duplicating the initialization code. (Previously, they called their
v-counterparts, but that won't work if we want to control *both* C99
mode and ldbl-is-dbl mode using the flags argument to__vfscanf_internal.)
It's still a little awkward, especially for wide strfiles, but it's
much better than what we had.
Tested for powerpc and powerpc64le.
Now that __time64_t exists, we can switch internal function
__tz_convert from 32-bit to 64-bit time. This involves switching
some other internal functions as well, namely __tz_compute and
__offtime.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__tz_compute): Replace time_t with __time64_t.
(__tz_convert): Replace time_t* with __time64_t.
(__offtime): Replace time_t* with __time64_t.
* time/gmtime.c
(__gmtime_r): Adjust call to __tz_convert.
(gmtime): Likewise.
* time/localtime.c
(__localtime_r): Likewise.
(localtime): Likewise.
* time/offtime.c: Replace time_t with __time64_t.
* time/tzset.c: Likewise.
I noticed that, now that build-many-glibcs.py no longer copies glibc
sources, I was getting core dumps in my glibc source directories. The
cause appears to be, from the i686-gnu build:
for dso in ` env LD_TRACE_LOADED_OBJECTS=1 \
/scratch/jmyers/glibc-bot/build/glibcs/i686-gnu/glibc/elf/ld.so.1 \
/scratch/jmyers/glibc-bot/build/glibcs/i686-gnu/glibc/testroot.pristine/bin/sh \
[...]
Segmentation fault (core dumped)
In this case, the x86 architecture means the binary executes, but
dumps core rather than actually working.
Anything involving running the newly built glibc should only be done
ifeq ($(run-built-tests),yes). This patch conditions the relevant
part of the testroot setup accordingly.
Tested for x86_64, and with build-many-glibcs.py for i686-gnu.
* Makefile ($(objpfx)testroot.pristine/install.stamp): Do not run
dynamic linker unless [$(run-built-tests) = yes].
It was reported in
<https://sourceware.org/ml/libc-alpha/2018-12/msg00045.html> that
gen-as-const.py fails to generate test code in the case where a .sym
file has no symbols in it, so resulting in a test failing to link for
Hurd.
The relevant difference from the old awk script is that the old script
treated '--' lines as indicating that the text to do at the start of
the test (or file used to compute constants) should be output at that
point if not already output, as well as treating lines with actual
entries for constants like that. This patch changes gen-as-const.py
accordingly, making it the sole responsibility of the code parsing
.sym files to determine when such text should be output and ensuring
it's always output at some point even if there are no symbols and no
'--' lines, since not outputting it means the test fails to link.
Handling '--' like that also avoids any problems that would arise if
the first entry for a symbol were inside #ifdef (since the text in
question must not be output inside #ifdef).
Tested for x86_64, and with build-many-glibcs.py for i686-gnu. Note
that there are still compilation test failures for i686-gnu
(linknamespace tests, possibly arising from recent posix_spawn-related
changes).
* scripts/gen-as-const.py (compute_c_consts): Take an argument
'START' to indicate that start text should be output.
(gen_test): Likewise.
(main): Generate 'START' for first symbol or '--' line, or at end
of input if not previously generated.
I have tested that this builds and the resulting program still work.
The kernel in gcc117 (which I ussed for testing) seems to be missing
https://patchwork.kernel.org/patch/10060431/, so the vdso is never used.
[BZ #19767]
* sysdeps/unix/sysv/linux/arm/init-first.c: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/arm/libc-vdso.h: Remove #ifdef SHARED.
* sysdeps/unix/sysv/linux/arm/sysdep.h: Define
ALWAYS_USE_VSYSCALL.
This patch is essentially 28669f86f6 adjusted for the generic
implementation.
Checked on x86_64-linux-gnu with Linux spawni.c removed. The only
failure is posix/tst-spawn3, which is expected.
[BZ #23913]
* sysdeps/posix/spawni.c (maybe_script_execute):
Increment size of new_argv by one.
Downstream distributions need consistent sets of hardlinks in
order for rpm to operate effectively. This means that even if
locales are built with a high level of parallelism that the
resulting files need to have consistent hardlink counts. The only
way to achieve this is with a post-install hardlink pass using a
program like 'hardlink' (shipped in Fedora).
If the downstream distro wants to post-process the hardlinks then
the time spent in localedef looking up sibling directories and
processing hardlinks is wasted effort.
To optimize the build and install pass we add a --no-hard-links
option to localedef to avoid doing the hardlink optimziation for
size.
Tested on x86_64 with 'make localedata/install-locale-files'
before and after. Without the patch we have files with 100+
hardlink counts. After the patch and running with --no-hard-links
all link counts are 1. This patch also alters the convenience
target 'make localedata/install-locale-files' to use the new
option.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Extend CPUID support for all feature bits from CPUID. Add a new macro,
CPU_FEATURE_USABLE, which can be used to check if a feature is usable at
run-time, instead of HAS_CPU_FEATURE and HAS_ARCH_FEATURE.
Add COMMON_CPUID_INDEX_D_ECX_1, COMMON_CPUID_INDEX_80000007 and
COMMON_CPUID_INDEX_80000008 to check CPU feature bits in them.
Tested on i686 and x86-64 as well as using build-many-glibcs.py with
x86 targets.
* sysdeps/x86/cacheinfo.c (intel_check_word): Updated for
cpu_features_basic.
(__cache_sysconf): Likewise.
(init_cacheinfo): Likewise.
* sysdeps/x86/cpu-features.c (get_extended_indeces): Also
populate COMMON_CPUID_INDEX_80000007 and
COMMON_CPUID_INDEX_80000008.
(get_common_indices): Also populate COMMON_CPUID_INDEX_D_ECX_1.
Use CPU_FEATURES_CPU_P (cpu_features, XSAVEC) to check if
XSAVEC is available. Set the bit_arch_XXX_Usable bits.
(init_cpu_features): Use _Static_assert on
index_arch_Fast_Unaligned_Load.
__get_cpuid_registers and __get_arch_feature. Updated for
cpu_features_basic. Set stepping in cpu_features.
* sysdeps/x86/cpu-features.h: (FEATURE_INDEX_1): Changed to enum.
(FEATURE_INDEX_2): New.
(FEATURE_INDEX_MAX): Changed to enum.
(COMMON_CPUID_INDEX_D_ECX_1): New.
(COMMON_CPUID_INDEX_80000007): Likewise.
(COMMON_CPUID_INDEX_80000008): Likewise.
(cpuid_registers): Likewise.
(cpu_features_basic): Likewise.
(CPU_FEATURE_USABLE): Likewise.
(bit_arch_XXX_Usable): Likewise.
(cpu_features): Use cpuid_registers and cpu_features_basic.
(bit_arch_XXX): Reweritten.
(bit_cpu_XXX): Likewise.
(index_cpu_XXX): Likewise.
(reg_XXX): Likewise.
* sysdeps/x86/tst-get-cpu-features.c: Include <stdio.h> and
<support/check.h>.
(CHECK_CPU_FEATURE): New.
(CHECK_CPU_FEATURE_USABLE): Likewise.
(cpu_kinds): Likewise.
(do_test): Print vendor, family, model and stepping. Check
HAS_CPU_FEATURE and CPU_FEATURE_USABLE.
(TEST_FUNCTION): Removed.
Include <support/test-driver.c> instead of
"../../test-skeleton.c".
* sysdeps/x86_64/multiarch/sched_cpucount.c (__sched_cpucount):
Check POPCNT instead of POPCOUNT.
* sysdeps/x86_64/multiarch/test-multiarch.c (do_test): Likewise.
hurd's jmp_buf-ssp.sym does not define any symbol.
scripts/gen-as-const.py currently was emitting an empty line in that
case, and the gawk invocation was prepending "asconst_" to it, ending up
with:
.../build/glibc/setjmp/test-as-const-jmp_buf-ssp.c:1:2: error: expected « = », « , », « ; », « asm » or
« __attribute__ » at end of input
1 | asconst_
| ^~~~~~~~
* scripts/gen-as-const.py (main): Avoid emitting empty line when
there is no element in `consts'.
Fortunately we were previously only missing an optimization.
Thanks dcb <dcb314@hotmail.com> for the report
[BZ #23032]
* sysdeps/htl/pt-barrier-init.c (pthread_barrier_init): Fix comparing
attr with __pthread_default_barrierattr.
* sysdeps/htl/pt-cond-init.c (__pthread_cond_init): Fix comparing
attr with __pthread_default_condattr.
* sysdeps/htl/pt-mutex-init.c (_pthread_mutex_init): Fix comparing
attr with __pthread_default_mutexattr.
* sysdeps/htl/pt-rwlock-init.c (_pthread_rwlock_init): Fix comparing
attr with __pthread_default_rwlockattr.
This patch does not have any functionality change, we only provide a spin
count tunes for pthread adaptive spin mutex. The tunable
glibc.pthread.mutex_spin_count tunes can be used by system administrator to
squeeze system performance according to different hardware capabilities and
workload characteristics.
The maximum value of spin count is limited to 32767 to avoid the overflow
of mutex->__data.__spins variable with the possible type of short in
pthread_mutex_lock ().
The default value of spin count is set to 100 with the reference to the
previous number of times of spinning via trylock. This value would be
architecture-specific and can be tuned with kinds of benchmarks to fit most
cases in future.
I would extend my appreciation sincerely to H.J.Lu for his help to refine
this patch series.
* manual/tunables.texi (POSIX Thread Tunables): New node.
* nptl/Makefile (libpthread-routines): Add pthread_mutex_conf.
* nptl/nptl-init.c: Include pthread_mutex_conf.h
(__pthread_initialize_minimal_internal) [HAVE_TUNABLES]: Call
__pthread_tunables_init.
* nptl/pthreadP.h (MAX_ADAPTIVE_COUNT): Remove.
(max_adaptive_count): Define.
* nptl/pthread_mutex_conf.c: New file.
* nptl/pthread_mutex_conf.h: New file.
* sysdeps/generic/adaptive_spin_count.h: New file.
* sysdeps/nptl/dl-tunables.list: New file.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock): Use
max_adaptive_count () not MAX_ADAPTIVE_COUNT.
* nptl/pthread_mutex_timedlock.c (__pthrad_mutex_timedlock):
Likewise.
Suggested-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Kemi.wang <kemi.wang@intel.com>
This patch uses posix_spawn on system implementation. On Linux this has
the advantage of much lower memory consumption (usually 32 Kb minimum for
the mmap stack area).
Although POSIX does not require, glibc system implementation aims to be
thread and cancellation safe. The cancellation code is moved to generic
implementation and enabled iff SIGCANCEL is defined (similar on how the
cancellation handler is enabled on nptl-init.c).
Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Use
__sigismember instead of sigismember.
* sysdeps/posix/system.c [SIGCANCEL] (cancel_handler_args,
cancel_handler): New definitions.
(CLEANUP_HANDLER, CLEANUP_RESET): Likewise.
(DO_LOCK, DO_UNLOCK, INIT_LOCK, ADD_REF, SUB_REF): Remove.
(do_system): Use posix_spawn instead of fork and execl and remove
reentracy code.
* sysdeps/generic/not-errno.h (__kill_noerrno): New prototype.
* sysdeps/unix/sysv/linux/not-errno.h (__kill_noerrno): Likewise.
* sysdeps/unix/sysv/linux/ia64/system.c: Remove file.
* sysdeps/unix/sysv/linux/s390/system.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/system.c: Likewise.
* sysdeps/unix/sysv/linux/system.c: Likewise.
This patch uses posix_spawn on popen instead of fork and execl. On Linux
this has the advantage of much lower memory consumption (usually 32 Kb
minimum for the mmap stack area).
Two issues are also fixed with this change:
* BZ#17490: although POSIX pthread_atfork description only list 'fork'
as the function that should execute the atfork handlers, popen
description states that:
'[...] shall be *as if* a child process were created within the popen()
call using the fork() function [...]'
Other libc/system seems to follow the idea atfork handlers should not be
executed for popen:
libc/system | run atfork handles | notes
------------|----------------------|---------------------------------------
Freebsd | no | uses vfork
Solaris 11 | no |
MacOSX 11 | no | implemented through posix_spawn syscall
------------|----------------------|----------------------------------------
Similar to posix_spawn and system, popen idea is to spawn a different
binary so all the POSIX rationale to run the atfork handlers to avoid
internal process inconsistency is not really required and in some cases
might be unsafe.
* BZ#22834: the described scenario, where the forked process might access
invalid memory due an inconsistent state in multithreaded environment,
should not happen because posix_spawn does not access the affected
data structure (proc_file_chain).
Checked on x86_64-linux-gnu and i686-linux-gnu.
[BZ #22834]
[BZ #17490]
* NEWS: Add new semantic for atfork with popen and system.
* libio/iopopen.c (_IO_new_proc_open): use posix_spawn instead of
fork and execl.
There is a data-dependency between the fields of struct l_reloc_result
and the field used as the initialization guard. Users of the guard
expect writes to the structure to be observable when they also observe
the guard initialized. The solution for this problem is to use an acquire
and release load and store to ensure previous writes to the structure are
observable if the guard is initialized.
The previous implementation used DL_FIXUP_VALUE_ADDR (l_reloc_result->addr)
as the initialization guard, making it impossible for some architectures
to load and store it atomically, i.e. hppa and ia64, due to its larger size.
This commit adds an unsigned int to l_reloc_result to be used as the new
initialization guard of the struct, making it possible to load and store
it atomically in all architectures. The fix ensures that the values
observed in l_reloc_result are consistent and do not lead to crashes.
The algorithm is documented in the code in elf/dl-runtime.c
(_dl_profile_fixup). Not all data races have been eliminated.
Tested with build-many-glibcs and on powerpc, powerpc64, and powerpc64le.
[BZ #23690]
* elf/dl-runtime.c (_dl_profile_fixup): Guarantee memory
modification order when accessing reloc_result->addr.
* include/link.h (reloc_result): Add field init.
* nptl/Makefile (tests): Add tst-audit-threads.
(modules-names): Add tst-audit-threads-mod1 and
tst-audit-threads-mod2.
Add rules to build tst-audit-threads.
* nptl/tst-audit-threads-mod1.c: New file.
* nptl/tst-audit-threads-mod2.c: Likewise.
* nptl/tst-audit-threads.c: Likewise.
* nptl/tst-audit-threads.h: Likewise.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch replaces gen-as-const.awk, and some fragments of the
Makefile code that used it, by a Python script. The point is not such
much that awk is problematic for this particular script, as that I'd
like to build up a general Python infrastructure for extracting
information from C headers, for use in writing tests of such headers.
Thus, although this patch does not set up such infrastructure, the
compute_c_consts function in gen-as-const.py might be moved to a
separate Python module in a subsequent patch as a starting point for
such infrastructure.
The general idea of the code is the same as in the awk version, but no
attempt is made to make the output files textually identical. When
generating a header, a dict of constant names and values is generated
internally then defines are printed in sorted order (rather than the
order in the .sym file, which would have been used before). When
generating a test that the values computed match those from a normal
header inclusion, the test code is made into a compilation test using
_Static_assert, where previously the comparisons were done only when
the test was executed. One fragment of test generation (converting
the previously generated header to use asconst_* prefixes on its macro
names) is still in awk code in the makefiles; only the .sym processing
and subsequent execution of the compiler to extract constants have
moved to the Python script.
Tested for x86_64, and with build-many-glibcs.py.
* scripts/gen-as-const.py: New file.
* scripts/gen-as-const.awk: Remove.
* Makerules ($(common-objpfx)%.h $(common-objpfx)%.h.d): Use
gen-as-const.py.
($(objpfx)test-as-const-%.c): Likewise.
Add support for %x, %lx and %zx to _dl_exception_create_format and pad
to the full width with 0.
* elf/Makefile (tests-internal): Add tst-create_format1.
* elf/dl-exception.c (_dl_exception_create_format): Support
%x, %lx and %zx.
* elf/tst-create_format1.c: New file.
_IO_fwide() is defined in libio.h file. This file is included only
when _LIBC is defined.
So, in case of compilation of these files without _LIBC definition,
the compilation failed due to this unknown function.
Now this function is called when libio.h file is included.
(Change merged from gnulib. Tested on x86_64.)
* argp/argp-fmtstream.c (__argp_fmtstream_update): Use [_LIBC]
conditional on calls to _IO_fwide and putwc_unlocked. (Merge from
gnulib.)
* argp/argp-help.c (__argp_failure): Likewise.
These files were both auto-generated and shipped in the source tree.
We can assume that sed is available and always generate the files
during the build.
Signal zero does not terminate a process, so it is safe to use negative
values for signal numbers.
Adjust libio/tst-vtables-common.c to use this new functionality,
instead of determining the termination status for a signal indirectly.
Now that build-many-glibcs.py touches at checkout time all files that
might get rebuilt in the glibc source directory in a normal glibc
build and test run, this patch stops the script from copying the glibc
source directory, so that all builds use the original directory
directly (and less disk space is used, less I/O is involved and cached
copies of the sources in memory can be shared between all the builds -
as well as avoiding spurious failures from copying while "git gc" is
running). This is similar to how all other components were already
handled. Any bugs involving writing into the source directory can be
dealt with in future as normal bugs, just as such bugs already are
handled.
Tested with build-many-glibcs.py runs with a read-only glibc source
directory, with all files not touched by the script having timestamps
in forwards alphabetical order and separately with all files not
touched by the script having timestamps in backwards alphabetical
order.
* scripts/build-many-glibcs.py (Glibc.build_glibc): Use original
source directory instead of a copy.
(CommandList.create_copy_dir): Remove.
The logic for generating sysdeps/mach/hurd/bits/errno.h involves a
stamp file and $(move-if-change).
The temporary file (generated unconditionally) is generated in the
source directory. This means that even if
sysdeps/mach/hurd/bits/errno.h is up to date, and has an up to date
timestamp, the build will fail if the source directory is read-only.
Even with a writable source directory, multiple concurrent builds for
i686-gnu with the same source directory could race to access the
temporary file (which always has the same name).
This patch uses the build directory for the temporary file instead to
avoid those problems. (In the case where the file is out of date and
the temporary file does need to be moved to the source directory, if
there are multiple concurrent builds for i686-gnu with the same source
directory, and the source and build directories are on different
filesystems, it's possible there might still be races replacing the
file in the source directory, depending on exactly how mv handles such
cross-filesystem moves. This is certainly no worse than the present
situation, where such a case would have races regardless of whether
the file is out of date or whether different filesystems are in use.)
Tested with a build-many-glibcs.py build for i686-gnu.
* sysdeps/mach/hurd/Makefile ($(common-objpfx)stamp-errnos): Use
$(hurd-objpfx)bits/errno.h-tmp, not $(hurd)/bits/errno.h-tmp.
Mathieu Desnoyers ran into an issue with his rseq patch where he
was the first person to add weak thread-local data and this
resulted in an ABI list update with entries like this:
"GLIBC_2.29 w ? D .tdata 0000000000000020".
The weakness of the symbol has nothing to do with the DSOs ABI
and so we should not write anything about weak symbols here. The
.tdata entries should be treated exactly like .tbss entries and
the output should have been: "GLIBC_2.29 __rseq_abi T 0x20"
This change makes abilist.awk handle .tdata just like .tbss,
while at the same time adding an error case for the default, and
the unknown line cases. We never want anyone to be able to add
such entries to any ABI list files and should see an immediate
error and consult with experts.
Tested by Mathieu Desnoyers <mathieu.desnoyers@efficios.com> with
the rseq patch set and 'make update-all-abi'.
Tested myself with 'make update-all-abi' on x86_64 with no
changes.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
build-many-glibcs.py currently copies the source tree to avoid issues
with parallel builds trying to write into it. This copying can result
in occasional spurious build failures from bots, when a "git gc" is in
progress that changes .git contents while copying is taking place, and
it would also be desirable to avoid the need to copy to save on disk
space, I/O and memory used in build-many-glibcs.py builds.
In preparation for removing the copying, this patch arranges for
build-many-glibcs.py to touch more files on checkout so their
timestamps do not result in make attempting to rebuild them. Before
actually removing the copying, I intend to do further tests to ensure
I haven't missed any other such makefile dependencies.
This is of course without prejudice to possibly moving more of these
files to being generated in the build directory rather than being
checked in at all, where that can be done using build tools already
required for the build. For sysdeps files (installed and otherwise)
it would be necessary to make sure this does not affect the search
ordering, for headers used in the build it would be necessary to
ensure they are generated early enough, and for errlist.c there may be
dual licensing reasons for keeping it checked in.
Tested that a checkout with build-many-glibcs.py does touch the
expected files and that a glibcs build for aarch64-linux-gnu succeeds.
* scripts/build-many-glibcs.py (Context.fix_glibc_timestamps):
Touch additional files.
The previous check could read beyond the end of the tcache entry
array. If the e->key == tcache cookie check happened to pass, this
would result in crashes.
All the required code already existed, and some of it was already
running.
AT_SYSINFO_EHDR is processed if NEED_DL_SYSINFO_DSO is defined, but it
looks like it always is. The call to setup_vdso is also unconditional,
so all that was left to do was setup the function pointers and use
them. This patch just deletes some #ifdef to enable that.
[BZ #19767]
* nptl/Makefile (tests-static): Add tst-cond11-static.
(tests): Likewise.
* nptl/tst-cond11-static.c: New File.
* sysdeps/unix/sysv/linux/Makefile (tests-static): Add
tst-affinity-static.
(tests): Likewise.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Check USE_VSYSCALL
instead of SHARED.
* sysdeps/unix/sysv/linux/sysdep.h (ALWAYS_USE_VSYSCALL): New.
(USE_VSYSCALL): Likewise.
* sysdeps/unix/sysv/linux/tst-affinity-static.c: New file.
* sysdeps/unix/sysv/linux/x86/libc-vdso.h: Check USE_VSYSCALL
instead of SHARED.
* sysdeps/unix/sysv/linux/x86_64/init-first.c: Don't check
SHARED.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h (ALWAYS_USE_VSYSCALL):
New.
The generic kernel-features.h defines __ASSUME_COPY_FILE_RANGE for 4.5
and later kernels. However, for 32-bit Arm binaries running on 64-bit
Arm kernels, the syscall was only wired up in the 4.7 kernel, although
the 32-bit Arm kernel had the syscall from 4.5 onwards. This patch
corrects the Arm kernel-features.h to undefine the macro for
configured minimum kernel versions before 4.7.
Tested (compilation only) with a build-many-glibcs.py build for
arm-linux-gnueabi.
[BZ #23915]
* sysdeps/unix/sysv/linux/arm/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040700] (__ASSUME_COPY_FILE_RANGE):
Undefine.
Add a re-exec test with legacy bitmap to verify that legacy bitmap is
properly hanlded by kernel.
* sysdeps/x86/Makefile (tests): Add tst-cet-legacy-1a.
(tst-cet-legacy-1a-ARGS): New.
($(objpfx)tst-cet-legacy-1a): New target.
* sysdeps/x86/tst-cet-legacy-1a.c: New file.
In <https://sourceware.org/ml/libc-alpha/2018-11/msg00225.html>,
Florian reported that the change from conformtest.pl to conformtest.py
had increased conform/ test time, possibly because of increased
startup overhead for Python scripts.
This patch improves conformtest.py performance by arranging for as
many tests of a (header, standard) pair as possible to use a single
execution of the compiler, so it does not need to initialize and parse
the whole header under test separately for every test assertion.
Specifically, compilation tests that are not marked as "optional" or
"xfail" are combined into a single source file, and are only then run
separately if compilation of that combined file fails. For me, this
reduces the wall clock time for the conformtest.py tests (not the
whole of the conform/ directory) from two minutes to 15 seconds.
Tested for x86_64, and with build-many-glibcs.py.
* conform/conformtest.py (CompileSubTest.__init__): Set
self.run_early to False.
(ExecuteSubTest.__init__): Likewise.
(HeaderTests.run): Try running all non-optional, non-XFAILed
compilation tests in a single execution of the compiler.
This patch continues moving conformtest towards running more tests in
a single compiler execution by separating the generation and execution
of the subtests of each test.
Instead of test classes having a run method that both generates the
text of the programs to be compiled or executed, and compiles or
executes them, they are changed to having a gen_subtests method that
just generates CompileSubTest and ExecuteSubTest objects to store the
subtest names and text, and then a separate loop in HeaderTests.run
deals with actually executing those subtests.
This will allow for future changes to extract the text for all
non-optional, non-xfail compilation subtests to try compiling those
all at once, with separate compilations only if that fails, so
massively reducing the number of separate compiler executions (each of
which needs to parse the entire contents of the header under test, in
addition to the startup cost that applies even for compiling an empty
file).
Tested for x86_64, and with build-many-glibcs.py.
* conform/conformtest.py (CompileSubTest): New class.
(ExecuteSubTest): Likewise.
(ElementTest.run): Rename to gen_subtests. Append tests to
self.subtests instead of running them.
(ConstantTest.run): Likewise.
(SymbolTest.run): Likewise.
(TypeTest.run): Likewise.
(TagTest.run): Likewise.
(FunctionTest.run): Likewise.
(VariableTest.run): Likewise.
(MacroFunctionTest.run): Likewise.
(MacroStrTest.run): Likewise.
(HeaderTests.handle_test_line): Generate subtests for tests.
(HeaderTests.run): Run subtests for tests.
Introduce new pow symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_pow.c and enabled for targets with their own pow implementation or
ifunc dispatch on __ieee754_pow by including math/w_pow.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously powl was an alias of pow, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __pow_finite symbol is now an alias of pow. Both __pow_finite and
pow set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that
may affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add pow.
* math/w_pow_compat.c (__pow_compat): Change to versioned compat
symbol.
* math/w_pow.c: New file.
* sysdeps/i386/fpu/w_pow.c: New file.
* sysdeps/ia64/fpu/e_pow.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Rename to __pow
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_pow.c: New file.
* sysdeps/m68k/m680x0/fpu/w_pow.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma.c (__ieee754_pow): Rename to
__pow.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma4.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_pow.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_pow.c: New file.
Introduce new log2 symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log2.c and enabled for targets with their own log2 implementation by
including math/w_log2.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously log2l was an alias of log2, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log2_finite symbol is now an alias of log2. Both __log2_finite
and log2 set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log2.
* math/w_log2_compat.c (__log2_compat): Change to versioned compat
symbol.
* math/w_log2.c: New file.
* sysdeps/i386/fpu/w_log2.c: New file.
* sysdeps/ia64/fpu/e_log2.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_log2.c (__ieee754_log2): Rename to __log2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
Introduce new log symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log.c and enabled for targets with their own log implementation by
including math/w_log.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously logl was an alias of log, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log_finite symbol is now an alias of log. Both __log_finite and
log set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log.
* math/w_log_compat.c (__log_compat): Change to versioned compat
symbol.
* math/w_log.c: New file.
* sysdeps/i386/fpu/w_log.c: New file.
* sysdeps/ia64/fpu/e_log.S: Update.
* sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Rename to __log
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_log-avx.c (__ieee754_log): Rename to
__log.
* sysdeps/x86_64/fpu/multiarch/e_log-fma.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log-fma4.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_log.c: New file.
Introduce new exp and exp2 symbol version that don't do SVID compatible
error handling. The standard errno and fp exception based error handling
is inline in the new code and does not have significant overhead.
The double precision wrappers are disabled for sysdeps/ieee754/dbl-64
by using empty w_exp.c and w_exp2.c files, the math/w_exp.c and
math/w_exp2.c files use the wrapper template and can be included by
targets that have their own exp and exp2 implementations or use ifunc
on the glibc internal __ieee754_exp symbol.
The compatibility symbol versions still use the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously expl and exp2l were aliases of exp and exp2,
now they point to the compatibility symbols with the wrapper, because
they still need the SVID compatible error handling. This affects
NO_LONG_DOUBLE (e.g arm) and LONG_DOUBLE_COMPAT (e.g. alpha) targets
as well.
The _finite symbols are now aliases of the standard symbols (they have
no performance advantage anymore). Both the standard symbols and
_finite symbols set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header (the new macro name is __exp instead of __ieee754_exp
which breaks some math.h macros).
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add exp and exp2.
* math/w_exp2_compat.c (__exp2_compat): Change to versioned compat
symbol, handle NO_LONG_DOUBLE and LONG_DOUBLE_COMPAT explicitly.
* math/w_exp_compat.c (__exp_compat): Likewise.
* math/w_exp.c: New file.
* math/w_exp2.c: New file.
* sysdeps/i386/fpu/w_exp.c: New file.
* sysdeps/i386/fpu/w_exp2.c: New file.
* sysdeps/ia64/fpu/e_exp.S: Add versioned symbols.
* sysdeps/ia64/fpu/e_exp2.S: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Rename to __exp
and add necessary aliases.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Rename to __exp2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_exp.c: New file.
* sysdeps/ieee754/dbl-64/w_exp2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_exp-avx.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp.c (__ieee754_exp): Rename to
__exp.
* sysdeps/x86_64/fpu/multiarch/w_exp.c: New file.
This fixes an ineffiency in the non-zero memset. Delaying the writeback
until the end of the loop is slightly faster on some cores - this shows
~5% performance gain on Cortex-A53 when doing large non-zero memsets.
* sysdeps/aarch64/memset.S (MEMSET): Improve non-zero memset loop.
This patch makes tests in conformtest use unique identifiers, in
preparation for trying to cover more tests in a single compilation to
speed up these tests as suggested in
<https://sourceware.org/ml/libc-alpha/2018-11/msg00229.html>.
Tests are assigned a number, used in generating identifiers; where a
single call to a run method does multiple compilations (sharing that
number), identifiers are changed as needed to avoid duplication
between those compilations, so they can be combined in future.
Large numbers of positional arguments to format strings make the code
harder to follow, and using the test numbers serves to increase the
number of arguments to such format strings, so the code is generally
changed to use %(name)s where all the arguments come from attributes
of the test object and so vars(self) is sufficient to provide all
those names for the format string. Cases where some arguments aren't
attributes of self still use positional format arguments.
Tested for x86_64, and with build-many-glibcs.py.
* conform/conformtest.py (ElementTest.run): Use unique identifiers
in tests. Use names for format arguments.
(ConstantTest.run): Likewise.
(SymbolTest.run): Likewise.
(TypeTest.run): Likewise.
(TagTest.run): Likewise.
(FunctionTest.run): Likewise.
(VariableTest.run): Likewise.
(MacroFunctionTest.run): Likewise.
(MacroStrTest.run): Likewise.
(HeaderTests.__init__): Set self.num_tests.
(HeaderTests.handle_test_line): Set test.num. Increment
self.num_tests.
This is sometimes useful to determine if a test truly got stuck, or if
it was making progress (logging information to standard output) and
was merely slow to finish.
On platforms where long double used to have the same format as double,
but later switched to a different format (alpha, s390, sparc, and
powerpc), accessing the older behavior is possible and it happens via
__nldbl_* functions (not on the API, but accessible from header
redirection and from compat symbols). These functions write to the
global flag __ldbl_is_dbl, which tells other functions that long double
variables should be handled as double. This patch takes the first step
towards removing this global flag and creates __vstrfmon_l_internal,
which takes an explicit flags parameter.
This change arguably makes the generated code slightly worse on
architectures where __ldbl_is_dbl is never true; right now, on those
architectures, it's a compile-time constant; after this change, the
compiler could theoretically prove that __vstrfmon_l_internal was
never called with a nonzero flags argument, but it would probably need
LTO to do it. This is not performance critical code and I tend to
think that the maintainability benefits of removing action at a
distance are worth it. However, we _could_ wrap the runtime flag
check with a macro that was defined to ignore its argument and always
return false on architectures where __ldbl_is_dbl is never true, if
people think the codegen benefits are important.
Tested for powerpc and powerpc64le.
The DEBUG_MKTIME code no longer works in glibc or in Gnulib.
And it’s no longer needed now that glibc and Gnulib both have
their own testing mechanisms for mktime.
* time/mktime.c (DEBUG_MKTIME): Remove. All uses removed.
[BZ#23789]
mktime was not properly reporting failures when the underlying
localtime_r fails with errno != EOVERFLOW; it incorrectly treated
them like EOVERFLOW failures, and set errno to EOVERFLOW.
The problem could happen on non-glibc platforms, with Gnulib.
* time/mktime.c (guess_time_tm): Remove, replacing with ...
(tm_diff): ... this simpler function, which does not change errno.
All callers changed to deal with errno themselves.
(ranged_convert, __mktime_internal): Return failure immediately if
the underlying function reports any failure other than EOVERFLOW.
(__mktime_internal): Set errno to EOVERFLOW if the spring-forward
gap code fails.
[BZ#23789]
* time/mktime.c (ranged_convert): On 32-bit platforms, don’t
mishandle a DST transition that jumps over the Y2038 boundary.
No such DST transitions are known so this is only a theoretical
bug, but we might as well do things right.
[BZ#23789]
* time/mktime.c (long_int): Now 4⨯ int, not just 3⨯.
This is so that we can add tm_diff results to a previous guess,
which will be useful in a later patch.
[BZ#23789]
* time/mktime.c [!_LIBC && !DEBUG_MKTIME]:
Include libc-config.h, not config.h, for __set_errno.
(guess_time_tm, __mktime_internal): Set errno to EOVERFLOW on overflow.
* sysdeps/mach/hurd/dl-sysdep.c (check_no_hidden): Use
__attribute_copy__ to copy attributes from name. Drop static qualifier
to avoid warnings about leaf attribute not having effect on static
functions.
This patch fixes the build for MIPS (o32) with GCC 9 by stopping MIPS
__longjmp from using strong_alias, instead defining the alias
manually, so that the intended effect of not copying the nomips16
attribute is achieved, as explained in the included comment.
Tested with build-many-glibcs.py compilers build for mips64-linux-gnu
(which includes glibc builds for all three ABIs).
* sysdeps/mips/__longjmp.c (__longjmp): Define alias manually with
alias attribute, not with strong_alias.
Soft-float powerpc fails to build with current GCC mainline because of
use of libc_hidden_data_def for TLS variables, resulting in a non-TLS
alias being defined, to which the tls_model attribute is now copied,
resulting in a warning about it being ignored.
The problem here appears to be the non-TLS alias. This patch adds a
hidden_tls_def macro family, corresponding to the hidden_tls_proto
macros, to define TLS aliases properly in such a case, and uses it for
those powerpc soft-float variables.
Tested with build-many-glibcs.py compilers build for powerpc-linux-gnu
soft-float. Also tested for x86_64.
* include/libc-symbols.h [SHARED && !NO_HIDDEN && !__ASSEMBLER__]
(__hidden_ver2): New macro. Use old definition of __hidden_ver1
with additional parameter thread.
[SHARED && !NO_HIDDEN && !__ASSEMBLER__] (__hidden_ver1): Define
in terms of __hidden_ver2.
(hidden_tls_def): New macro.
(libc_hidden_tls_def): Likewise.
(rtld_hidden_tls_def): Likewise.
(libm_hidden_tls_def): Likewise.
(libmvec_hidden_tls_def): Likewise.
(libresolv_hidden_tls_def): Likewise.
(librt_hidden_tls_def): Likewise.
(libdl_hidden_tls_def): Likewise.
(libnss_files_hidden_tls_def): Likewise.
(libnsl_hidden_tls_def): Likewise.
(libnss_nisplus_hidden_tls_def): Likewise.
(libutil_hidden_tls_def): Likewise.
(libutil_hidden_tls_def): Likweise.
* sysdeps/powerpc/nofpu/sim-full.c (__sim_exceptions_thread): Use
libc_hidden_tls_def.
(__sim_disabled_exceptions_thread): Likewise.
(__sim_round_mode_thread): Likewise.
Similar to the x86_64 and armv7 build issues, glibc fails to build for
sparc64 with current mainline GCC because of aliases declared in the
course of defining IFUNCs, which copy their attributes from a header
declaration, ending up with fewer attributes than the (built-in)
string function they alias. This patch fixes the issue similarly to
the fixes for those other architectures.
Tested with build-many-glibcs.py compilers build for
sparc64-linux-gnu.
* sysdeps/sparc/sparc-ifunc.h [SHARED]
(sparc_ifunc_redirected_hidden_def): Use __attribute_copy__ to
copy attributes from name.
Similar to the x86_64 build issues, glibc fails to build for armv7
with current mainline GCC because of aliases declared in the course of
defining IFUNCs, which copy their attributes from a header
declaration, ending up with fewer attributes than the (built-in)
string function they alias: the relevant attributes (nonnull, leaf)
are present on the header declaration, but elided therefrom when glibc
itself if being built (whatever the reasons are for disabling the
nonnull and leaf attributes in that case, and whether or not those
reasons are actually still valid). This patch fixes the issue
similarly to the x86_64 fix, by adding an addition __attribute_copy__
use (in this case, on the definition of arm_libc_ifunc_hidden_def).
Tested with build-many-glibcs.py build for armeb-linux-gnueabi-be8.
* sysdeps/arm/arm-ifunc.h [SHARED] (arm_libc_ifunc_hidden_def):
Use __attribute_copy__ to copy attributes from name.
This patch fixes the glibc build for i686 with current mainline GCC,
where there are warnings about inconsistent attributes for aliases in
certain files defining libm IFUNCs.
In three of the files, the aliases were defined in terms of internal
symbols such as __sinf, and copied attributes from file-local
declarations of those functions which lacked the nothrow attribute.
Since the nothrow attribute is present on the declarations from
<math.h> (which include declarations of those __-prefixed functions),
the natural fix was to include <math.h> in those files, replacing the
local declarations.
In the other three files, a more complicated __hidden_ver1 call was
involved in the warnings. <math.h> has not been included at this
point and, furthermore, it is included indirectly only later in the
source file after macros have been defined to remap a function name
therein. So there isn't an obvious declaration from which to copy the
attribute and it seems simplest and safest just to add __THROW to the
hidden_ver1 calls.
Tested for i686 (build-many-glibcs.py compilers build for
x86_64-linux-gnu with GCC mainline; full testsuite run with GCC 7).
* sysdeps/i386/i686/fpu/multiarch/e_expf.c [SHARED]: Use __THROW
with __hidden_ver1 call.
* sysdeps/i386/i686/fpu/multiarch/e_log2f.c [SHARED]: Likewise.
* sysdeps/i386/i686/fpu/multiarch/e_logf.c [SHARED]: Likewise.
* sysdeps/i386/i686/fpu/multiarch/s_cosf.c: Include <math.h>.
(__cosf): Do not declare here.
* sysdeps/i386/i686/fpu/multiarch/s_sincosf.c: Include <math.h>.
(__sincosf): Do not declare here.
* sysdeps/i386/i686/fpu/multiarch/s_sinf.c: Include <math.h>.
(__sinf): Do not declare here.
After the changes to use the copy attribute, building glibc for ia64
fails, even with older compilers, because
sysdeps/ia64/fpu/sfp-machine.h has a definition of _strong_alias that
now differs from the one in libc-symbols.h.
That definition is a relic of this file coming from libgcc, as are
some other such macro definitions in this file; in the glibc context,
there is no need for those macros, and this patch removes them to fix
the build.
Tested with build-many-glibcs.py for ia64-linux-gnu.
* sysdeps/ia64/fpu/sfp-machine.h (__LITTLE_ENDIAN): Remove.
(__BIG_ENDIAN): Likewise.
(__BYTE_ORDER): Likewise.
(strong_alias): Likewise.
(_strong_alias): Likewise.
This commit is in preparation of turning the macro into a proper
function. The output arguments of the macro were in fact unused.
Also clean up uses of __builtin_expect.
* hurd/hurd/userlink.h (_hurd_userlink_move): New function.
* hurd/hurd/port.h (_hurd_port_move): New function.
* sysdeps/mach/hurd/spawni.c (NEW_ULINK_TABLE): New macro.
(EXPAND_DTABLE): Use NEW_ULINK_TABLE macro for ulink_dtable.
This fixes build-many-glibcs.py on i686-gnu.
Thanks Florian Weimer for the initial version.
* sysdeps/mach/hurd/spawni.c (__spawni): Add ccwdir port. Test and use
it, free it if needed.
(reauthenticate): Test and use ccwdir.
(child_init_port): In non-resetids case, test and use ccwdir.
(child_chdir): New nested function to set ccwdir.
GCC 9 has gained an enhancement to help detect attribute mismatches
between alias declarations and their targets. It consists of a new
warning, -Wattribute-alias, an enhancement to an existing warning,
-Wmissing-attributes, and a new attribute called copy.
The purpose of the warnings is to help identify either possible bugs
(an alias declared with more restrictive attributes than its target
promises) or optimization or diagnostic opportunities (an alias target
missing some attributes that it could be declared with that might
benefit analysis and code generation). The purpose of the new
attribute is to easily apply (almost) the same set of attributes
to one declaration as those already present on another.
As expected (and intended) the enhancement triggers warnings for
many alias declarations in Glibc code. This change, tested on
x86_64-linux, avoids all instances of the new warnings by making
use of the attribute where appropriate. To fully benefit from
the enhancement Glibc will need to be compiled with
-Wattribute-alias=2 and remaining warnings reviewed and dealt with
(there are a couple of thousand but most should be straightforward
to deal with).
ChangeLog:
* include/libc-symbols.h (__attribute_copy__): Define macro unless
it's already defined.
(_strong_alias): Use __attribute_copy__.
(_weak_alias, __hidden_ver1, __hidden_nolink2): Same.
* misc/sys/cdefs.h (__attribute_copy__): New macro.
* sysdeps/x86_64/multiarch/memchr.c (memchr): Use __attribute_copy__.
* sysdeps/x86_64/multiarch/memcmp.c (memcmp): Same.
* sysdeps/x86_64/multiarch/mempcpy.c (mempcpy): Same.
* sysdeps/x86_64/multiarch/memset.c (memset): Same.
* sysdeps/x86_64/multiarch/stpcpy.c (stpcpy): Same.
* sysdeps/x86_64/multiarch/strcat.c (strcat): Same.
* sysdeps/x86_64/multiarch/strchr.c (strchr): Same.
* sysdeps/x86_64/multiarch/strcmp.c (strcmp): Same.
* sysdeps/x86_64/multiarch/strcpy.c (strcpy): Same.
* sysdeps/x86_64/multiarch/strcspn.c (strcspn): Same.
* sysdeps/x86_64/multiarch/strlen.c (strlen): Same.
* sysdeps/x86_64/multiarch/strncmp.c (strncmp): Same.
* sysdeps/x86_64/multiarch/strncpy.c (strncpy): Same.
* sysdeps/x86_64/multiarch/strnlen.c (strnlen): Same.
* sysdeps/x86_64/multiarch/strpbrk.c (strpbrk): Same.
* sysdeps/x86_64/multiarch/strrchr.c (strrchr): Same.
* sysdeps/x86_64/multiarch/strspn.c (strspn): Same.
The function do_test, in tst-efgcvt.c, increments an error counter for
each error that it finds, then returns it to the test framework.
However, the test framework does not expect an error count as return,
but zero for a passing test, one for a failing test, or 77 for an
unsupported test. Alternatively, the framework provides the function
support_record_failure that records errors, which then allows the test
program to return zero unconditionally.
This patch removes the error counter, replaces each increment of the
counter with a call to support_record_failure, and makes do_test
unconditionally return zero.
Tested for powerpc64le (as-is and with a patched results table to check
that the error reporting actually works).
* misc/tst-efgcvt.c: Include support/check.h and
support/test-driver.c. Do not include test-skeleton.c.
(error_count): Remove.
(output_error): Replace increments to error_count with calls to
support_record_failure.
(output_r_error): Likewise.
(special): Likewise.
(do_test): Unconditionally return zero.
(TEST_FUNCTION): Remove.
conform/Makefile creates $(@D)/scratch for the per-standard per-header
tests. That directory was formerly used by the Perl scripts for
temporary files, but the Python implementations use
tempfile.TemporaryDirectory to get such files cleaned up
automatically. This patch changes the Makefile to create only $(@D)
(required for the output redirection to work), not the scratch
subdirectory.
Tested for x86_64.
* conform/Makefile ($(conformtest-header-tests)): Create $(@D),
not $(@D)/scratch.
($(linknamespace-header-tests)): Likewise.
Continuing the consolidation on Python for various miscellaneous build
and test scripts, this patch moves conformtest from Perl to Python.
The substance of the tests run is intended to be the same as before,
except that the previous test for tags did not actually achieve the
intended purpose of verifying whether a tag was already declared, so
is changed to one that would actually fail for a tag that wasn't
declared, and a typo in the old test for variables being available
($xyzzy instead of xyzzy) would have made that test not use the
correct type (but it would have passed anyway with warnings). No
attempt is made to keep the details of what the test output looks
like; instead, tests are given names which are made to follow PASS: /
FAIL: / XFAIL: / SKIP: / MISSING: as appropriate.
In the new version, there is more consistent parsing of test lines
(into a series of words, either surrounded by {} or separated by
spaces) that applies for all kinds of test lines, rather than the old
approach of different regular expressions for every kind of test. A
few of the conform/data/ files are adjusted so their syntax works with
the new script (which now requires spaces in certain cases where the
old script tolerated them being missing, and does not allow stray
semicolons at the end of "function" lines). Similarly, common logic
is used around what happens with a second subtest if a first one fails
(e.g., a test for a symbol's type if the test for availability fails),
rather than such logic being replicated separately for each kind of
test. Common parsing also applies for test lines both when they are
lines for the header under test and when they are lines for another
header specified with allow-header, again unlike the old script.
Tested for x86_64, and with build-many-glibcs.py.
* conform/conformtest.py: New file.
* conform/conformtest.pl: Remove.
* conform/GlibcConform.pm: Likewise.
* conform/glibcconform.py (KEYWORDS_C90): New constant.
(KEYWORDS_C99): Likewise.
(KEYWORDS): Likewise.
* conform/Makefile ($(conformtest-header-tests)): Use
conformtest.py instead of conformtest.pl. Do not pass --tmpdir
option. Use --header instead of --headers.
* conform/data/arpa/inet.h-data: Remove trailing semicolons on
function entries.
* conform/data/spawn.h-data: Likewise.
* conform/data/fcntl.h-data (openat): Add space after function
name.
* conform/data/wchar.h-data (wcscasecmp): Likewise.
(wcscasecmp_l): Likewise.
* conform/data/termios.h-data (c_cc): Add space after element
name.
The commit
commit 1df872fd74
Author: Florian Weimer <fweimer@redhat.com>
Date: Wed Nov 7 12:42:44 2018 +0100
support: Implement TEST_COMPARE_STRING
added the new macro TEST_COMPARE_STRING, which compares the output of
functions under test against expected strings, and, when there's a
mismatch, automatically reports an error and prints the differences.
This patch adapts recently added test cases to use this new macro.
Tested for powerpc64le (as is, and locally patched to intentionally fail
and produce error output).
* argp/tst-ldbl-argp.c (do_one_test): Use TEST_COMPARE_STRING,
instead of manually comparing and reporting mismatching strings.
* misc/tst-ldbl-error.c (do_one_test): Likewise.
* misc/tst-ldbl-warn.c (do_one_test): Likewise.
The __ASSUME_SOCKETCALL macro in kernel-features.h is no longer used
for anything. (It used to be used in defining other macros related to
accept4 / recvmmsg / sendmmsg availability, but the code in that area
was simplified once we could assume a kernel with those features,
whether through a syscall or through socketcall, so allowing those
functions to be handled much like other socket operations, without
requring __ASSUME_SOCKETCALL.) This patch removes that unused macro.
(Note: once we can assume a Linux 4.4 or later kernel, much of the
support for using socketcall at all can be removed from glibc,
although a few functions may need that support in glibc for longer.)
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/kernel-features.h: Remove comment about
__ASSUME_SOCKETCALL.
* sysdeps/unix/sysv/linux/i386/kernel-features.h
(__ASSUME_SOCKETCALL): Remove.
* sysdeps/unix/sysv/linux/m68k/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/s390/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h
(__ASSUME_SOCKETCALL): Likewise.
Linkers group input note sections with the same name into one output
note section with the same name. One output note section is placed in
one PT_NOTE segment. Since new linkers merge input .note.gnu.property
sections into one output .note.gnu.property section, there is only
one NT_GNU_PROPERTY_TYPE_0 note in one PT_NOTE segment with new linkers.
Since older linkers treat input .note.gnu.property section as a generic
note section and just concatenate all input .note.gnu.property sections
into one output .note.gnu.property section without merging them, we may
see multiple NT_GNU_PROPERTY_TYPE_0 notes in one PT_NOTE segment with
older linkers.
When an older linker is used to created the program on CET-enabled OS,
the linker output has a single .note.gnu.property section with multiple
NT_GNU_PROPERTY_TYPE_0 notes, some of which have IBT and SHSTK enable
bits set even if the program isn't CET enabled. Such programs will
crash on CET-enabled machines. This patch updates the note parser:
1. Skip note parsing if a NT_GNU_PROPERTY_TYPE_0 note has been processed.
2. Check multiple NT_GNU_PROPERTY_TYPE_0 notes.
[BZ #23509]
* sysdeps/x86/dl-prop.h (_dl_process_cet_property_note): Skip
note parsing if a NT_GNU_PROPERTY_TYPE_0 note has been processed.
Update the l_cet field when processing NT_GNU_PROPERTY_TYPE_0 note.
Check multiple NT_GNU_PROPERTY_TYPE_0 notes.
* sysdeps/x86/link_map.h (l_cet): Expand to 3 bits, Add
lc_unknown.
The generic kernel-features.h defines __ASSUME_MLOCK2 for 4.4 and
later kernels. However, for 32-bit ARM binaries running on 64-bit ARM
kernels, and for MicroBlaze, the syscall was only wired up in the 4.7
kernel. (32-bit ARM kernels did have the syscall from 4.4 onwards.)
This patch duly arranges for the macro to be undefined for those
architectures for kernels before 4.7.
Tested with build-many-glibcs.py for its ARM and MicroBlaze
configurations.
[BZ #23867]
* sysdeps/unix/sysv/linux/arm/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040700] (__ASSUME_MLOCK2): Undefine.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040700] (__ASSUME_MLOCK2): Undefine.
Fix the following on 32 bits targets:
support_test_compare_string.c: In function ‘support_test_compare_string’:
support_test_compare_string.c:80:37: error: format ‘%lu’ expects argument of
type ‘long unsigned int’, but argument 2 has type ‘size_t’ {aka ‘unsigned int’}
[-Werror=format=]
printf (" string length: %lu bytes\n", left_length);
~~^ ~~~~~~~~~~~
%u
Checked on arm-linux-gnueabihf.
* support/support_test_compare_string.c
(support_test_compare_string): Fix printf format.
The SH kernel-features.h undefines __ASSUME_RENAMEAT2 for kernel
versions before 4.8, but fails to undefine __ASSUME_EXECVEAT,
__ASSUME_MLOCK2 and __ASSUME_COPY_FILE_RANGE, although all those
syscalls (and several others) were added for SH in the same Linux
kernel commit (first released in 4.8). This patch adds the proper
undefines of those macros.
Tested with build-many-glibcs.py for its SH configurations.
[BZ #23862]
* sysdeps/unix/sysv/linux/sh/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x040800] (__ASSUME_EXECVEAT): Undefine.
[__LINUX_KERNEL_VERSION < 0x040800] (__ASSUME_MLOCK2): Likewise.
[__LINUX_KERNEL_VERSION < 0x040800] (__ASSUME_COPY_FILE_RANGE):
Likewise.
Similarly to what has been done for argp_error, and argp_failure, as
well as for warn, warnx, vwarn, and vwarnx, this patch adds new tests
for the following functions: err, errx, verr, verrx, error, and
error_at_line. The new tests check that the conversion of long double
variables into string works correctly on the default format of the type.
Future patches will reuse these tests for other formats that long double
can take.
Tested for powerpc64le.
* misc/Makefile (tests): Add tst-ldbl-error.
* misc/tst-ldbl-error.c: New file.
Similarly to what has been done for argp_error and argp_failure, this
patch patch adds new tests for the warn, warnx, vwarn, and vwarnx
functions. The new tests use the format string to request the
conversion of long double parameters into string. Currently, these
tests only check that the default format of the long double type works.
Future patches will extend the test for platforms that can have an
optional format for long double.
Tested for powerpc64le.
* misc/Makefile (tests): Add tst-ldbl-warn.
* misc/tst-ldbl-warn.c: New file.
The functions argp_error and argp_failure, from argp.h, have a format
string as parameter, which can possibly request the printing of
floating-point values. These values could be of long double type, which
can have different formats, depending on the architecture and on
compilation parameters (for instance, on powerpc, long double values can
have double format (-mlong-double-64) or IBM Extended Precision format
(-mlong-double-128)).
This patch adds tests for argp_error and argp_failure that contain a
format string with double and long double conversion specifiers ('%f'
and '%Lf'). These tests automatically check that the default format of
the long double type works. A future patch will extend the test for
platforms that can have an optional format for long double.
Tested for powerpc64le.
* argp/Makefile (tests): Add tst-ldbl-argp.
* argp/tst-ldbl-argp.c: New file.
__gconv_read_conf is only ever called once during the program's lifetime.
This means that __gconv_path_elem is always uninitialized when the function
begins executing. __gconv_get_path has an assert to ensure that this
expected runtime behaviour is always exhibited. Given this, checking for a
NULL value before calling __gconv_get_path is unnecessary. This commit
drops the condition and calls __gconv_get_path unconditionally.
Here only add the implementation when building the RV32 port.
These macros are used when the following situations occur at the same
time: soft-fp fma, ldbl-128 and 32-bit _FP_W_TYPE_SIZE. The RISC-V
32-bit port is the first port which use all three together.
This is the building flow about the situation:
When building soft-fp/s_fmal.c, there uses the FP_FMA_Q in __fmal.
The _FP_W_TYPE_SIZE is defined to 32-bit in sysdeps/riscv/sfp-machine.h,
so the FP_FMA_Q was defined to _FP_FMA (Q, 4, 8, R, X, Y, Z) in
soft-fp/quad.h.
Something in the soft-fp/quad.h:
#if _FP_W_TYPE_SIZE < 64
# define FP_FMA_Q(R, X, Y, Z) _FP_FMA (Q, 4, 8, R, X, Y, Z)
#else
# define FP_FMA_Q(R, X, Y, Z) _FP_FMA (Q, 2, 4, R, X, Y, Z)
#endif
Finally, in _FP_FMA (fs, wc, dwc, R, X, Y, Z), it will use the
_FP_FRAC_HIGHBIT_DW_##dwc macro, and it will be expanded to
_FP_FRAC_HIGHBIT_DW_8, but the _FP_FRAC_HIGHBIT_DW_8 is not be
implemented in soft-fp/op-8.h. there is only _FP_FRAC_HIGHBIT_DW_1,
_FP_FRAC_HIGHBIT_DW_2 and _FP_FRAC_HIGHBIT_DW_4 in the
soft-fp/op-*.h.
After this modification, we can pass the soft floating testing of glibc
testsuites on RV32.
* soft-fp/op-8.h (_FP_FRAC_SET_8, _FP_FRAC_ADD_8, _FP_FRAC_SUB_8)
(_FP_FRAC_CLZ_8, _FP_MINFRAC_8, _FP_FRAC_NEGP_8, _FP_FRAC_ZEROP_8)
(_FP_FRAC_HIGHBIT_DW_8, _FP_FRAC_COPY_4_8, _FP_FRAC_COPY_8_4)
(__FP_FRAC_SET_8): Add implementation for RV32 use.
In FRAC_SUB_3(R, X, Y) and FRAC_SUB_4(R,, X, Y), it reference both
the X[N] and X[N] after R[N] have been set. If one of the X and Y is
the same address with R, the result of the calculation is wrong,
because the value of the original X and Y are overwritten.
In glibc, there are two places use FRAC_SUB and occurs the overlap.
The first is _FP_DIV_MEAT_N_loop in op-common.h, it uses the source
_FP_DIV_MEAT_N_loop_u as the destination. This macro only be used
when N is one(_FP_DIV_MEAT_1_loop) and then the _FP_FRAC_SUB_##wc
extend to _FP_FRAC_SUB_1 in this macro. so it also work because
_FP_FRAC_SUB_1 has no overlap problem in its implementation.
The second places is _FP_DIV_MEAT_4_udiv, the original value of X##_f[0]
is overwritten before the calculatation.
In FRAC_SUB_1 and FRAC_SUB_2, there don't refer the source after
destination have been set, so they have no problem.
After this modification, we can pass the soft floating testing of glibc
testsuites on RV32.
* soft-fp/op-4.h (_FP_FRAC_SUB_3, _FP_FRAC_SUB_4): Use temporary
variable to avoid overlap arguments.
Building posix/bug-regex22.c fails with GCC mainline because of
-Wformat-overflow= warnings for NULL arguments to %s formats.
This is *not* testing how glibc handles such format arguments; in the
context of the messages in question it makes no sense to pass NULL to
such a %s format (the code passes s, inside "if (s == NULL)"). So
this patch changes the code not to pass such a format argument at all
(which means the string passed is constant, so no need to use printf
at all - however, there are two separate tests here with different
length arguments passed to re_compile_pattern, so it *does* make sense
to make the strings used different so that in the event of failure
it's clear which one of the tests failed).
Tested with build-many-glibcs.py with GCC mainline for
aarch64-linux-gnu.
* posix/bug-regex22.c (main): Use puts with distinct error
messages for unexpected success of re_compile_pattern, not printf
with NULL argument to %s.
Recent GCC -Wformat-overflow= changes result in some printf tests
failing to build, because those tests are deliberately testing the
handling of formats writing more than INT_MAX characters and the
handling of NULL arguments to the %s format, which GCC now warns
about. This patch duly disables -Wformat-overflow= for the relevant
calls to printf functions.
Tested with build-many-glibcs.py with GCC mainline for
aarch64-linux-gnu.
* stdio-common/bug22.c: Include <libc-diag.h>.
(do_test): Disable -Wformat-overflow= warnings around fprintf
calls outputting more than INT_MAX characters.
* stdio-common/tst-printf.c: Disable -Wformat-overflow= warnings
around printf call with NULL %s argument.
Looking at kernel-features.h files, I saw that SPARC was missing full
information on when it gained separate socket syscalls.
This patch adds such information to the SPARC kernel-features.h. It
also corrects what appear to be bugs in the existing code (that would
cause syscalls to be assumed to be present when not actually present).
Various __ASSUME_* macros, defined by default, were not undefined for
32-bit despite those syscalls only being added for 32-bit in Linux
4.4. Some syscalls were used in the SPARC64 syscalls.list but only
added in 4.4; this was harmless before the __NR_* macros were defined
at all, but once the macros were defined it means a build with
post-4.4 headers would assume the syscalls to be present regardless of
--enable-kernel version. Then, various __ASSUME_* macros were
previously not defined in cases where they could be defined (this part
of the patch is just an optimization, not a bug fix).
Note the observation in a comment in the patch that even the latest
Linux kernel for SPARC does not have getpeername and getsockname
syscalls in the compat syscall table for 32-bit binaries on 64-bit
kernels (so glibc can't assume those syscalls to be present for 32-bit
at all, although the 32-bit syscall table gained them in 4.4).
Tested (compilation only) for SPARC with build-many-glibcs.py.
[BZ #23848]
* sysdeps/unix/sysv/linux/sparc/kernel-features.h [!__arch64__ &&
__LINUX_KERNEL_VERSION < 0x040400] (__ASSUME_SENDMSG_SYSCALL):
Undefine.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_RECVMSG_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_SENDTO_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_ACCEPT_SYSCALL): Undefine under this condition, not just
[!__arch64__].
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_CONNECT_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_RECVFROM_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040400] (__ASSUME_BIND_SYSCALL):
Define.
[__LINUX_KERNEL_VERSION >= 0x040400] (__ASSUME_LISTEN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040400]
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/syscalls.list (bind):
Remove.
(listen): Likewise.
(setsockopt): Likewise.
GAS treats the R5900 as MIPS III, with some modifications. The MIPS III
designation means that the GNU C Library will try to assemble the LL and
SC instructions, even though they are not implemented in the R5900. GAS
will therefore produce the following errors:
Error: opcode not supported on this processor: r5900 (mips3) `ll $2,0($4)'
Error: opcode not supported on this processor: r5900 (mips3) `sc $6,0($4)'
The MIPS II ISA override as used here enables the kernel to trap and
emulate the LL and SC instructions, as required.
This change has been tested by compiling the GNU C Library 2.27 with a
GCC 8.2.0 cross-compiler for mipsr5900el-unknown-linux-gnu under Gentoo.
* sysdeps/mips/sys/tas.h (_test_and_set): Handle the R5900 CPU
with the ISA override.
The #else of two nested #if clauses were identical.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Simplify an #if #else
#endif.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This patch replaces conform/linknamespace.pl with a new
conform/linknamespace.py, so continuing the consolidation on Python
instead of Perl for miscellaneous scripts used in building and testing
glibc. The new script follows the same logic as the old one; as a
recently-added script, there were no major cleanups to be made in the
course of the language conversion.
Tested for x86_64, and with build-many-glibcs.py. For x86_64 I also
tested that if the Perl and Python scripts were made to print all the
symbols in seen_where and the paths of symbol references by which
those symbols were linked in, even when those symbols were OK,
identical symbol lists appeared in the output with both versions of
the script (the differences in linknamespace.out files were only in
paths to temporary files in diagnostics for e.g. deprecated functions,
and error output for the expected compilation failures when testing
ndbm.h and varargs.h).
* conform/linknamespace.py: New file.
* conform/linknamespace.pl: Remove file.
* conform/Makefile ($(linknamespace-header-tests)): Use
linknamespace.py instead of linknamespace.pl. Do not use --tmpdir
option.
On systems without enough random-access memory, stdlib/test-bz22786
will go deeply into swap and time out, even with a substantial
TIMEOUTFACTOR. This commit adds a facility to construct repeating
strings with alias mappings, so that the requirement for physical
memory, and uses it in stdlib/test-bz22786.
Mark the ra register as undefined in _start, so that unwinding through
main works correctly. Also, don't use a tail call so that ra points after
the call to __libc_start_main, not after the previous call.
Now that we require Python 3.4 or later, Python code creating
temporary directories can use tempfile.TemporaryDirectory in "with" to
have the directory deleted automatically instead of needing to use
try/finally to handle removing a directory created with
tempfile.mkdtemp. This patch does so in conform/glibcconform.py.
Tested for x86_64.
* conform/glibcconform.py: Do not import shutil.
(list_exported_functions): Use tempfile.TemporaryDirectory instead
of mkdtemp.
This patch makes Python 3.4 or later a required tool for building
glibc, so allowing changes of awk, perl etc. code used in the build
and test to Python code without any such changes needing makefile
conditionals or to handle older Python versions.
This patch makes the configure test for Python check the version and
give an error if Python is missing or too old, and removes makefile
conditionals that are no longer needed. It does not itself convert
any code from another language to Python, and does not remove any
compatibility with older Python versions from existing scripts.
Tested for x86_64.
* configure.ac (PYTHON_PROG): Use AC_CHECK_PROG_VER. Set
critic_missing for versions before 3.4.
* configure: Regenerated.
* manual/install.texi (Tools for Compilation): Document
requirement for Python to build glibc.
* INSTALL: Regenerated.
* Rules [PYTHON]: Make code unconditional.
* benchtests/Makefile [PYTHON]: Likewise.
* conform/Makefile [PYTHON]: Likewise.
* manual/Makefile [PYTHON]: Likewise.
* math/Makefile [PYTHON]: Likewise.
* sysdeps/mach/hurd/i386/intr-msg.h (INTR_MSG_TRAP): Make
_hurd_intr_rpc_msg_about_to global point to start of controlled
assembly snippet. Make it check canceled flag.
* hurd/hurdsig.c (_hurdsig_abort_rpcs): Only mutate thread if it passed
the _hurd_intr_rpc_msg_about_to point.
* hurd/intr-msg.c (_hurd_intr_rpc_mach_msg): Remove comment on mutation
issue, remove cancel flag check.
since we do not actually know whether the RPC was completed or not,
which makes a huge difference for e.g. write(), so better really error
out than letting caller think that the RPC did not happen.
* hurd/intr-msg.c (_hurd_intr_rpc_mach_msg): When the server does not
answer to interrupt_operation, return EIO instead of EINTR.
Seeing a server not able to get interrupted for 3s is not so surprising when
e.g. a lot of writes are happening. 1 minute allows to actually notice the
issue and be able to debug it.
* hurd/hurdsig.c (_hurd_interrupted_rpc_timeout): Set to 60000.
Since we have consensus on requiring Python 3.4 or later to build
glibc, it follows that compatibility with older Python versions is
also no longer relevant to auxiliary Python scripts for use in glibc
development. This patch removes such compatibility code from
build-many-glibcs.py (compatibility code needed for 3.4, which lacks
the newer subprocess interface, is kept). Because
build-many-glibcs.py is not itself called from the glibc build system,
this patch is independent of the configure checks for having a
new-enough Python version, which are only relevant to uses of Python
from the main build and test process.
Tested with build-many-glibcs.py building glibc for aarch64-linux-gnu
(with Python 3.4 to make sure that still works).
* scripts/build-many-glibcs.py: Remove compatibility for missing
os.cpu_count and re.fullmatch.
When new symbol versions were introduced without SVID compatible
error handling the exp2f, log2f and powf symbols were accidentally
removed from the ia64 lim.a. The regression was introduced by
the commits
f5f0f52651
New expf and exp2f version without SVID compat wrapper
72d3d28108
New symbol version for logf, log2f and powf without SVID compat
With WEAK_LIBM_ENTRY(foo), there is a hidden __foo and weak foo
symbol definition in both SHARED and !SHARED build.
[BZ #23822]
* sysdeps/ia64/fpu/e_exp2f.S (exp2f): Use WEAK_LIBM_ENTRY.
* sysdeps/ia64/fpu/e_log2f.S (log2f): Likewise.
* sysdeps/ia64/fpu/e_exp2f.S (powf): Likewise.
This patch adds the IN_MASK_CREATE macro from Linux 4.19 to
sys/inotify.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/sys/inotify.h (IN_MASK_CREATE): New
macro.
This patch adds NT_MIPS_DSP and NT_MIPS_FP_MODE from Linux 4.19 to
elf.h.
Tested for x86_64.
* elf/elf.h (NT_MIPS_DSP): New macro.
(NT_MIPS_FP_MODE): Likewise.
This patch extends gen-libm-test.py to generate the ulps table for the
manual, so meaning there is only a single ulps file parser needed and
another Perl script is eliminated. As with the introduction of
gen-libm-test.py, this is designed to generate exactly the same
libm-err.texi as libm-err-tab.pl did. (gen-libm-test.py is still
shorter in lines than the old gen-libm-test.pl even after this patch.)
Note that this introduces a Python dependency for building the manual,
which is thus noted in install.texi and NEWS.
Tested building html / info / pdf versions of the manual.
* math/gen-libm-test.py: Import os.
(ALL_FLOATS_MANUAL): New constant.
(ALL_FLOATS_SUFFIX): Likewise.
(Ulps.all_functions): New function.
(real_all_ulps): Likewise.
(generate_err_table_sub): Likewise.
(generate_err_table): Likewise.
(main): Handle -s and -m options.
* manual/libm-err-tab.pl: Remove.
* manual/Makefile ($(objpfx)stamp-libm-err): Use gen-libm-test.py
instead of libm-err-tab.pl.
[$(PERL) != no]: Change condition to [$(if $(PYTHON),$(PERL),no)
!= no].
* manual/install.texi (Tools for Compilation): Document
requirement for Python to build manual.
* INSTALL: Regenerated.
glibc support for 64-bit time_t on 32-bit architectures
will involve:
- Using 64-bit times inside glibc, with conversions
to and from 32-bit times taking place as necessary
for interfaces using such times.
- Adding 64-bit-time support in the glibc public API.
This support should be dynamic, i.e. glibc should
provide both 32-bit and 64-bit implementations and
let user code choose at compile time whether to use
the 32-bit or 64-bit interfaces.
This requires a glibc-internal name for a type for times
that are always 64-bit.
Based on __TIMESIZE, a new macro is defined, __TIME64_T_TYPE,
which is always the right __*_T_TYPE to hold a 64-bit-time.
__TIME64_T_TYPE equals __TIME_T_TYPE if __TIMESIZE equals 64
and equals __SQUAD_T_TYPE otherwise.
__time64_t can then replace uses of internal_time_t.
This patch was tested by running 'make check' on branch
master then applying this patch and its predecessor and
running 'make check' again, and checking that both 'make
check' yield identical results. This was done on
x86_64-linux-gnu and i686-linux-gnu.
* bits/time64.h: New file.
* include/time.h: Replace internal_time_t with __time64_t.
* posix/bits/types (__time64_t): Add.
* stdlib/Makefile: Add bits/time64.h to includes.
* time/tzfile.c: Replace internal_time_t with __time64_t.
To determine whether the default time_t interfaces are 32-bit
and so need conversions, or are 64-bit and so are compatible
with the internal 64-bit type without conversions, a macro
giving the size of the default time_t is also required.
This macro is called __TIMESIZE.
This macro can then be used instead of __WORDSIZE in msq-pad.h
and shm-pad.h files, which in turn allows removing their x86
variants, and in sem-pad.h files but keeping the x86 variant.
This patch was tested by running 'make check' on branch master
then applying this patch and running 'make check' again, and
checking that both 'make check' yield identical results.
This was done on x86_64-linux-gnu and i686-linux-gnu.
* bits/timesize.h: New file.
* stdlib/Makefile (headers): Add bits/timesize.h.
* sysdeps/unix/sysv/linux/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME): Use __TIMESIZE instead of __WORDSIZE.
* sysdeps/unix/sysv/linux/bits/sem-pad.h
(__SEM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h
(__SHM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME, __MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Delete file.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/timesize.h: New file.
RDTSCP waits until all previous instructions have executed and all
previous loads are globally visible before reading the counter. RDTSC
doesn't wait until all previous instructions have been executed before
reading the counter. All x86 processors since 2010 support RDTSCP
instruction. This patch adds RDTSCP support to benchtests.
* benchtests/Makefile (CPPFLAGS-nonlib): Add -DUSE_RDTSCP if
USE_RDTSCP is defined.
* sysdeps/x86/hp-timing.h (HP_TIMING_NOW): Use RDTSCP if
USE_RDTSCP is defined.
Commit 7a16bdbb9f uses IOV_MAX, which is not defined on hurd.
Checked on a build for i686-gnu.
* misc/tst-preadvwritev2-common.c (IOV_MAX): Define if not
defined.
Th commit 'Disable TSX on some Haswell processors.' (2702856bf4) changed the
default flags for Haswell models. Previously, new models were handled by the
default switch path, which assumed a Core i3/i5/i7 if AVX is available. After
the patch, Haswell models (0x3f, 0x3c, 0x45, 0x46) do not set the flags
Fast_Rep_String, Fast_Unaligned_Load, Fast_Unaligned_Copy, and
Prefer_PMINUB_for_stringop (only the TSX one).
This patch fixes it by disentangle the TSX flag handling from the memory
optimization ones. The strstr case cited on patch now selects the
__strstr_sse2_unaligned as expected for the Haswell cpu.
Checked on x86_64-linux-gnu.
[BZ #23709]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set TSX bits
independently of other flags.
Linux 4.19 does not add any new syscalls (some existing ones are added
to more architectures); this patch updates the version number in
syscall-names.list to reflect that it's still current for 4.19.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.19.
glibc does:
/* There should be no difference between the UTF-32 handling required
by c32rtomb and the wchar_t handling which has long since been
implemented in wcrtomb. */
weak_alias (__wcrtomb, c32rtomb)
/* There should be no difference between the UTF-32 handling required
by mbrtoc32 and the wchar_t handling which has long since been
implemented in mbrtowc. */
weak_alias (__mbrtowc, mbrtoc32)
The reasoning in those comments to justify those aliases is incorrect:
ISO C requires that, for the case of a NULL mbstate_t* being passed,
each function has its *own* internal static mbstate_t. Thus a program
must be able to use both wcrtomb and c32rtomb at the same time with
each keeping its own separate state, and likewise for mbrtowc and
mbrtoc32.
This patch duly sets up separarate char32_t function that wrap the
wchar_t ones. Note that the included test only covers the mbrtoc32 /
mbrtowc pair. While I think the change made is logically correct for
c32rtomb / wcrtomb as well, I'm not sure we have a locale with a
suitable state-dependent multibyte encoding for testing that part of
the change.
Tested for x86_64.
[BZ #23793]
* wcsmbs/c32rtomb.c: New file.
* wcsmbs/mbrtoc32.c: Likewise.
* wcsmbs/tst-c32-state.c: Likewise.
* wcsmbs/mbrtowc.c (mbrtoc32): Do not define as alias.
* wcsmbs/wcrtomb.c (c32rtomb): Likewise.
* wcsmbs/Makefile (routines): Add mbrtoc32 and c32rtomb.
(tests): Add tst-c32-state.
[$(run-built-tests) = yes] ($(objpfx)tst-c32-state.out): Depend on
$(gen-locales).
Use __builtin_ia32_rdtsc directly since including <x86intrin.h> makes
building glibc very slow. On Intel Core i5-6260U, this patch reduces
x86-64 build time from 8 minutes 33 seconds to 3 minutes 48 seconds
with "make -j4" and GCC 8.2.1.
* sysdeps/x86/hp-timing.h: Don't include <x86intrin.h>.
(HP_TIMING_NOW): Replace _rdtsc with __builtin_ia32_rdtsc.
The c16rtomb implementation has:
// XXX The ISO C 11 spec I have does not say anything about handling
// XXX surrogates in this interface.
The DR#488 resolution, as applied to C2X, requires surrogate pairs to
be handled here (so the first call returns 0 and stores the high
surrogate in the mbstate_t, while the second call combines the
surrogates, produces a multibyte character and returns the number of
bytes written). This patch implements that. (mbrtoc16 already
handled producing surrogates as output.)
Tested for x86_64.
[BZ #23794]
* wcsmbs/c16rtomb.c (c16rtomb): Save first character of surrogate
pair and return 0 in that case, and use saved character to
interpret following character.
* wcsmbs/tst-c16-surrogate.c: New file.
* wcsmbs/Makefile (tests): Add tst-c16-surrogate.c.
[$(run-built-tests) = yes] ($(objpfx)tst-c16-surrogate.out):
Depend on $(gen-locales)
Since _rdtsc intrinsic is supported in GCC 4.9, we can use it for
HP_TIMING_NOW. This patch
1. Create x86 hp-timing.h to replace i686 and x86_64 hp-timing.h.
2. Move MINIMUM_ISA from init-arch.h to isa.h so that x86 hp-timing.h
can check minimum x86 ISA to decide if _rdtsc can be used.
NB: Checking if __i686__ isn't sufficient since __i686__ may not be
defined when building for i686 class processors.
* sysdeps/i386/init-arch.h: Removed.
* sysdeps/i386/i586/init-arch.h: Likewise.
* sysdeps/i386/i686/init-arch.h: Likewise.
* sysdeps/i386/i686/hp-timing.h: Likewise.
* sysdeps/x86_64/hp-timing.h: Likewise.
* sysdeps/i386/isa.h: New file.
* sysdeps/i386/i586/isa.h: Likewise.
* sysdeps/i386/i686/isa.h: Likewise.
* sysdeps/x86_64/isa.h: Likewise.
* sysdeps/x86/hp-timing.h: New file.
* sysdeps/x86/init-arch.h: Include <isa.h>.
C99 wrongly specified a divide-by-zero exception for pow(+/- 0, -Inf);
C11 made it optional after this was pointed out, and the permission
for this exception has been removed in the current C2x draft. This
patch makes the glibc pow tests reflect the stricter requirement
(which follows the normal IEEE rules that a divide-by-zero exception
is for the case of exact infinite results from *finite* operands, not
for such results when any operand is infinite).
Tested for x86_64 and x86. (If any other pow implementation in glibc,
not exercised on those architectures, turns out to fail the stricter
test, it should be fixed to avoid the exception in this case.)
* math/libm-test-pow.inc (pow_test_data): Do not allow
divide-by-zero exception for pow(+/- 0, -Inf).
Job control was made mandatory in POSIX.1-2001: compare
<http://pubs.opengroup.org/onlinepubs/7990989775/xsh/unistd.h.html> with
<http://pubs.opengroup.org/onlinepubs/009695399/basedefs/unistd.h.html>.
Seventeen years later, we need not devote an entire manual @node to
warning people that this was once an optional POSIX feature.
* manual/job.texi (Job Control is Optional): Remove node, as
job control has not been optional in quite some time.
(Job Control): Mention briefly that systems older than
POSIX.1-2001 might not support job control.
* manual/conf.texi (_POSIX_JOB_CONTROL): Will always be
defined on systems conforming to POSIX.1-2001.
In iconv/gconv_conf.c, __gconv_get_path unnecessarily obtains a lock when
populating the array pointed to by __gconv_path_elem. The locking is not
necessary because all calls to __gconv_read_conf (which in turn calls
__gconv_get_path) are serialized using __libc_once.
This patch:
- removes all locking in __gconv_get_path;
- replaces all explicitly serialized __gconv_read_conf calls with calls to
__gconv_load_conf, a new wrapper that is serialized internally;
- adds a new test, iconv/tst-iconv_mt.c, to exercise iconv initialization,
usage, and cleanup in a multi-threaded program;
- indents __gconv_get_path correctly, removing tab characters (which makes
the patch look a little bigger than it really is).
After removing the unnecessary locking, it was confirmed that the test case
fails if the relevant __libc_once is removed. Additionally, four localedata
and iconvdata tests also fail. This gives confidence that the testsuite
sufficiently guards against some regressions relating to multi-threading
with iconv.
Tested on x86_64 and i686.
After my patch to move SHMLBA to its own header, the bits/shm.h
headers for architectures using the Linux kernel still vary in a few
ways: the use of __syscall_ulong_t; whether padding for 32-bit systems
is present before or after time fields, or missing altogether (mips,
x32); whether shm_segsz is before or after the time fields; whether,
if after time fields, there is extra padding before shm_segsz.
This patch arranges for a single header to be used. __syscall_ulong_t
is safe to use everywhere, while bits/shm-pad.h is added with new
macros __SHM_PAD_AFTER_TIME, __SHM_PAD_BEFORE_TIME,
__SHM_SEGSZ_AFTER_TIME and __SHM_PAD_BETWEEN_TIME_AND_SEGSZ to
describe the differences.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shm-pad.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shm-pad.h>.
(shmatt_t): Define as __syscall_ulong_t.
(__SHM_PAD_TIME): New macro, depending on [__SHM_PAD_BEFORE_TIME]
and [__SHM_PAD_AFTER_TIME].
(struct shmid_ds): Define time fields using __SHM_PAD_TIME.
Define shm_segsz and associated padding based on
[__SHM_SEGSZ_AFTER_TIME] and [__SHM_PAD_BETWEEN_TIME_AND_SEGSZ].
Use __syscall_ulong_t instead of unsigned long int.
[__USE_MISC] (struct shminfo): Use __syscall_ulong_t instead of
unsigned long int.
[__USE_MISC] (struct shm_info): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Likewise.
One difference between bits/shm.h headers for architectures using the
Linux kernel is the definition of SHMLBA. This was noted in
<https://sourceware.org/ml/libc-alpha/2018-09/msg00175.html> as a
reason why even a new architecture (C-SKY) might need its own
bits/shm.h; thus, splitting it out of bits/shm.h can allow less
duplication of headers for new architectures.
This patch moves that definition to its own header, bits/shmlba.h, to
allow more sharing of headers between architectures. That move allows
the arm, ia64 and sh variants of bits/shm.h to be removed, as they had
no other significant differences from the generic bits/shm.h; powerpc
and x86 have their own bits/shm.h but do not need to get their own
bits/shmlba.h because they use the same SHMLBA as the generic header.
Other architectures with their own bits/shm.h get their own
bits/shmlba.h without being able to remove their own bits/shm.h until
the generic one has been adapted to be able to handle more
architectures (where, in addition to the differences seen for
bits/msq.h and bits/sem.h, the position of shm_segsz in struct
shmid_ds also depends on the architecture).
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shmlba.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getshmlba): Remove function declaration.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/arm/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/ia64/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/bits/shmlba.h: New file.
* sysdeps/unix/sysv/linux/arm/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shmlba.h: Likewise.
The race leads either to pthread_mutex_destroy returning EBUSY
or triggering an assertion (See description in bugzilla).
This patch is fixing the race by ensuring that the elision path is
used in all cases if elision is enabled by the GLIBC_TUNABLES framework.
The __kind variable in struct __pthread_mutex_s is accessed concurrently.
Therefore we are now using the atomic macros.
The new testcase tst-mutex10 is triggering the race on s390x and intel.
Presumably also on power, but I don't have access to a power machine
with lock-elision. At least the code for power is the same as on the other
two architectures.
ChangeLog:
[BZ #23275]
* nptl/tst-mutex10.c: New File.
* nptl/Makefile (tests): Add tst-mutex10.
(tst-mutex10-ENV): New variable.
* sysdeps/unix/sysv/linux/s390/force-elision.h: (FORCE_ELISION):
Ensure that elision path is used if elision is available.
* sysdeps/unix/sysv/linux/powerpc/force-elision.h (FORCE_ELISION):
Likewise.
* sysdeps/unix/sysv/linux/x86/force-elision.h: (FORCE_ELISION):
Likewise.
* nptl/pthreadP.h (PTHREAD_MUTEX_TYPE, PTHREAD_MUTEX_TYPE_ELISION)
(PTHREAD_MUTEX_PSHARED): Use atomic_load_relaxed.
* nptl/pthread_mutex_consistent.c (pthread_mutex_consistent): Likewise.
* nptl/pthread_mutex_getprioceiling.c (pthread_mutex_getprioceiling):
Likewise.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full)
(__pthread_mutex_cond_lock_adjust): Likewise.
* nptl/pthread_mutex_setprioceiling.c (pthread_mutex_setprioceiling):
Likewise.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock): Likewise.
* nptl/pthread_mutex_trylock.c (__pthread_mutex_trylock): Likewise.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
* sysdeps/nptl/bits/thread-shared-types.h (struct __pthread_mutex_s):
Add comments.
* nptl/pthread_mutex_destroy.c (__pthread_mutex_destroy):
Use atomic_load_relaxed and atomic_store_relaxed.
* nptl/pthread_mutex_init.c (__pthread_mutex_init):
Use atomic_store_relaxed.
Since aligned loads and stores are huge performance
advantage the implementation always tries to do aligned
access. Among the cases when src and dst addresses are
aligned or unaligned evenly there are cases of not evenly
unaligned src and dst. For such cases (if the length is
big enough) ext instruction is used to merge-and-shift
two memory chunks loaded from two adjacent aligned
locations and then the adjusted chunk gets stored to
aligned address.
Performance gain against the current T2 implementation:
memcpy-large: 65K-32M: +40% - +10%
memcpy-walk: 128-32M: +20% - +2%
The bits/sem.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* The x86 header uses padding after time fields unconditionally
(including for both x86_64 ABIs), not just for 32-bit time (unlike
in msqid_ds where there is only padding for 32-bit time). Because
this padding is present for x32, and is __syscall_ulong_t there, it
does have to be __syscall_ulong_t, not unsigned long int.
* The MIPS header never uses padding around time fields, even when
32-bit (unlike in msqid_ds where it has endian-dependent padding for
32-bit time).
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other differences, this patch adds macros __SEM_PAD_BEFORE_TIME and
__SEM_PAD_AFTER_TIME in a new bits/sem-pad.h header, so that header is
the only one needing to be provided on architectures with differences
in this area, and everything else can go in a single common bits/sem.h
header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/sem-pad.h.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/sem-pad.h>
instead of <bits/wordsize.h>.
(__SEM_PAD_TIME): New macro, depending on [__SEM_PAD_BEFORE_TIME]
and [__SEM_PAD_AFTER_TIME].
(struct semid_ds): Define time fields using __SEM_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/sem-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem.h: Likewise.
[BZ#23744]
This refactoring was prompted by a problem when the regex code is
used as part of Gnulib and when the builder’s compiler does not grok
__builtin_expect. Problem reported for Gawk by Nelson H.F. Beebe in:
https://lists.gnu.org/r/bug-gnulib/2018-09/msg00137.html
Although this refactoring does not fix the problem directly,
we might as well have Gawk use the now-preferred glibc style for when
__builtin_expect is unavailable.
* posix/regex_internal.h (BE): Remove.
All uses replaced by __glibc_unlikely or __glibc_likely.
The bits/msq.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* x32 has 64-bit time_t, so no padding around time fields despite
__WORDSIZE == 32.
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other two differences, this patch adds macros __MSQ_PAD_BEFORE_TIME
and __MSQ_PAD_AFTER_TIME in a new bits/msq-pad.h header, so that
header is the only one needing to be provided on architectures with
differences in this area, and everything else can go in a single
common bits/msq.h header. Once we have __TIMESIZE, the generic
bits/msq-pad.h can change to use that instead of __WORDSIZE, at which
point the x86 version of bits/msq-pad.h won't be needed either.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/msq-pad.h.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/msq-pad.h>
instead of <bits/wordsize.h>.
(msgqnum_t): Define as __syscall_ulong_t.
(msglen_t): Likewise.
(__MSQ_PAD_TIME): New macro, depending on [__MSQ_PAD_BEFORE_TIME]
and [__MSQ_PAD_AFTER_TIME].
(struct msqid_ds): Define time fields using __MSQ_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/msq-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq.h: Likewise.
sysdeps/unix/sysv/linux/bits/shm.h has padding after time fields in
struct shmid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/shm.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/shm.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha and s390
versions which are also no longer needed. The other
architecture-specific versions have different padding, layout, types
or SHMLBA definitions and so are still needed after this change.
This is essentially the same change for bits/shm.h as the bits/msq.h
patch and the bits/sem.h patch. However, the details of the padding
variations for the architectures that aren't changed are not all the
same between msqid_ds, shmid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/wordsize.h>.
(struct shmid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/shm.h: Likewise.
sysdeps/unix/sysv/linux/bits/sem.h has padding after time fields in
struct semid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/sem.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/sem.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
This is essentially the same change for bits/sem.h as the bits/msq.h
patch. However, the details of the padding variations for the
architectures that aren't changed are not all the same between
msqid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/wordsize.h>.
(struct semid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/sem.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/sem.h: Likewise.
sysdeps/unix/sysv/linux/bits/msq.h has padding after time fields in
struct msqid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/msq.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/msq.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/wordsize.h>.
(struct msqid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/msq.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/msq.h: Likewise.
Increase timeout from the default 20s to 40s. This test makes close to
2 million syscalls with distribution:
1180249 connect
297952 getsockname
144040 lseek
143734 read
14466 close
...
connect can be slow, so the default timeout was not enough on slow
systems.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* nss/tst-nss-files-hosts-multi.c (TIMEOUT): Define.
Increase timeout from the default 20s to 100s. This test makes close to
20 million syscalls with distribution:
12327675 read
4143204 lseek
929475 close
929471 openat
92817 fstat
1431 write
...
The default timeout assumes each can finish in 1us on average which
is not true on slow machines.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
* libio/tst-readline.c (TIMEOUT): Define.
[BZ#23745]
This fix affects only Gnulib. Problem discovered when
mktime.c was used as part of Gnulib in bleeding-edge Coreutils.
* time/mktime.c:
(my_tzset) [!_LIBC && !NEED_MKTIME_WORKING && !NEED_MKTIME_WINDOWS]:
Do not define since it is not used. Defining an unused static
function prompts a warning from GCC when Coreutils is configured
with --enable-gcc-warnings.
Otherwise, we see the following runtime error when using the parameter:
File "./glibc/benchtests/scripts/compare_bench.py", line 46, in do_compare
if d > threshold:
TypeError: '>' not supported between instances of 'float' and 'str'
* benchtests/scripts/compare_bench.py (main): set float type on
threshold argument.
Month names as provided by Oqaasileriffik, the official Greenlandic
language regulator. They have recently reached the consensus regarding
the orthography of the month names.
Date formats updated to match the correct Greenlandic order which is MDY.
[BZ #23740]
* localedata/locales/kl_GL (mon): Update, the relative case.
(alt_mon): Add, fill with month names in the nominative case.
(d_t_fmt): Set to "%a %b %d %Y %T %Z".
(d_fmt): Set to "%b %d %Y".
hppa currently has a bits/mman.h that does not include
bits/mman-linux.h, unlike all other architectures using the Linux
kernel. This sort of variation between architectures is generally
unhelpful when making global changes for new constants added to new
Linux kernel releases.
This patch changes hppa to use bits/mman-linux.h, overriding constants
with different values as necessary (including with #undef after
bits/mman.h inclusion when needed, as already done for alpha). While
there could possibly be further improvements through e.g. splitting
more sets of definitions into separate bits/ headers, I think this is
still an improvement on the current state. diffstat shows 27 lines
added, 51 deleted (and some of that is actually existing lines moving
to a different place in the file).
Tested with build-many-glibcs.py for hppa-linux-gnu.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h: Include
<bits/mman-linux.h>.
(PROT_READ): Don't define here.
(PROT_WRITE): Likewise.
(PROT_EXEC): Likewise.
(PROT_NONE): Likewise.
(PROT_GROWSDOWN): Likewise.
(PROT_GROWSUP): Likewise.
(MAP_SHARED): Likewise.
(MAP_PRIVATE): Likewise.
[__USE_MISC] (MAP_SHARED_VALIDATE): Likewise.
[__USE_MISC] (MAP_FILE): Likewise.
[__USE_MISC] (MAP_ANONYMOUS): Likewise.
[__USE_MISC] (MAP_ANON): Likewise.
[__USE_MISC] (MAP_HUGE_SHIFT): Likewise.
[__USE_MISC] (MAP_HUGE_MASK): Likewise.
(MCL_CURRENT): Likewise.
(MCL_FUTURE): Likewise.
(MCL_ONFAULT): Likewise.
[__USE_MISC] (MADV_NORMAL): Likewise.
[__USE_MISC] (MADV_RANDOM): Likewise.
[__USE_MISC] (MADV_SEQUENTIAL): Likewise.
[__USE_MISC] (MADV_WILLNEED): Likewise.
[__USE_MISC] (MADV_DONTNEED): Likewise.
[__USE_MISC] (MADV_FREE): Likewise.
[__USE_MISC] (MADV_REMOVE): Likewise.
[__USE_MISC] (MADV_DONTFORK): Likewise.
[__USE_MISC] (MADV_DOFORK): Likewise.
[__USE_MISC] (MADV_HWPOISON): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_NORMAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_RANDOM): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_SEQUENTIAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_WILLNEED): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_DONTNEED): Likewise.
(__MAP_ANONYMOUS): New macro.
[__USE_MISC] (MAP_TYPE): Undefine and redefine after
<bits/mman-linux.h> inclusion.
(MAP_FIXED): Likewise.
(MS_SYNC): Likewise.
(MS_ASYNC): Likewise.
(MS_INVALIDATE): Likewise.
[__USE_MISC] (MADV_MERGEABLE): Likewise.
[__USE_MISC] (MADV_UNMERGEABLE): Likewise.
[__USE_MISC] (MADV_HUGEPAGE): Likewise.
[__USE_MISC] (MADV_NOHUGEPAGE): Likewise.
[__USE_MISC] (MADV_DONTDUMP): Likewise.
[__USE_MISC] (MADV_DODUMP): Likewise.
[__USE_MISC] (MADV_WIPEONFORK): Likewise.
[__USE_MISC] (MADV_KEEPONFORK): Likewise.
The redirection of built-in functions such as sqrt in include/math.h
applies when the wrappers for those functions in libnldbl_nonshared.a
are built, resulting in references to internal names such as
__ieee754_sqrt that aren't actually exported from the shared libm.
(This applies for sqrt in 2.28, also for the round-to-integer
functions in current master because of my changes there.) This patch
arranges for NO_MATH_REDIRECT to be used for all the affected
functions, and adds a test for those functions in
libnldbl_nonshared.a.
(We could of course choose to obsolete libnldbl_nonshared.a and
require that people building with -mlong-double-64 either include the
relevant headers and have a compiler supporting asm redirection, or
have some other means of achieving that redirection at compile time if
not including those headers. But while we have libnldbl_nonshared.a,
it seems appropriate to fix such bugs in it.)
Tested for powerpc, and with build-many-glibcs.py.
[BZ #23735]
* sysdeps/ieee754/ldbl-opt/nldbl-compat.h (NO_MATH_REDIRECT):
Define.
* sysdeps/ieee754/ldbl-opt/test-nldbl-redirect.c: New file.
* sysdeps/ieee754/ldbl-opt/Makefile [$(subdir) = math] (tests):
Add test-nldbl-redirect.
[$(subdir) = math] (CFLAGS-test-nldbl-redirect.c): New variable.
[$(subdir) = math] ($(objpfx)test-nldbl-redirect): Depend on
$(objpfx)libnldbl_nonshared.a.
The test-container.c file assumes that ld.so is always named
something like /elf/ld-linux-*.
But e.g. on s390x it is named ld64.so.1 or ld.so.1 on s390.
There are other architectures like power or mips with similar names.
This patch introduces the new global variable support_objdir_elf_ldso
which contains the absolute path to the runtime linker used by the
testsuite, e.g. OBJDIR_PATH/elf/ld-linux-x86-64.so.2.
The check in test-container.c is now comparing against this path.
Without this patch, test-container.c is searching invalid files / directories
and fails to find glibc/nss/tst-nss-test3.root/tst-nss-test3.script.
Then the test tst-nss-test3 fails!
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
ChangeLog:
* support/support.h (support_objdir_elf_ldso): New variable.
* support/support_paths.c (support_objdir_elf_ldso): Likewise.
* support/Makefile (CFLAGS-support_paths.c): Add definition
for OBJDIR_ELF_LDSO_PATH.
* support/test-container.c (main): Search for the ld.so
which is also used by the testsuite.
Although CLDR says otherwise, it is confirmed by Oqaasileriffik, the
official Greenlandic language regulator, that this change is correct.
[BZ #20209]
* localedata/locales/kl_GL: (abday): Fix spelling of Sun (Sunday),
should be "sap" rather than "sab".
(day): Fix spelling of Sunday, should be "sapaat" rather than
"sabaat".
In my review
<https://sourceware.org/ml/libc-alpha/2018-06/msg00375.html> of a
patch for bug 23584, I expressed concern that the proposed changes
didn't deal with certain cases similar to the ones in the bug but
where test coverage was missing.
This patch adds such tests of fma (Inf, finite, finite) and fma
(finite, Inf, finite) to libm-test-fma.inc. It does *not* do anything
to fix the bug, simply adds test coverage to provide stronger evidence
of whether any proposed revised fix does address the cases I was
concerned with.
Tested for x86_64 and x86.
* math/libm-test-fma.inc (fma_test_data): Add more tests.
* with -O, -O1, -Os it fails with:
In file included from ../soft-fp/soft-fp.h:318,
from ../sysdeps/ieee754/soft-fp/s_fdiv.c:28:
../sysdeps/ieee754/soft-fp/s_fdiv.c: In function '__fdiv':
../soft-fp/op-2.h:98:25: error: 'R_f1' may be used uninitialized in this function [-Werror=maybe-uninitialized]
X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f1' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:36: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
../soft-fp/op-2.h:101:17: error: 'R_f0' may be used uninitialized in this function [-Werror=maybe-uninitialized]
: (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f0' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:14: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os.
[BZ #19444]
* sysdeps/ieee754/soft-fp/s_fdiv.c: Include <libc-diag.h> and use
DIAG_PUSH_NEEDS_COMMENT, DIAG_IGNORE_NEEDS_COMMENT and
DIAG_POP_NEEDS_COMMENT to disable -Wmaybe-uninitialized.
Since RTM intrinsics are supported in GCC 4.9, we can use them in
pthread mutex lock elision.
* sysdeps/unix/sysv/linux/x86/Makefile (CFLAGS-elision-lock.c):
Add -mrtm.
(CFLAGS-elision-unlock.c): Likewise.
(CFLAGS-elision-timed.c): Likewise.
(CFLAGS-elision-trylock.c): Likewise.
* sysdeps/unix/sysv/linux/x86/hle.h: Rewritten.
As POSIX states [1] a freopen call should first flush the stream as if by a
call fflush. C99 (n1256) and C11 (n1570) only states the function should
first close any file associated with the specific stream. Although current
implementation only follow C specification, current BSD and other libc
implementation (musl) are in sync with POSIX and fflush the stream.
This patch change freopen{64} to fflush the stream before actually reopening
it (or returning if the stream does not support reopen). It also changes the
Linux implementation to avoid a dynamic allocation on 'fd_to_filename'.
Checked on x86_64-linux-gnu.
[BZ #21037]
* libio/Makefile (tests): Add tst-memstream4 and tst-wmemstream4.
* libio/freopen.c (freopen): Sync stream before reopen and adjust to
new fd_to_filename interface.
* libio/freopen64.c (freopen64): Likewise.
* libio/tst-memstream.h: New file.
* libio/tst-memstream4.c: Likewise.
* libio/tst-wmemstream4.c: Likewise.
* sysdeps/generic/fd_to_filename.h (fd_to_filename): Change signature.
* sysdeps/unix/sysv/linux/fd_to_filename.h (fd_to_filename): Likewise
and remove internal dynamic allocation.
[1] http://pubs.opengroup.org/onlinepubs/9699919799/
The MREMAP_* flags are identical between bits/mman-linux.h and the
hppa bits/mman.h; thus, they should be in bits/mman-shared.h instead
to avoid unnecessary duplication. This patch moves them there.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-linux.h [__USE_GNU]
(MREMAP_MAYMOVE): Do not define here.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/bits/mman-shared.h [__USE_GNU]
(MREMAP_MAYMOVE): Define here instead.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_GNU]
(MREMAP_MAYMOVE): Remove.
[__USE_GNU] (MREMAP_FIXED): Likewise.
After my changes to move various macros, inlines and other content
from math_private.h to more specific headers, many files including
math_private.h no longer need to do so. Furthermore, since the
optimized inlines of various functions have been moved to
include/fenv.h or replaced by use of function names GCC inlines
automatically, a missing math_private.h include where one is
appropriate will reliably cause a build failure rather than possibly
causing code to be less well optimized while still building
successfully. Thus, this patch removes includes of math_private.h
that are now unnecessary. In the case of two RISC-V files, the
include is replaced by one of stdbool.h because the files in question
were relying on math_private.h to get a definition of bool.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/fromfp.h: Do not include <math_private.h>.
* math/s_cacosh_template.c: Likewise.
* math/s_casin_template.c: Likewise.
* math/s_casinh_template.c: Likewise.
* math/s_ccos_template.c: Likewise.
* math/s_cproj_template.c: Likewise.
* math/s_fdim_template.c: Likewise.
* math/s_fmaxmag_template.c: Likewise.
* math/s_fminmag_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/s_ldexp_template.c: Likewise.
* math/s_nextdown_template.c: Likewise.
* math/w_log1p_template.c: Likewise.
* math/w_scalbln_template.c: Likewise.
* sysdeps/aarch64/fpu/feholdexcpt.c: Likewise.
* sysdeps/aarch64/fpu/fesetround.c: Likewise.
* sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise.
* sysdeps/aarch64/fpu/ftestexcept.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_atanl.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/i386/fpu/s_logbl.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/i386/fpu/s_significandl.c: Likewise.
* sysdeps/ia64/fpu/s_matherrf.c: Likewise.
* sysdeps/ia64/fpu/s_matherrl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c: Likewise.
* sysdeps/ieee754/dbl-64/s_cbrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/flt-32/s_cbrtf.c: Likewise.
* sysdeps/ieee754/k_standardf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_copysignl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_finitel.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_fpclassifyl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isinfl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isnanl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_signbitl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_cbrtl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/s_signgam.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c: Likewise.
* sysdeps/powerpc/power7/fpu/s_logbf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise.
* sysdeps/riscv/rvd/s_finite.c: Likewise.
* sysdeps/riscv/rvd/s_fmax.c: Likewise.
* sysdeps/riscv/rvd/s_fmin.c: Likewise.
* sysdeps/riscv/rvd/s_fpclassify.c: Likewise.
* sysdeps/riscv/rvd/s_isinf.c: Likewise.
* sysdeps/riscv/rvd/s_isnan.c: Likewise.
* sysdeps/riscv/rvd/s_issignaling.c: Likewise.
* sysdeps/riscv/rvf/fegetround.c: Likewise.
* sysdeps/riscv/rvf/feholdexcpt.c: Likewise.
* sysdeps/riscv/rvf/fesetenv.c: Likewise.
* sysdeps/riscv/rvf/fesetround.c: Likewise.
* sysdeps/riscv/rvf/feupdateenv.c: Likewise.
* sysdeps/riscv/rvf/fgetexcptflg.c: Likewise.
* sysdeps/riscv/rvf/ftestexcept.c: Likewise.
* sysdeps/riscv/rvf/s_ceilf.c: Likewise.
* sysdeps/riscv/rvf/s_finitef.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/riscv/rvf/s_fmaxf.c: Likewise.
* sysdeps/riscv/rvf/s_fminf.c: Likewise.
* sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise.
* sysdeps/riscv/rvf/s_isinff.c: Likewise.
* sysdeps/riscv/rvf/s_isnanf.c: Likewise.
* sysdeps/riscv/rvf/s_issignalingf.c: Likewise.
* sysdeps/riscv/rvf/s_nearbyintf.c: Likewise.
* sysdeps/riscv/rvf/s_roundevenf.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/riscv/rvf/s_truncf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Include <stdbool.h> instead of
<math_private.h>.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
When elf_machine_runtime_setup is called to set up resolver, it should
use _dl_runtime_resolve_shstk or _dl_runtime_profile_shstk if SHSTK is
enabled by kernel.
Tested on i686 with and without --enable-cet as well as on CET emulator
with --enable-cet.
[BZ #23716]
* sysdeps/i386/dl-cet.c: Removed.
* sysdeps/i386/dl-machine.h (_dl_runtime_resolve_shstk): New
prototype.
(_dl_runtime_profile_shstk): Likewise.
(elf_machine_runtime_setup): Use _dl_runtime_profile_shstk or
_dl_runtime_resolve_shstk if SHSTK is enabled by kernel.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
The fallback code of Linux wrapper for preadv2/pwritev2 executes
regardless of the errno code for preadv2, instead of the case where
the syscall is not supported.
This fixes it by calling the fallback code iff errno is ENOSYS. The
patch also adds tests for both invalid file descriptor and invalid
iov_len and vector count.
The only discrepancy between preadv2 and fallback code regarding
error reporting is when an invalid flags are used. The fallback code
bails out earlier with ENOTSUP instead of EINVAL/EBADF when the syscall
is used.
Checked on x86_64-linux-gnu on a 4.4.0 and 4.15.0 kernel.
[BZ #23579]
* misc/tst-preadvwritev2-common.c (do_test_with_invalid_fd): New
test.
* misc/tst-preadvwritev2.c, misc/tst-preadvwritev64v2.c (do_test):
Call do_test_with_invalid_fd.
* sysdeps/unix/sysv/linux/preadv2.c (preadv2): Use fallback code iff
errno is ENOSYS.
* sysdeps/unix/sysv/linux/preadv64v2.c (preadv64v2): Likewise.
* sysdeps/unix/sysv/linux/pwritev2.c (pwritev2): Likewise.
* sysdeps/unix/sysv/linux/pwritev64v2.c (pwritev64v2): Likewise.
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __round functions to call the
corresponding round names instead, with asm redirection to __round
when the calls are not inlined.
An additional complication arises in
sysdeps/ieee754/ldbl-128ibm/e_expl.c, where a call to roundl, with the
result converted to int, gets converted by the compiler to call
lroundl in the case of 32-bit long, so resulting in localplt test
failures. It's logically correct to let the compiler make such an
optimization; an appropriate asm redirection of lroundl to __lroundl
is thus added to that file (it's not needed anywhere else).
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (round): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_round.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_roundf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_round.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c: Likewise.
* sysdeps/ieee754/float128/s_roundf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_roundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_roundl.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c: Likewise.
(round): Redirect to __round.
(__roundl): Call round instead of __round.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__round):
Remove macro.
[_ARCH_PWR5X] (__roundf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Use round
functions instead of __round variants.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_expl.c (lroundl): Redirect to
__lroundl.
(__ieee754_expl): Call roundl instead of __roundl.
The function f1a, executed on a stack of size 32k, allocates an object of
size 32k on the stack. Make the stack variables static to reduce
excessive stack usage.
Continuing bits/mman.h unification between architectures using the
Linux kernel, this patch arranges for the common set of MAP_* flags to
be used by two more architectures. That common set is moved to
bits/mman-map-flags-generic.h, which is included by bits/mman.h, to
allow architectures to use that common set even if they also have
architecture-specific additions to it. As well as the generic
bits/mman.h, the versions for x86 and ia64 are also then made to
include bits/mman-map-flags-generic.h, so while they still need
architecture-specific bits/mman.h (for MAP_32BIT and MAP_GROWSUP
respectively), they do not need to duplicate the generic flag
definitions in there.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-map-flags-generic.h: New
file. Most contents moved from ....
* sysdeps/unix/sysv/linux/bits/mman.h: ... here. Move contents to
and include <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/mman-map-flags-generic.h.
* sysdeps/unix/sysv/linux/ia64/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_GROWSUP): Only define this macro, not other
macros defined in <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/x86/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_32BIT): Only define this macro, not other macros
defined in <bits/mman-map-flags-generic.h>.
Currently, DT_TEXTREL is incompatible with IFUNC. When DT_TEXTREL or
DF_TEXTREL is seen, the dynamic linker calls __mprotect on the segments
with PROT_READ|PROT_WRITE before applying dynamic relocations. It leads
to segfault when performing IFUNC resolution (which requires PROT_EXEC
as well for the IFUNC resolver).
This patch makes it call __mprotect with extra PROT_WRITE bit, which
will keep the PROT_EXEC bit if exists, and thus fixes the segfault.
FreeBSD rtld libexec/rtld-elf/rtld.c (reloc_textrel_prot) does the same.
Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
sparc64-linux-gnu, sparcv9-linux-gnu, and armv8-linux-gnueabihf.
Adam J. Richte <adam_richter2004@yahoo.com>
Adhemerval Zanella <adhemerval.zanella@linaro.org>
Fangrui Song <maskray@google.com>
[BZ #20480]
* config.h.in (CAN_TEXTREL_IFUNC): New define.
* configure.ac: Add check if linker supports textrel relocation with
ifunc.
* elf/dl-reloc.c (_dl_relocate_object): Use all required flags on
DT_TEXTREL segments, not only PROT_READ and PROT_WRITE.
* elf/Makefile (ifunc-pie-tests): Add tst-ifunc-textrel.
(CFLAGS-tst-ifunc-textrel.c): New rule.
* elf/tst-ifunc-textrel.c: New file.
This patch completes the process of unifying sys/procfs.h headers for
architectures using the Linux kernel by making alpha use the generic
version.
That was previously deferred because alpha has different definitions
of prgregset_t and prfpregset_t from other architectures, so changing
to the common definitions would change C++ name mangling. To avoid
such a change, a header bits/procfs-prregset.h is added, and alpha
gets its own version of that header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-prregset.h>.
(prgregset_t): Define using __prgregset_t.
(prfpregset_t): Define using __prfpregset_t.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-prregset.h.
* sysdeps/unix/sysv/linux/bits/procfs-prregset.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/procfs-prregset.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/sys/procfs.h: Remove file.
This patch continues the process of unifying sys/procfs.h headers for
architectures using the Linux kernel.
A bits/procfs-id.h header is added to define __pr_uid_t and __pr_gid_t
for the types of pr_uid and pr_gid; the default version of this header
uses unsigned int. On some architectures, sys/procfs.h has copies of
32-bit structures for 64-bit builds; those move into a
bits/procfs-extra.h header (they can't go in bits/procfs.h because
they have to come *after* other declarations from sys/procfs.h).
Given appropriate versions of these headers, six more architectures
can then move to providing only bits/procfs*.h without duplicating the
rest of the contents of sys/procfs.h. Only alpha needs a further
bits/ header to be added before it can stop having its own
sys/procfs.h.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-id.h> and <bits/procfs-extra.h>.
(struct elf_prpsinfo): Use __pr_uid_t and __pr_gid_t as types of
pr_uid and pr_gid.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-id.h and bits/procfs-extra.h.
* sysdeps/unix/sysv/linux/bits/procfs-extra.h: New file.
* sysdeps/unix/sysv/linux/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/arm/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/arm/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs-extra.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs-extra.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/procfs-id.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/arm/sys/procfs.h: Remove file.
* sysdeps/unix/sysv/linux/m68k/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sh/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/x86/sys/procfs.h: Likewise.
As per recent discussions, this patch unifies some of the sys/procfs.h
headers for architectures using the Linux kernel, producing a generic
version that can hopefully be used by all new architectures as well.
The new generic version is based on the AArch64 one. The register
definitions, the only part that generally needs to vary by
architecture, go in a new bits/procfs.h header (which each
architecture using the generic version needs to provide); that header
also has any #includes that were in the architecture-specific
sys/procfs.h, where those includes went beyond the generic set.
The generic version is used for eight architectures where the generic
definitions were the same as the architecture-specific ones. (Some of
those architectures had #if 0 fields, now removed; some defined types
or fields using different type names which were typedefs for the same
underlying types.)
Six of the remaining architectures with their own sys/procfs.h use
unsigned short for pr_uid / pr_gid in some cases; moving those to the
generic header will require a bits/ header to define a typedef for the
type of those fields. In the case of alpha, the generic sys/procfs.h
uses elf_gregset_t (= unsigned long int[33]) to define prgregset_t and
elf_fpregset_t (= double[32]) to define prfpregset_t, but the alpha
version uses gregset_t (= long int[33]) and fpregset_t (= long
int[32]), so avoiding unnecessarily changing the underlying types (and
thus C++ name mangling) again means a bits/ header will need to be
able to define a different choice for those typedefs.
bits/procfs.h is included outside the __BEGIN_DECLS / __END_DECLS pair
(whereas the definitions it contains were previously inside that pair
in various sys/procfs.h headers), because it sometimes includes other
headers and putting those other #includes inside that pair seems
risky. Because none of the declarations in bits/procfs.h are of
functions or variables or involve function types, I don't think it
makes any difference whether they are inside or outside an extern "C"
context.
Tested with build-many-glibcs.py (again, that does not provide much
validation for the correctness of this patch).
* sysdeps/unix/sysv/linux/sys/procfs.h: Replace with file based on
AArch64 version. Include <bits/procfs.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs.h.
* sysdeps/unix/sysv/linux/bits/procfs.h: New file.
* sysdeps/unix/sysv/linux/aarch64/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/aarch64/sys/procfs.h: Remove file.
* sysdeps/unix/sysv/linux/hppa/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/mips/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/riscv/sys/procfs.h: Likewise.
The variables __gconv_path_elem, __gconv_max_path_elem_len and function
__gconv_get_path declared in, as well as the type path_elem and macro
GCONV_NCHAR_GOAL defined in gconv_int.h are all used in only one iconv
compilation unit each. In addition, the extern declaration of the variable
__gconv_nmodules refers to a variable that does not exist any more.
Considering this, these symbols do not need to be exposed via a header file.
This patch removes the extern declarations from the header file and moves
the definitions to the compilation units where they are used.
For architectures and ABIs that are added in version 2.29 or later the
option --enable-obsolete-nsl is no longer available, and no libnsl
compatibility library is built.
Linux from 3.9 through 4.2 does not abort HTM transaction on syscalls,
instead it suspend and resume it when leaving the kernel. The
side-effects of the syscall will always remain visible, even if the
transaction is aborted. This is an issue when transaction is used along
with futex syscall, on pthread_cond_wait for instance, where the futex
call might succeed but the transaction is rolled back leading the
pthread_cond object in an inconsistent state.
Glibc used to prevent it by always aborting a transaction before issuing
a syscall. Linux 4.2 also decided to abort active transaction in
syscalls which makes the glibc workaround superfluous. Worse, glibc
transaction abortion leads to a performance issue on recent kernels
where the HTM state is saved/restore lazily (v4.9). By aborting a
transaction on every syscalls, regardless whether a transaction has being
initiated before, GLIBS makes the kernel always save/restore HTM state
(it can not even lazily disable it after a certain number of syscall
iterations).
Because of this shortcoming, Transactional Lock Elision is just enabled
when it has been explicitly set (either by tunables of by a configure
switch) and if kernel aborts HTM transactions on syscalls
(PPC_FEATURE2_HTM_NOSC). It is reported that using simple benchmark [1],
the context-switch is about 5% faster by not issuing a tabort in every
syscall in newer kernels.
Checked on powerpc64le-linux-gnu with 4.4.0 kernel (Ubuntu 16.04).
* NEWS: Add note about new TLE support on powerpc64le.
* sysdeps/powerpc/nptl/tcb-offsets.sym (TM_CAPABLE): Remove.
* sysdeps/powerpc/nptl/tls.h (tcbhead_t): Rename tm_capable to
__ununsed1.
(TLS_INIT_TP, TLS_DEFINE_INIT_TP): Remove tm_capable setup.
(THREAD_GET_TM_CAPABLE, THREAD_SET_TM_CAPABLE): Remove macros.
* sysdeps/powerpc/powerpc32/sysdep.h,
sysdeps/powerpc/powerpc64/sysdep.h (ABORT_TRANSACTION_IMPL,
ABORT_TRANSACTION): Remove macros.
* sysdeps/powerpc/sysdep.h (ABORT_TRANSACTION): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-conf.c (elision_init): Set
__pthread_force_elision iff PPC_FEATURE2_HTM_NOSC is set.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/sysdep.h,
sysdeps/unix/sysv/linux/powerpc/powerpc64/sysdep.h
sysdeps/unix/sysv/linux/powerpc/syscall.S (ABORT_TRANSACTION): Remove
usage.
* sysdeps/unix/sysv/linux/powerpc/not-errno.h: Remove file.
Reported-by: Breno Leitão <leitao@debian.org>
Synchronize some values with CLDR and apply some suggestions from Bugzilla.
[BZ #10425]
* localedata/locales/it_IT (d_t_fmt): Use "%a %-d %b %Y, %T".
(date_fmt): Use "%a %-d %b %Y, %T, %Z".
* localedata/locales/it_CH (d_t_fmt): Use "%a %-d %b %Y, %T"
which is the same as in it_IT.
(d_fmt): Use "%d.%m.%Y" which is the same as in de_CH.
(date_fmt): Use "%a %-d %b %Y, %T, %Z" which is the same as in it_IT.
I noticed that sysdeps/x86/cpu-features.h had conditionals on whether
to define HAS_CPUID, HAS_I586 and HAS_I686 with a long list of
preprocessor macros for i686-and-later processors which however was
out of date. This patch avoids the problem of the list getting out of
date by instead having conditionals on all the (few, old) pre-i686
processors for which GCC has preprocessor macros, rather than the
(many, expanding list) i686-and-later processors. It seems HAS_I586
and HAS_I686 are unused so the only effect of these macros being
missing is that 32-bit glibc built for one of these processors would
end up doing runtime detection of CPUID availability.
i386 builds are prevented by a configure test so there is no need to
allow for them here. __geode__ (no long nops?) and __k6__ (no CMOV,
at least according to GCC) are conservatively handled as i586, not
i686, here (as noted above, this is a theoretical distinction at
present in that only HAS_CPUID appears to be used).
Tested for x86.
* sysdeps/x86/cpu-features.h [__geode__ || __k6__]: Handle like
[__i586__ || __pentium__].
[__i486__]: Handle explicitly.
(HAS_CPUID): Define to 1 if above macros are undefined.
(HAS_I586): Likewise.
(HAS_I686): Likewise.