Commit Graph

5 Commits

Author SHA1 Message Date
Joseph Myers
6d7e8eda9b Update copyright dates with scripts/update-copyrights 2023-01-06 21:14:39 +00:00
Adhemerval Zanella
609c9d0951 malloc: Do not clobber errno on __getrandom_nocancel (BZ #29624)
Use INTERNAL_SYSCALL_CALL instead of INLINE_SYSCALL_CALL.  This
requires emulate the semantic for hurd call (so __arc4random_buf
uses the fallback).

Checked on x86_64-linux-gnu.

Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
2022-09-30 15:25:15 -03:00
Adhemerval Zanella
13db9ee2cb stdlib: Fix __getrandom_nocancel type and arc4random usage (BZ #29638)
Using an unsigned type prevents the fallback to be used if kernel
does not support getrandom syscall.

Checked on x86_64-linux-gnu.

Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
2022-09-30 15:24:49 -03:00
Jason A. Donenfeld
eaad4f9e8f arc4random: simplify design for better safety
Rather than buffering 16 MiB of entropy in userspace (by way of
chacha20), simply call getrandom() every time.

This approach is doubtlessly slower, for now, but trying to prematurely
optimize arc4random appears to be leading toward all sorts of nasty
properties and gotchas. Instead, this patch takes a much more
conservative approach. The interface is added as a basic loop wrapper
around getrandom(), and then later, the kernel and libc together can
work together on optimizing that.

This prevents numerous issues in which userspace is unaware of when it
really must throw away its buffer, since we avoid buffering all
together. Future improvements may include userspace learning more from
the kernel about when to do that, which might make these sorts of
chacha20-based optimizations more possible. The current heuristic of 16
MiB is meaningless garbage that doesn't correspond to anything the
kernel might know about. So for now, let's just do something
conservative that we know is correct and won't lead to cryptographic
issues for users of this function.

This patch might be considered along the lines of, "optimization is the
root of all evil," in that the much more complex implementation it
replaces moves too fast without considering security implications,
whereas the incremental approach done here is a much safer way of going
about things. Once this lands, we can take our time in optimizing this
properly using new interplay between the kernel and userspace.

getrandom(0) is used, since that's the one that ensures the bytes
returned are cryptographically secure. But on systems without it, we
fallback to using /dev/urandom. This is unfortunate because it means
opening a file descriptor, but there's not much of a choice. Secondly,
as part of the fallback, in order to get more or less the same
properties of getrandom(0), we poll on /dev/random, and if the poll
succeeds at least once, then we assume the RNG is initialized. This is a
rough approximation, as the ancient "non-blocking pool" initialized
after the "blocking pool", not before, and it may not port back to all
ancient kernels, though it does to all kernels supported by glibc
(≥3.2), so generally it's the best approximation we can do.

The motivation for including arc4random, in the first place, is to have
source-level compatibility with existing code. That means this patch
doesn't attempt to litigate the interface itself. It does, however,
choose a conservative approach for implementing it.

Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Cristian Rodríguez <crrodriguez@opensuse.org>
Cc: Paul Eggert <eggert@cs.ucla.edu>
Cc: Mark Harris <mark.hsj@gmail.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>

Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2022-07-27 08:58:27 -03:00
Adhemerval Zanella Netto
6f4e0fcfa2 stdlib: Add arc4random, arc4random_buf, and arc4random_uniform (BZ #4417)
The implementation is based on scalar Chacha20 with per-thread cache.
It uses getrandom or /dev/urandom as fallback to get the initial entropy,
and reseeds the internal state on every 16MB of consumed buffer.

To improve performance and lower memory consumption the per-thread cache
is allocated lazily on first arc4random functions call, and if the
memory allocation fails getentropy or /dev/urandom is used as fallback.
The cache is also cleared on thread exit iff it was initialized (so if
arc4random is not called it is not touched).

Although it is lock-free, arc4random is still not async-signal-safe
(the per thread state is not updated atomically).

The ChaCha20 implementation is based on RFC8439 [1], omitting the final
XOR of the keystream with the plaintext because the plaintext is a
stream of zeros.  This strategy is similar to what OpenBSD arc4random
does.

The arc4random_uniform is based on previous work by Florian Weimer,
where the algorithm is based on Jérémie Lumbroso paper Optimal Discrete
Uniform Generation from Coin Flips, and Applications (2013) [2], who
credits Donald E. Knuth and Andrew C. Yao, The complexity of nonuniform
random number generation (1976), for solving the general case.

The main advantage of this method is the that the unit of randomness is not
the uniform random variable (uint32_t), but a random bit.  It optimizes the
internal buffer sampling by initially consuming a 32-bit random variable
and then sampling byte per byte.  Depending of the upper bound requested,
it might lead to better CPU utilization.

Checked on x86_64-linux-gnu, aarch64-linux, and powerpc64le-linux-gnu.

Co-authored-by: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Yann Droneaud <ydroneaud@opteya.com>

[1] https://datatracker.ietf.org/doc/html/rfc8439
[2] https://arxiv.org/pdf/1304.1916.pdf
2022-07-22 11:58:27 -03:00