The nan, nanf and nanl functions handle payload strings by doing e.g.:
if (tagp[0] != '\0')
{
char buf[6 + strlen (tagp)];
sprintf (buf, "NAN(%s)", tagp);
return strtod (buf, NULL);
}
This is an unbounded stack allocation based on the length of the
argument. Furthermore, if the argument starts with an n-char-sequence
followed by ')', that n-char-sequence is wrongly treated as
significant for determining the payload of the resulting NaN, when ISO
C says the call should be equivalent to strtod ("NAN", NULL), without
being affected by that initial n-char-sequence. This patch fixes both
those problems by using the __strtod_nan etc. functions recently
factored out of strtod etc. for that purpose, with those functions
being exported from libc at version GLIBC_PRIVATE.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16961]
[BZ #16962]
* math/s_nan.c (__nan): Use __strtod_nan instead of constructing a
string on the stack for strtod.
* math/s_nanf.c (__nanf): Use __strtof_nan instead of constructing
a string on the stack for strtof.
* math/s_nanl.c (__nanl): Use __strtold_nan instead of
constructing a string on the stack for strtold.
* stdlib/Versions (libc): Add __strtof_nan, __strtod_nan and
__strtold_nan to GLIBC_PRIVATE.
* math/test-nan-overflow.c: New file.
* math/test-nan-payload.c: Likewise.
* math/Makefile (tests): Add test-nan-overflow and
test-nan-payload.
Old workaround based on assembly aliases can lead to link fail (bug 19058).
This patch makes workaround in another way to avoid it.
[BZ #19058]
* math/Makefile ($(inst_libdir)/libm.so): Added libmvec_nonshared.a
to AS_NEEDED.
* sysdeps/x86/fpu/bits/math-vector.h: Removed code with old workaround.
* sysdeps/x86_64/fpu/Makefile (libmvec-support,
libmvec-static-only-routines): Added new file.
* sysdeps/x86_64/fpu/svml_finite_alias.S: New file.
The lgamma (and likewise lgammaf, lgammal) function wrongly sets the
signgam variable even when building for strict ISO C conformance
(-std=c99 / -std=c11), although the user may define such a variable
and it's only in the implementation namespace for POSIX with XSI
extensions enabled.
Following discussions starting at
<https://sourceware.org/ml/libc-alpha/2013-04/msg00767.html> and
<https://sourceware.org/ml/libc-alpha/2015-10/msg00844.html>, it seems
that the safest approach for fixing this particular issue is for
signgam to become a weak alias for a newly exported symbol __signgam,
with the library functions only setting __signgam, at which point
static linker magic will preserve the alias for newly linked binaries
that refer to the library's signgam rather than defining their own,
while breaking the alias for programs that define their own signgam,
with new symbol versions for lgamma functions and with compat symbols
for existing binaries that set both signgam and __signgam.
This patch implements that approach for the fix. signgam is made into
a weak alias. The four symbols __signgam, lgamma, lgammaf, lgammal
get new symbol versions at version GLIBC_2.23, with the existing
versions of lgamma, lgammaf and lgammal becoming compat symbols.
When the compat versions are built, gamma, gammaf and gammal are
aliases for the compat versions (i.e. always set signgam); this is OK
as they are not ISO C functions, and avoids adding new symbol versions
for them unnecessarily. When the compat versions are not built
(i.e. for static linking and for future glibc ports), gamma, gammaf
and gammal are aliases for the new versions that set __signgam. The
ldbl-opt versions are updated accordingly.
The lgamma wrappers are adjusted so that the same source files,
included from different files with different definitions of
USE_AS_COMPAT, can build either the new versions or the compat
versions. Similar changes are made to the ia64 versions (untested).
Tests are added that the lgamma functions do not interfere with a user
variable called signgam for ISO C, with various choices for the size
of that variable, whether it is initialized, and for static and
dynamic linking. The conformtest whitelist entry is removed as well.
Tested for x86_64, x86, mips64 and powerpc, including looking at
objdump --dynamic-syms output to make sure the expected sets of
symbols were aliases. Also spot-tested that a binary built with old
glibc works properly (i.e. gets signgam set) when run with new glibc.
[BZ #15421]
* sysdeps/ieee754/s_signgam.c (signgam): Rename to __signgam,
initialize with 0 and define as weak alias of __signgam.
* include/math.h [!_ISOMAC] (__signgam): Declare.
* math/Makefile (libm-calls): Add w_lgamma_compat.
(tests): Add test-signgam-uchar, test-signgam-uchar-init,
test-signgam-uint, test-signgam-uint-init, test-signgam-ullong and
test-signgam-ullong-init.
(tests-static): Add test-signgam-uchar-static,
test-signgam-uchar-init-static, test-signgam-uint-static,
test-signgam-uint-init-static, test-signgam-ullong-static and
test-signgam-ullong-init-static.
(CFLAGS-test-signgam-uchar.c): New variable.
(CFLAGS-test-signgam-uchar-init.c): Likewise.
(CFLAGS-test-signgam-uchar-static.c): Likewise.
(CFLAGS-test-signgam-uchar-init-static.c): Likewise.
(CFLAGS-test-signgam-uint.c): Likewise.
(CFLAGS-test-signgam-uint-init.c): Likewise.
(CFLAGS-test-signgam-uint-static.c): Likewise.
(CFLAGS-test-signgam-uint-init-static.c): Likewise.
(CFLAGS-test-signgam-ullong.c): Likewise.
(CFLAGS-test-signgam-ullong-init.c): Likewise.
(CFLAGS-test-signgam-ullong-static.c): Likewise.
(CFLAGS-test-signgam-ullong-init-static.c): Likewise.
* math/Versions (libm): Add GLIBC_2.23.
* math/lgamma-compat.h: New file.
* math/test-signgam-main.c: Likewise.
* math/test-signgam-uchar-init-static.c: Likewise.
* math/test-signgam-uchar-init.c: Likewise.
* math/test-signgam-uchar-static.c: Likewise.
* math/test-signgam-uchar.c: Likewise.
* math/test-signgam-uint-init-static.c: Likewise.
* math/test-signgam-uint-init.c: Likewise.
* math/test-signgam-uint-static.c: Likewise.
* math/test-signgam-uint.c: Likewise.
* math/test-signgam-ullong-init-static.c: Likewise.
* math/test-signgam-ullong-init.c: Likewise.
* math/test-signgam-ullong-static.c: Likewise.
* math/test-signgam-ullong.c: Likewise.
* math/w_lgamma.c: Rename to w_lgamma_main.c and replace by
wrapper of w_lgamma_main.c.
* math/w_lgamma_compat.c: New file.
* math/w_lgamma_compatf.c: Likewise.
* math/w_lgamma_compatl.c: Likewise.
* math/w_lgamma_main.c: New file. Based on w_lgamma.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgamma): Change to LGFUNC (__lgamma). Use CALL_LGAMMA.
* math/w_lgammaf.c: Rename to w_lgammaf_main.c and replace by
wrapper of w_lgammaf_main.c.
* math/w_lgammaf_main.c: New file. Based on w_lgammaf.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgammaf): Change to LGFUNC (__lgammaf). Use CALL_LGAMMA.
* math/w_lgammal.c: Rename to w_lgammal_main.c and replace by
wrapper of w_lgammal_main.c.
* math/w_lgammal_main.c: New file. Based on w_lgammal.c. Include
<lgamma-compat.h>. Condition contents on [BUILD_LGAMMA]. Support
defining compatibility symbols.
(__lgammal): Change to LGFUNC (__lgammal). Use CALL_LGAMMA.
* sysdeps/ia64/fpu/lgamma-compat.h: New file.
* sysdeps/ia64/fpu/w_lgamma.c: Move to ....
* sysdeps/ia64/fpu/w_lgamma_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgamma): Change to LGFUNC (lgamma). Use CALL_LGAMMA.
(__ieee754_gamma): Define as alias.
* sysdeps/ia64/fpu/w_lgammaf.c: Move to ....
* sysdeps/ia64/fpu/w_lgammaf_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgammaf): Change to LGFUNC (lgammaf). Use CALL_LGAMMA.
(__ieee754_gammaf): Define as alias.
* sysdeps/ia64/fpu/w_lgammal.c: Move to ....
* sysdeps/ia64/fpu/w_lgammal_main.c: ...here. Include
<lgamma-compat.h>.
(__ieee754_lgammal): Change to LGFUNC (lgammal). Use CALL_LGAMMA.
(__ieee754_gammal): Define as alias.
* sysdeps/ieee754/ldbl-opt/w_lgamma.c: Move to ....
* sysdeps/ieee754/ldbl-opt/w_lgamma_compat.c: ...here. Include
<math/w_lgamma_compat.c>.
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (__lgammal_dbl_compat):
Define as alias of __lgamma_compat and use in defining lgammal.
* sysdeps/ieee754/ldbl-opt/w_lgammal.c: Move to ....
* sysdeps/ieee754/ldbl-opt/w_lgamma_compatl.c: ...here. Include
<math/lgamma-compat.h> and <math/w_lgamma_compatl.c>.
(USE_AS_COMPAT): New macro.
(LGAMMA_OLD_VER): Undefine and redefine.
(lgammal): Do not define here.
(gammal): Only define here if [GAMMA_ALIAS].
* conform/linknamespace.pl (@whitelist): Remove signgam.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
Similar to bug 15491 recently fixed for x86_64 / x86, the powerpc
(both powerpc32 and powerpc64) hard-float implementations of
nearbyintf and nearbyint wrongly clear an "inexact" exception that was
raised before the function was called; this shows up as failure of the
test math/test-nearbyint-except added when that bug was fixed. They
also wrongly leave traps on "inexact" disabled if they were enabled
before the function was called.
This patch fixes the bugs similar to how the x86 bug was fixed: saving
and restoring the whole floating-point state, both to restore the
original "inexact" flag state and to restore the original state of
whether traps on "inexact" were enabled. Because there's a convenient
point in the powerpc implementations to save state after any sNaN
arguments will have raised "invalid" but before "inexact" traps need
to be disabled, no special handling for "invalid" is needed as in the
x86 version.
Tested for powerpc64 and powerpc32, where it fixes the
math/test-nearbyint-except failure as well as fixing the new test
math/test-nearbyint-except-2 added by this patch. Also tested for
x86_64 and x86 that the new test passes.
If powerpc experts see a more efficient way of doing this
(e.g. instruction positioning that's better for pipelines on typical
processors) then of course followups optimizing the fix are welcome.
[BZ #19228]
* sysdeps/powerpc/powerpc32/fpu/s_nearbyint.S (__nearbyint): Save
and restore full floating-point state.
* sysdeps/powerpc/powerpc32/fpu/s_nearbyintf.S (__nearbyintf):
Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_nearbyint.S (__nearbyint):
Likewise.
* sysdeps/powerpc/powerpc64/fpu/s_nearbyintf.S (__nearbyintf):
Likewise.
* math/test-nearbyint-except-2.c: New file.
* math/Makefile (tests): Add test-nearbyint-except-2.
Prompted by a gcc-patches discussion, this patch adds tests of pow for
the cases where pow (x, 0.5) is required to return a different result
from sqrt (x), as those cases were previously missing from the tests
(although they worked correctly).
Tested for x86_64 and x86.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (pow_test_data): Add another test.
I noticed a typo in the messages from the signgam tests I recently
added. This patch fixes it.
Tested for x86_64 and x86.
* math/test-signgam-finite.c (RUN_TESTS): Correct messages about
calls with argument -0.5.
* math/test-signgam-finite-c99.c (RUN_TESTS): Likewise.
This patch arranges for the libm-test tests to be run for the
finite-math-only function variants, in addition to the existing runs
for out-of-line and bits/mathinline.h inline variants.
gen-libm-test.pl is made to add a flag to all tests with non-finite
inputs or outputs so that they can be skipped at runtime when the
finite-math-only variants are being tested (skipping is for all
rounding modes; that is, -ffinite-math-only is being treated as
excluding overflow cases even when the rounding mode is such that the
overflowed result is finite). errno setting is not tested for these
variants (in general they don't set it, and it's
implementation-defined in ISO C whether it's set on underflow, with
the glibc definition being that it may not be for -ffinite-math-only;
other cases where errno would normally be expected to be set are
mostly excluded as having non-finite or overflowing arguments or
results).
As with the inline function tests, these ones are built with
-D__FINITE_MATH_ONLY=1 to select the function variants, rather than
-ffinite-math-only. Use of -ffinite-math-only would not be suitable
for these tests because it would also affect libm-test.inc code that
e.g. tests whether results are infinities or NaNs - if these function
variants have bugs that incorrectly produce such results, we want them
to show up in the tests, which means the compiler should not be
optimizing the tests on the basis of results being finite.
The finite-math-only functions share the same ulps settings as the
main out-of-line functions.
These interfaces were one significant group of untested ABIs listed at
<https://sourceware.org/ml/libc-alpha/2013-07/msg00386.html>. I
haven't rerun the script to list untested interfaces, but I expect
that the vast bulk of interfaces there are still untested and could do
with testcases being added (or, if applicable, being made compat
symbols; in general, most symbols not starting '_' are safe bets to
add tests for, while _* need more investigation of what the actual
public API is, if any). I'd like to encourage people to help reduce
the accumulation of untested interfaces by adding more tests.
Tested for x86_64 and x86. Given my recent lgamma/gamma and log*
fixes, the new tests pass (before those fixes, the new tests showed up
those bugs, so illustrating the practical utility of having tests for
these function variants).
* math/libm-test.inc (NON_FINITE): New macro.
(enable_test): Do not run tests flagged NON_FINITE if TEST_FINITE.
* math/gen-libm-test.pl (show_exceptions): Add argument
$non_finite.
(parse_args): Update call to show_exceptions.
* math/test-math-finite.h: New file.
* math/test-math-no-finite.h: Likewise.
* math/test-double-finite.c: Likewise.
* math/test-float-finite.c: Likewise.
* math/test-ldouble-finite.c: Likewise.
* math/test-double.c: Include "test-math-no-finite.h".
* math/test-float.c: Include "test-math-no-finite.h".
* math/test-ldouble.c: Include "test-math-no-finite.h".
* math/test-math-inline.h (TEST_FINITE): New macro.
* math/test-math-vector.h (TEST_FINITE): Likewise.
* math/Makefile (test-longdouble-yes): Add test-ldouble-finite.
(libm-tests): Add test-float-finite and test-double-finite.
($(objpfx)test-float-finite.o): New dependency on
$(objpfx)libm-test.stmp.
($(objpfx)test-double-finite.o): Likewise.
($(objpfx)test-ldouble-finite.o): Likewise.
(libm-test-no-inline-cflags): New variable.
(libm-test-finite-cflags): Likewise.
(CFLAGS-test-float-finite.c): Likewise.
(CFLAGS-test-double-finite.c): Likewise.
(CFLAGS-test-ldouble-finite.c): Likewise.
(CFLAGS-test-float.c): Use $(libm-test-no-inline-cflags).
(CFLAGS-test-double.c): Likewise.
(CFLAGS-test-ldouble.c): Likewise.
The lgamma inline functions in bits/math-finite.h do not set signgam
if __USE_ISOC99, even when other feature test macros mean a standard
such as XSI POSIX is selected for which it should be set. (This is
essentially the opposite issue to bug 15421, the out-of-line versions
setting signgam even when they shouldn't.)
This patch fixes those functions to use __USE_MISC || __USE_XOPEN as
the condition for when to set signgam, since it's the condition for
when math.h declares signgam. The legacy gamma* names are only
declared at all if __USE_MISC || __USE_XOPEN, so they just set signgam
unconditionally.
Tests for certain standards or not using _GNU_SOURCE cannot use
test-skeleton.c (this is a known issue noted on the wiki todo list).
Thus, the new tests that signgam remains not set in ISO C modes do not
use test-skeleton.c. They also define _ISOMAC to avoid running into
declarations in the internal include/ headers that only work in
_GNU_SOURCE mode.
Tested for x86_64 and x86.
[BZ #19211]
* math/bits/math-finite.h (lgamma): Set signgam if [__USE_MISC ||
__USE_XOPEN], not if [!__USE_ISOC99].
(lgammaf): Likewise.
(lgammal): Likewise.
(gamma): Set signgam unconditionally, not if [!__USE_ISOC99].
(gammaf): Likewise.
(gammal): Likewise.
* math/test-signgam-finite-c11.c: New file.
* math/test-signgam-finite-c99.c: Likewise.
* math/test-signgam-finite.c: Likewise.
* math/Makefile (tests): Add test-signgam-finite,
test-signgam-finite-c99 and test-signgam-finite-c11.
(CFLAGS-test-signgam-finite.c): New variable.
(CFLAGS-test-signgam-finite-c99.c): Likewise.
(CFLAGS-test-signgam-finite-c11.c): Likewise.
bits/math-finite.h maps ldexp functions to corresponding scalbn
functions. This is (a) a namespace bug for C90, which has ldexp but
not scalbn, and (b) in any case useless, since the ldexp and scalbn
functions have identical semantics (for floating-point types with
radix 2), and since the fix for bug 6803 are actually aliases
(presumably the mapping was based around the old bug of scalbn not
setting errno). This patch removes the bogus redirections.
Tested for x86_64 and x86.
[BZ #19209]
* math/bits/math-finite.h (ldexp): Remove declaration.
(ldexpf): Likewise.
(ldexpl): Likewise.
bits/math-finite.h declares -ffinite-math-only variants of various
functions under conditions not matching those under which the normal
versions are declared.
* math.h only ever includes bits/mathcalls.h to declare float and long
double functions if __USE_ISOC99, but bits/math-finite.h declares
some float functions regardless (long double ones are conditioned on
__MATH_DECLARE_LDOUBLE). (For C90 functions this isn't a
conformance bug because C90 reserves the float and long double
names, but is still contrary to good glibc practice. For some other
functions in older XSI standards it *is* a conformance bug.)
* Some functions are defined as inlines using lgamma_r functions under
conditions where those lgamma_r functions are not themselves
declared.
* hypot is declared under __USE_XOPEN || __USE_ISOC99 in
bits/mathcalls.h, __USE_ISOC99 only in bits/math-finite.h.
* float and long double versions of Bessel functions should be limited
to __USE_MISC (as in bug 18977).
* gamma should not be declared for __USE_XOPEN2K (as in bug 18967).
* remainder should be restricted to __USE_XOPEN_EXTENDED ||
__USE_ISOC99, not unconditional.
* scalb should not be declared for __USE_XOPEN2K8, and scalbf and
scalbl are non-POSIX (as in bug 18967).
This patch fixes all these issues (it doesn't seem worth splitting
them into separate patches or bugs). I put __USE_ISOC99 conditionals,
where needed, around both float and long double declarations, even
though formally redundant around the long double declarations because
__MATH_DECLARE_LDOUBLE isn't defined without __USE_ISOC99; it seemed
clearer that way. The missing declarations of lgamma_r functions are
dealt with by directly using declarations of __lgamma*_r_finite, in
the implementation namespace, rather than having the inlines rely on
asm redirection of lgamma*_r.
After this patch, there are some apparently redundant nested
__USE_ISOC99 conditionals in lgamma / gamma definitions. These
actually reflect a separate bug (the correct condition for the lgamma
inline functions to set signgam is __USE_MISC || __USE_XOPEN, the
condition under which signgam is declared, rather than disabling
setting it if __USE_ISOC99, which includes XSI POSIX versions for
which signgam *should* be set). They'll be fixed as part of a fix for
that bug, which will also add tests for these inlines. I've put a
note about more general conform/ test coverage for -ffinite-math-only
on
<https://sourceware.org/glibc/wiki/Development_Todo/Master#conformtest_improvements>,
alongside other options for which this is also relevant (some of which
have also had such bugs in the past relating to mismatched
conditionals).
I also intend to enable the main libm-test.inc tests for the
math-finite.h functions, but some other bugs in __*_finite need fixing
first.
[BZ #19205]
* math/bits/math-finite.h (acosf): Condition declaration on
[__USE_ISOC99].
(acosl): Likewise.
(acoshf): Likewise.
(acoshl): Likewise.
(asinf): Likewise.
(asinl): Likewise.
(atan2f): Likewise.
(atan2l): Likewise.
(atanhf): Likewise.
(atanhl): Likewise.
(coshf): Likewise.
(coshl): Likewise.
(expf): Likewise.
(expl): Likewise.
(fmodf): Likewise.
(fmodl): Likewise.
(hypot): Change condition to [__USE_XOPEN || __USE_ISOC99].
(j0f): Change condition to [__USE_MISC && __USE_ISOC99].
(j0l): Likewise.
(y0f): Likewise.
(y0l): Likewise.
(j1f): Likewise.
(j1l): Likewise.
(y1f): Likewise.
(y1l): Likewise.
(jnf): Likewise.
(jnl): Likewise.
(ynf): Likewise.
(ynl): Likewise.
(lgammaf_r): Condition declaration on [__USE_ISOC99].
(lgammal_r): Likewise.
(__lgamma_r_finite): New declaration.
(__lgammaf_r_finite): Likewise.
(__lgammal_r_finite): Likewise.
(lgamma): Use __lgamma_r_finite.
(lgammaf): Condition definition on [__USE_ISOC99]. Use
__lgammaf_r_finite.
(lgammal): Condition definition on [__USE_ISOC99]. Use
__lgammal_r_finite.
(gamma): Do not define for [!__USE_MISC && __USE_XOPEN2K]. Use
__lgamma_r_finite.
(gammaf): Condition definition on [__USE_ISOC99]. Use
__lgammaf_r_finite.
(gammal): Condition definition on [__USE_ISOC99]. Use
__lgammal_r_finite.
(logf): Condition declaration on [__USE_ISOC99].
(logl): Likewise.
(log10f): Likewise.
(log10l): Likewise.
(ldexpf): Likewise.
(ldexpl): Likewise.
(powf): Likewise.
(powl): Likewise.
(remainder): Condition declaration on [__USE_XOPEN_EXTENDED ||
__USE_ISOC99].
(remainderf): Condition declaration on [__USE_ISOC99].
(remainderl): Likewise.
(scalb): Do not declare for [!__USE_MISC && __USE_XOPEN2K8].
(scalbf): Change condition to [__USE_MISC && __USE_ISOC99].
(scalbl): Likewise.
(sinhf): Condition declaration on [__USE_ISOC99].
(sinhl): Likewise.
(sqrtf): Likewise.
(sqrtl): Likewise.
This patch refactors how libm-test.inc handles disabling
errno/exception handling tests, and some other tests, for
__FAST_MATH__ inline function tests.
The macro TEST_INLINE is changed from being defined/undefined to being
defined to 1 or 0, so that it can be tested in "if" conditionals
instead of #if. For tests of errno and exception setting, separate
macros TEST_ERRNO and TEST_EXCEPTIONS are added, and TEST_ERRNO is
also used in the disabling of errno testing for vector function
tests. The relevant conditionals are moved up a function, so that
they take effect before the code that counts the number of tests, so
the inline function tests now accurately report that 0 tests for
exceptions and errno were executed (whereas they previously reported a
large number desipte not running any such tests).
Tested for x86_64 and x86.
* math/test-math-errno.h: New file.
* math/test-math-inline.h (TEST_INLINE): Define to 1 instead of
empty.
(TEST_ERRNO): New macro.
(TEST_EXCEPTIONS): Likewise.
* math/test-math-no-inline.h (TEST_INLINE): Likewise.
(TEST_EXCEPTIONS): Likewise.
* math/test-math-vector.h (TEST_ERRNO): Likewise.
* math/test-double.c: Include "test-math-errno.h".
* math/test-float.c: Likewise.
* math/test-ldouble.c: Likewise.
* math/libm-test.inc (test_single_exception) [!TEST_INLINE]: Make
code unconditional.
(test_exceptions): Only run code if TEST_EXCEPTIONS.
(test_single_errno) [!TEST_INLINE && !TEST_MATHVEC]: Make code
unconditional.
(test_errno): Only run code if TEST_ERRNO.
(enable_test): Use "if" conditional on TEST_INLINE, not #ifdef.
This patch improves the libm test coverage for a few more functions.
Tested for x86_64 and x86.
* math/libm-test.inc (modf_test_data): Add more tests.
(nearbyint_test_data): Likewise.
(nextafter_test_data): Likewise.
(nexttoward_test_data): Likewise.
(pow_test_data): Likewise.
(remainder_test_data): Likewise.
(remquo_test_data): Likewise.
(rint_test_data): Likewise.
For some large arguments, the dbl-64 implementation of remainder gives
zero results with the wrong sign, resulting from a subtraction that is
mathematically correct but does not guarantee that a zero result has
the sign of the first argument to remainder. This patch adds an
appropriate check for this case, similar to other implementations of
remainder in the case of equality, and adds tests of remainder on
inputs already used to test remquo.
Tested for x86_64 and x86.
[BZ #19201]
* sysdeps/ieee754/dbl-64/e_remainder.c (__ieee754_remainder):
Check for zero remainder in case of large exponents and ensure
correct sign of result in that case.
* math/libm-test.inc (remainder_test_data): Add more tests.
nextafter and nexttoward fail to set errno on overflow and underflow.
This patch makes them do so in cases that should include all the cases
where such errno setting is required by glibc's goals for when to set
errno (but not all cases of underflow where the result is nonzero and
so glibc's goals do not require errno setting).
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6799]
* math/s_nextafter.c: Include <errno.h>.
(__nextafter): Set errno on overflow and underflow.
* math/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Include <errno.h>.
(__nextafterf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Include <errno.h>.
(__nldbl_nexttowardf): Set errno on overflow and underflow.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* math/libm-test.inc (nextafter_test_data): Do not allow errno
setting to be missing on overflow. Add more tests.
(nexttoward_test_data): Likewise.
When Bessel functions return a zero result from an infinite argument,
the function oscillates as it approaches 0, so the sign of that zero
result should be indeterminate. This patch weakens the expectations
accordingly not to check the sign of such results (the tests were
causing spurious failures for j1 (-Inf) for ldbl-128).
Tested for x86_64 and x86.
* math/libm-test.inc (j0_test_data): Do not test sign of zero
result from infinite argument.
(j1_test_data): Likewise.
(jn_test_data): Likewise.
(y0_test_data): Likewise.
(y1_test_data): Likewise.
(yn_test_data): Likewise.
The libm drem functions just call the corresponding __remainder
functions. This patch removes the unnecessary wrappers by making them
into weak aliases at the ELF level.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16171]
* math/w_remainder.c (drem): Define as weak alias of __remainder.
[NO_LONG_DOUBLE] (dreml): Define as weak alias of __remainder.
* math/w_remainderf.c (dremf): Define as weak alias of
__remainderf.
* math/w_remainderl.c (dreml): Define as weak alias of
__remainderl.
* sysdeps/ia64/fpu/e_remainder.S (drem): Define as weak alias of
__remainder.
* sysdeps/ia64/fpu/e_remainderf.S (dremf): Define as weak alias of
__remainderf.
* sysdeps/ia64/fpu/e_remainderl.S (dreml): Define as weak alias of
__remainderl.
* sysdeps/ieee754/ldbl-opt/nldbl-remainder.c (dreml): Define as
weak alias of remainderl.
* sysdeps/ieee754/ldbl-opt/w_remainder.c
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (__drem): Define as strong
alias of __remainder.
[LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)] (dreml): Use compat_symbol.
* sysdeps/ieee754/ldbl-opt/w_remainderl.c (__dreml): Define as
strong alias of __remainderl.
(dreml): Use long_double_symbol.
* math/Makefile (libm-calls): Remove w_drem.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Remove drem.
(CFLAGS-nldbl-drem.c): Remove variable.
(CFLAGS-nldbl-remainder.c): Add -fno-builtin-dreml.
* math/w_drem.c: Remove file.
* math/w_dremf.c: Likewise.
* math/w_dreml.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-drem.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_drem.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_dreml.c: Likewise.
libm-test.inc has a macro BUILD_COMPLEX to construct a complex number
with given real and imaginary parts while allowing properly for signed
zeroes, infinities and NaNs (which don't work properly with a simple
real + I * imag, in the absence of compiler support for imaginary
types), using assignment to __real__ and __imag__ parts of the number.
C11 defines CMPLX* macros for this purpose, which GCC 4.7 and above
provide suitable built-in functions for. This patch redefines
BUILD_COMPLEX in terms of the standard macros.
Tested for x86_64 and x86.
* math/libm-test.inc (BUILD_COMPLEX): Remove macro.
* math/test-double.h (BUILD_COMPLEX): New macro.
* math/test-float.h (BUILD_COMPLEX): Likewise.
* math/test-ldouble.h (BUILD_COMPLEX): Likewise.
C11 defines standard <float.h> macros *_TRUE_MIN for the least
positive subnormal value of a type. Now that we build with
-std=gnu11, we can use these macros in glibc. This patch replaces
previous uses of the GCC predefines __*_DENORM_MIN__ (used in
<float.h> to define *_TRUE_MIN), as well as *_DENORM_MIN references in
comments.
Tested for x86_64 and x86 (testsuite, and that installed shared
libraries are unchanged by the patch). Also tested for powerpc that
installed stripped shared libraries are unchanged by the patch.
* math/libm-test.inc (min_subnorm_value): Use LDBL_TRUE_MIN,
DBL_TRUE_MIN and FLT_TRUE_MIN instead of __LDBL_DENORM_MIN__,
__DBL_DENORM_MIN__ and __FLT_DENORM_MIN__.
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Refer to DBL_TRUE_MIN
instead of DBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <float.h>.
(__nextafterl): Use LDBL_TRUE_MIN instead of __LDBL_DENORM_MIN__.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
The i386 and x86_64 versions of fesetenv, when called with FE_DFL_ENV
or FE_NOMASK_ENV as argument, do not clear SSE exceptions raised in
MXCSR. These arguments should, like other fenv_t values, represent
the whole of the floating-point state, so such exceptions should be
cleared; this patch adds the required clearing. (Discovered while
working on bug 16068.)
Tested for x86_64 and x86.
[BZ #19181]
* sysdeps/i386/fpu/fesetenv.c (__fesetenv): Clear already-raised
SSE exceptions when argument is FE_DFL_ENV or FE_NOMASK_ENV.
* sysdeps/x86_64/fpu/fesetenv.c (__fesetenv): Likewise.
* math/test-fenv-clear-main.c: New file.
* math/test-fenv-clear.c: Likewise.
* math/Makefile (tests): Add test-fenv-clear.
* sysdeps/x86/fpu/test-fenv-clear-sse.c: New file.
* sysdeps/x86/fpu/Makefile [$(subdir) = math] (tests): Add
test-fenv-clear-sse.
[$(subdir) = math] (CFLAGS-test-fenv-clear-sse.c): New variable.
Now that we build with -std=gnu11, we can use C11 <float.h> macros
such as FLT_DECIMAL_DIG instead of the GCC predefines such as
__FLT_DECIMAL_DIG__ that are used internally in <float.h>. This patch
makes libm-test.inc do so.
Tested for x86_64 and x86.
* math/libm-test.inc (TYPE_DECIMAL_DIG): Use LDBL_DECIMAL_DIG,
DBL_DECIMAL_DIG and FLT_DECIMAL_DIG instead of __DECIMAL_DIG__,
__DBL_DECIMAL_DIG__ and __FLT_DECIMAL_DIG__.
Now that GCC 4.7 or later is required to build glibc, this patch moves
the build from using -std=gnu99 to -std=gnu11 (option added in 4.7).
This allows use of C11 features from GCC's headers, such as new
float.h macros and max_align_t.
Tested for x86_64 and x86 (testsuite; installed stripped shared
libraries are unchanged by the patch on x86_64, while I see some
slight code reordering of no significance on x86).
* Makeconfig (CFLAGS): Use -std=gnu11 instead of -std=gnu99.
* Makefile ($(objpfx)c++-types-check.out): Filter out -std=gnu11
instead of -std=gnu99.
* configure.ac (systemtap): Test with -std=gnu11 instead of
-std=gnu99.
* configure: Regenerated.
* math/gen-auto-libm-tests.c: Use -std=gnu11 instead of -std=gnu99
in compilation command in comment.
libm-test.inc has special-case code treating errors of up to 0.5 ulp
as allowed (for functions that aren't exactly determined) even if no
such errors appeared in libm-test-ulps. This only applies to avoid
errors for individual function calls, not for the overall check of
ulps at the end of testing a function, resulting in confusing output
of the form:
testing double (without inline functions)
Maximal error of `log_upward'
is : 1 ulp
accepted: 0 ulp
with no report of what testcase produced that error. This patch
removes the special case, so that instead you get:
testing double (without inline functions)
Failure: Test: log_upward (0x1.0000000000001p+0)
Result:
is: 2.2204460492503129e-16 0x1.fffffffffffffp-53
should be: 2.2204460492503131e-16 0x1.0000000000000p-52
difference: 2.4651903288156619e-32 0x1.0000000000000p-105
ulp : 0.5000
max.ulp : 0.0000
Maximal error of `log_upward'
is : 1 ulp
accepted: 0 ulp
(for formats other than ldbl-128ibm, 0.5 ulp errors only occur in
unusual cases such as this where the correctly rounded result is a
power of 2 and the computed result is just below it). This should not
affect which cases result in the test failing, just ensure that if it
fails then some failure for an individual function call was reported.
Tested for x86_64 and x86.
* math/libm-test.inc (check_float_internal): Do not special-case
errors up to 0.5 ulp.
j1 and jn can underflow for small arguments, but fail to set errno
when underflowing to 0. This patch fixes them to set errno in that
case.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18611]
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and
avoid excess range and precision on underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on
underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Do not allow missing errno setting for
tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
The implementations of nearbyint functions using x87 floating point
(i386 all versions, x86_64 long double only) use the fclex
instruction, which clears any exceptions that were raised before the
function was called. These functions must not clear exceptions that
were raised before they were called.
This patch fixes these functions to save and restore the whole
floating-point environment (fnstenv / fldenv) as the way of avoiding
raising "inexact" (recall that there isn't an x87 instruction for
loading just the status word, so the whole environment has to be saved
and loaded instead - the code already saved and loaded the control
word, which is now obtained from the saved environment after this
patch, to disable traps on "inexact"). In the case of the long double
functions, any "invalid" exception from frndint (applied to a
signaling NaN) needs merging into the saved state; this issue doesn't
apply to the float and double functions because that exception would
have been raised when the argument is loaded, before the environment
is saved.
[BZ #15491]
* sysdeps/i386/fpu/s_nearbyint.S (__nearbyint): Save and restore
floating-point environment instead of clearing all exceptions.
* sysdeps/i386/fpu/s_nearbyintf.S (__nearbyintf): Likewise.
* sysdeps/i386/fpu/s_nearbyintl.S (__nearbyintl): Likewise,
merging in "invalid" exceptions from frndint.
* sysdeps/x86_64/fpu/s_nearbyintl.S (__nearbyintl): Likewise.
* math/test-nearbyint-except.c: New file.
* math/Makefile (tests): Add test-nearbyint-except.
This patch improves the libm test coverage for a few more functions.
Tested for x86_64 and x86.
2015-10-21 Joseph Myers <joseph@codesourcery.com>
* math/auto-libm-test-in: Add more tests of hypot, j0, j1, jn,
log, log10 and log2.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (fmod_test_data): Add more tests.
(fpclassify_test_data): Likewise.
(frexp_test_data): Likewise.
(hypot_test_data): Likewise.
(ilogb_test_data): Likewise.
This mostly automatically-generated patch converts 113 function
definitions in glibc from old-style K&R to prototype-style. Following
my other recent such patches, this one deals with the case of function
definitions in files that either contain assertions or where grep
suggested they might contain assertions - and thus where it isn't
possible to use a simple object code comparison as a sanity check on
the correctness of the patch, because line numbers are changed.
A few such automatically-generated changes needed to be supplemented
by manual changes for the result to compile. openat64 had a prototype
declaration with "..." but an old-style definition in
sysdeps/unix/sysv/linux/dl-openat64.c, and "..." needed adding to the
generated prototype in the definition (I've filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68024> for diagnosing
such cases in GCC; the old state was undefined behavior not requiring
a diagnostic, but one seems a good idea). In addition, as Florian has
noted regparm attribute mismatches between declaration and definition
are only diagnosed for prototype definitions, and five functions
needed internal_function added to their definitions (in the case of
__pthread_mutex_cond_lock, via the macro definition of
__pthread_mutex_lock) to compile on i386.
After this patch is in, remaining old-style definitions are probably
most readily fixed manually before we can turn on
-Wold-style-definition for all builds.
Tested for x86_64 and x86 (testsuite).
* crypt/md5-crypt.c (__md5_crypt_r): Convert to prototype-style
function definition.
* crypt/sha256-crypt.c (__sha256_crypt_r): Likewise.
* crypt/sha512-crypt.c (__sha512_crypt_r): Likewise.
* debug/backtracesyms.c (__backtrace_symbols): Likewise.
* elf/dl-minimal.c (_itoa): Likewise.
* hurd/hurdmalloc.c (malloc): Likewise.
(free): Likewise.
(realloc): Likewise.
* inet/inet6_option.c (inet6_option_space): Likewise.
(inet6_option_init): Likewise.
(inet6_option_append): Likewise.
(inet6_option_alloc): Likewise.
(inet6_option_next): Likewise.
(inet6_option_find): Likewise.
* io/ftw.c (FTW_NAME): Likewise.
(NFTW_NAME): Likewise.
(NFTW_NEW_NAME): Likewise.
(NFTW_OLD_NAME): Likewise.
* libio/iofwide.c (_IO_fwide): Likewise.
* libio/strops.c (_IO_str_init_static_internal): Likewise.
(_IO_str_init_static): Likewise.
(_IO_str_init_readonly): Likewise.
(_IO_str_overflow): Likewise.
(_IO_str_underflow): Likewise.
(_IO_str_count): Likewise.
(_IO_str_seekoff): Likewise.
(_IO_str_pbackfail): Likewise.
(_IO_str_finish): Likewise.
* libio/wstrops.c (_IO_wstr_init_static): Likewise.
(_IO_wstr_overflow): Likewise.
(_IO_wstr_underflow): Likewise.
(_IO_wstr_count): Likewise.
(_IO_wstr_seekoff): Likewise.
(_IO_wstr_pbackfail): Likewise.
(_IO_wstr_finish): Likewise.
* locale/programs/localedef.c (normalize_codeset): Likewise.
* locale/programs/locarchive.c (add_locale_to_archive): Likewise.
(add_locales_to_archive): Likewise.
(delete_locales_from_archive): Likewise.
* malloc/malloc.c (__libc_mallinfo): Likewise.
* math/gen-auto-libm-tests.c (init_fp_formats): Likewise.
* misc/tsearch.c (__tfind): Likewise.
* nptl/pthread_attr_destroy.c (__pthread_attr_destroy): Likewise.
* nptl/pthread_attr_getdetachstate.c
(__pthread_attr_getdetachstate): Likewise.
* nptl/pthread_attr_getguardsize.c (pthread_attr_getguardsize):
Likewise.
* nptl/pthread_attr_getinheritsched.c
(__pthread_attr_getinheritsched): Likewise.
* nptl/pthread_attr_getschedparam.c
(__pthread_attr_getschedparam): Likewise.
* nptl/pthread_attr_getschedpolicy.c
(__pthread_attr_getschedpolicy): Likewise.
* nptl/pthread_attr_getscope.c (__pthread_attr_getscope):
Likewise.
* nptl/pthread_attr_getstack.c (__pthread_attr_getstack):
Likewise.
* nptl/pthread_attr_getstackaddr.c (__pthread_attr_getstackaddr):
Likewise.
* nptl/pthread_attr_getstacksize.c (__pthread_attr_getstacksize):
Likewise.
* nptl/pthread_attr_init.c (__pthread_attr_init_2_1): Likewise.
(__pthread_attr_init_2_0): Likewise.
* nptl/pthread_attr_setdetachstate.c
(__pthread_attr_setdetachstate): Likewise.
* nptl/pthread_attr_setguardsize.c (pthread_attr_setguardsize):
Likewise.
* nptl/pthread_attr_setinheritsched.c
(__pthread_attr_setinheritsched): Likewise.
* nptl/pthread_attr_setschedparam.c
(__pthread_attr_setschedparam): Likewise.
* nptl/pthread_attr_setschedpolicy.c
(__pthread_attr_setschedpolicy): Likewise.
* nptl/pthread_attr_setscope.c (__pthread_attr_setscope):
Likewise.
* nptl/pthread_attr_setstack.c (__pthread_attr_setstack):
Likewise.
* nptl/pthread_attr_setstackaddr.c (__pthread_attr_setstackaddr):
Likewise.
* nptl/pthread_attr_setstacksize.c (__pthread_attr_setstacksize):
Likewise.
* nptl/pthread_condattr_setclock.c (pthread_condattr_setclock):
Likewise.
* nptl/pthread_create.c (__find_in_stack_list): Likewise.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Likewise.
* nptl/pthread_mutex_cond_lock.c (__pthread_mutex_lock): Define to
use internal_function.
* nptl/pthread_mutex_init.c (__pthread_mutex_init): Convert to
prototype-style function definition.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock): Likewise.
(__pthread_mutex_cond_lock_adjust): Likewise. Use
internal_function.
* nptl/pthread_mutex_timedlock.c (pthread_mutex_timedlock):
Convert to prototype-style function definition.
* nptl/pthread_mutex_trylock.c (__pthread_mutex_trylock):
Likewise.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_usercnt):
Likewise.
(__pthread_mutex_unlock): Likewise.
* nptl_db/td_ta_clear_event.c (td_ta_clear_event): Likewise.
* nptl_db/td_ta_set_event.c (td_ta_set_event): Likewise.
* nptl_db/td_thr_clear_event.c (td_thr_clear_event): Likewise.
* nptl_db/td_thr_event_enable.c (td_thr_event_enable): Likewise.
* nptl_db/td_thr_set_event.c (td_thr_set_event): Likewise.
* nss/makedb.c (process_input): Likewise.
* posix/fnmatch.c (__strchrnul): Likewise.
(__wcschrnul): Likewise.
(fnmatch): Likewise.
* posix/fnmatch_loop.c (FCT): Likewise.
* posix/glob.c (globfree): Likewise.
(__glob_pattern_type): Likewise.
(__glob_pattern_p): Likewise.
* posix/regcomp.c (re_compile_pattern): Likewise.
(re_set_syntax): Likewise.
(re_compile_fastmap): Likewise.
(regcomp): Likewise.
(regerror): Likewise.
(regfree): Likewise.
* posix/regexec.c (regexec): Likewise.
(re_match): Likewise.
(re_search): Likewise.
(re_match_2): Likewise.
(re_search_2): Likewise.
(re_search_stub): Likewise. Use internal_function
(re_copy_regs): Likewise.
(re_set_registers): Convert to prototype-style function
definition.
(prune_impossible_nodes): Likewise. Use internal_function.
* resolv/inet_net_pton.c (inet_net_pton): Convert to
prototype-style function definition.
(inet_net_pton_ipv4): Likewise.
* stdlib/strtod_l.c (____STRTOF_INTERNAL): Likewise.
* sysdeps/pthread/aio_cancel.c (aio_cancel): Likewise.
* sysdeps/pthread/aio_suspend.c (aio_suspend): Likewise.
* sysdeps/pthread/timer_delete.c (timer_delete): Likewise.
* sysdeps/unix/sysv/linux/dl-openat64.c (openat64): Likewise.
Make variadic.
* time/strptime_l.c (localtime_r): Convert to prototype-style
function definition.
* wcsmbs/mbsnrtowcs.c (__mbsnrtowcs): Likewise.
* wcsmbs/mbsrtowcs_l.c (__mbsrtowcs_l): Likewise.
* wcsmbs/wcsnrtombs.c (__wcsnrtombs): Likewise.
* wcsmbs/wcsrtombs.c (__wcsrtombs): Likewise.
This automatically-generated patch converts 29 function definitions in
glibc (including one in an example in the manual) from old-style K&R
to prototype-style. Following my other recent such patches, this one
deals with the case of function definitions where one K&R parameter
declaration declares multiple parameters, as in:
void
foo (a, b)
int a, *b;
{
}
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch).
* crypt/crypt.c (_ufc_doit_r): Convert to prototype-style function
definition.
(_ufc_doit_r): Likewise.
* crypt/crypt_util.c (_ufc_copymem): Likewise.
(_ufc_output_conversion_r): Likewise.
* inet/inet_mkadr.c (__inet_makeaddr): Likewise.
* inet/rcmd.c (rcmd_af): Likewise.
(rcmd): Likewise.
(ruserok_af): Likewise.
(ruserok): Likewise.
(ruserok2_sa): Likewise.
(ruserok_sa): Likewise.
(iruserok_af): Likewise.
(iruserok): Likewise.
(__ivaliduser): Likewise.
(__validuser2_sa): Likewise.
* inet/rexec.c (rexec_af): Likewise.
(rexec): Likewise.
* inet/ruserpass.c (ruserpass): Likewise.
* locale/programs/xmalloc.c (xcalloc): Likewise.
* manual/examples/timeval_subtract.c (timeval_subtract): Likewise.
* math/w_drem.c (__drem): Likewise.
* math/w_dremf.c (__dremf): Likewise.
* math/w_dreml.c (__dreml): Likewise.
* misc/daemon.c (daemon): Likewise.
* resolv/res_debug.c (p_fqnname): Likewise.
* stdlib/div.c (div): Likewise.
* string/memcmp.c (memcmp_bytes): Likewise.
* sunrpc/pmap_rmt.c (pmap_rmtcall): Likewise.
* sunrpc/svc_udp.c (svcudp_bufcreate): Likewise.
This patch improves the libm test coverage for a few more functions.
Tested for x86_64 and x86.
* math/libm-test.inc (fabs_test_data): Add more tests.
(fdim_test_data): Likewise.
(fma_test_data): Likewise.
(fmax_test_data): Likewise.
(fmin_test_data): Likewise.
(fmod_test_data): Likewise.
This patch adds more tests for ceil, floor, round and trunc, with a
particular focus on verifying they don't raise spurious "inexact"
exceptions for integer arguments (a C99 / C11 requirement, as opposed
to the general principle that they shouldn't raise "inexact" for any
arguments at all which is a TS 18661-1 requirement).
Tested for x86_64 and x86.
* math/libm-test.inc (ceil_test_data): Add more tests and more
expectations for "inexact".
(floor_test_data): Add more tests.
(round_test_data): Likewise.
(trunc_test_data): Likewise.
The dbl-64, ldbl-96 and ldbl-128 implementations of lrint and llrint
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist. It also obviously cannot arise in
FE_TOWARDZERO mode.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT, while raising FE_INEXACT explicitly in the cases where it
is needed; unlike lround and llround, FE_INEXACT is required, not
optional, for these functions for a within-range inexact result).
The fixes are conditional on FE_INVALID or FE_INEXACT being defined.
If any future architecture supports one but not both of those
exceptions, the code will fail to compile and need fixing to handle
that case (this seemed better than conditioning on both macros being
defined, resulting in code that would compile but quietly miss
exceptions on such a system).
Tested for x86_64, x86 and mips64. Tested the ldbl-96 changes (only
relevant for ia64, it appears) on x86_64 by removing the x86_64
versions of lrintl / llrintl.
[BZ #19094]
* sysdeps/ieee754/dbl-64/s_lrint.c: Include <fenv.h> and
<limits.h>.
(__lrint) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
I noticed that some of my recently added tests of lround and llround
wrongly expected the "inexact" exception to be absent for certain
within-range non-integer arguments. (It's unspecified whether this
exception is present or not for within-range non-integer arguments; it
mustn't be present for integer arguments and out-of-range arguments.)
This patch corrects those expectations.
Tested for x86_64 and x86.
* math/libm-test.inc (lround_test_data): Do not expect the absence
of "inexact" for some tests with non-integer arguments.
(llround_test_data): Likewise.
The dbl-64, ldbl-96 and ldbl-128 implementations of lround and llround
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT).
Tested for x86_64, x86 and mips64.
[BZ #19088]
* sysdeps/ieee754/dbl-64/s_lround.c: Include <fenv.h> and
<limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Include <fenv.h>
and <limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* math/libm-test.inc (lround_test_data): Add more tests.
(llround_test_data): Likewise.
This patch adds more tests of lrint, llrint, lround and llround, to
cover various standard special cases not previously covered, and more
tests of overflow.
Tested for x86_64 and x86.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
(lround_test_data): Likewise.
(llround_test_data): Likewise.
This patch makes lrint and llrint use the same test inputs in
libm-test.inc, appropriately conditioned on LONG_MAX in the lrint
case.
Tested for x86_64 and x86.
* math/libm-test.inc (lrint_test_data): Add tests used for llrint.
(llrint_test_data): Add tests used for lrint.
This patch adds more libm-test.inc expectations for the "inexact"
exception for scalb, in all cases except those with a non-integer
second argument (where results are unspecified by POSIX, so the
function does not count as fully determined and the spurious "inexact"
exceptions raised by the existing implementations alongside "invalid"
are OK).
Tested for x86_64 and x86.
* math/libm-test.inc (scalb_test_data): Add more expectations for
the "inexact" exception.
The ldbl-96 version of lroundl is incorrect for systems with 64-bit
long when the argument's absolute value is just below a power of 2,
2^32 or more, and rounds up to the next integer; in such cases, it
returns 0. The problem is incrementing the high part of the mantissa
loses the high bit of the value (which is not an issue for any other
floating-point format, and is handled specially in lround when the bit
corresponding to 0.5 was in the high part rather than the low part).
This patch fixes this in a similar way to that used in llroundl:
storing the high part in an unsigned long variable before incrementing
it, so problems cannot occur in the case when this code is reachable.
I improved test coverage for both lround and llround by making them
use the same test inputs (appropriately conditioned on the size of
long in the lround case) - complete with the same comments, to make
comparison as easy as possible. (This test coverage improvement was
how I found the lroundl bug.)
Tested for x86_64 and x86.
[BZ #19071]
* sysdeps/ieee754/ldbl-96/s_lroundl.c (__lroundl): Use unsigned
long int variable to store possibly incremented high part of
mantissa.
* math/libm-test.inc (lround_test_data): Add tests used for
llround. Use [LONG_MAX > 0x7fffffff] consistently as condition
for tests requiring 64-bit long. Do not condition tests on
[TEST_FLOAT] unnecessarily.
(llround_test_data): Add tests used for lround. Add another
expectation for the "inexact" exception. Do not condition tests
on [TEST_FLOAT] unnecessarily.
ISO C requires overflowing results from nexttoward to be the
appropriate infinity independent of the rounding mode, but some
implementations use a rounding-mode-dependent result (this is the same
issue as was fixed for nextafter in bug 16677). This patch fixes the
problem by making the nexttoward implementations discard the result
from the floating-point computation that forced an overflow exception
and then return the infinity previously computed with integer
arithmetic.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #19059]
* math/s_nexttowardf.c (__nexttowardf): Do not return value from
overflowing computation.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
* math/libm-test.inc (nexttoward_test_data): Add more tests.
The ldbl-128 / ldbl-128ibm implementation of lgamma has problems with
its handling of large arguments. It has an overflow threshold that is
correct only for ldbl-128, despite being used for both types - with
diagnostic control macros as a temporary measure to disable warnings
about that constant overflowing for ldbl-128ibm - and it has a
calculation that's roughly x * log(x) - x, resulting in overflows for
arguments that are roughly at most a factor 1/log(threshold) below the
overflow threshold.
This patch fixes both issues, using an overflow threshold appropriate
for the type in question and adding another case for large arguments
that avoids the possible intermediate overflow.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16347]
[BZ #19046]
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c: Do not include
<libc-internal.h>.
(MAXLGM): Do not use diagnostic control macros.
[LDBL_MANT_DIG == 106] (MAXLGM): Change value to overflow
threshold for ldbl-128ibm.
(__ieee754_lgammal_r): For large arguments, multiply by log - 1
instead of multiplying by log then subtracting.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
When libm-test.inc prints the results of failing tests, the output can
be unhelpful for ldbl-128 and ldbl-128ibm because the precision used
is insufficient to distinguish values of those types, resulting in
reported values that look identical but differ by a large number of
ulps.
This patch changes it to use a precision appropriate for the type, for
both decimal and hex output (so output for float is more compact,
output for ldbl-128 and ldbl-128ibm is substantially wider). The
natural precision to use for decimal is given by the C11 <float.h>
macros such as FLT_DECIMAL_DIG. GCC's <float.h> only defines those in
C11 mode, so this patch uses the predefines such as
__FLT_DECIMAL_DIG__ (added in GCC 4.6) instead; if we move to building
with -std=gnu11 (or -std=gnu1x if we can't get rid of 4.6 support).
Tested for powerpc and mips64.
* math/libm-test.inc (TYPE_DECIMAL_DIG): New macro.
(TYPE_HEX_DIG): Likewise.
(print_float): Use TYPE_DECIMAL_DIG - 1 and TYPE_HEX_DIG - 1 as
precisions when printing floating-point numbers.
(check_float_internal): Likewise.
The i386 versions of acoshf and acosh raise a spurious "invalid"
exception for an argument that is a quiet NaN with the sign bit set.
The integer arithmetic to detect arguments < 1 also detects -NaN, and
then the computation 0 / 0 in that case raises the exception. This
patch fixes this by using (x - x) / (x - x) as the computation in that
case instead, which will always raise the exception for non-NaN
arguments reaching that code, but not for quiet NaN arguments.
Tested for x86_64 and x86.
[BZ #19032]
* sysdeps/i386/fpu/e_acosh.S (__ieee754_acosh): For arguments < 1,
compute result as (x - x) / (x - x) not as 0 / 0.
* sysdeps/i386/fpu/e_acoshf.S (__ieee754_acoshf): Likewise.
* math/libm-test.inc (acosh_test_data): Add another test of acosh.
This patch improves test coverage of the real libm functions [a-e]*,
ensuring that special cases and ranges of input values of potential
significance (such as close to overflow and underflow thresholds) are
more systematically covered.
This is a followup to
<https://sourceware.org/ml/libc-alpha/2013-12/msg00757.html> which
covered [a-c]* (however, I found more weaknesses in the coverage of
those functions when preparing this patch, hence the additional tests
being added for them here).
Addition of a test for acosh (-qNaN) is temporarily deferred, to be
included as part of a fix for bug 19032 which was discovered in the
course of adding these tests (and which illustrates the use of testing
-qNaN as well as +qNaN as input even to functions for which the sign
of a NaN isn't meant to be significant).
Tested for x86_64 and x86.
* math/auto-libm-test-in: Add more tests of acos, acosh, asin,
atan, atan2, atanh, cbrt, cos, cosh, erf, erfc, exp, exp10, exp2
and expm1.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (acos_test_data): Add more tests.
(asin_test_data): Likewise.
(asinh_test_data): Likewise.
(atan_test_data): Likewise.
(atanh_test_data): Likewise.
(atan2_test_data): Likewise.
(cbrt_test_data): Likewise.
(ceil_test_data): Likewise.
(copysign_test_data): Likewise.
(cos_test_data): Likewise.
(cosh_test_data): Likewise.
(erf_test_data): Likewise.
(erfc_test_data): Likewise.
(exp_test_data): Likewise.
(exp10_test_data): Likewise.
(exp2_test_data): Likewise.
(expm1_test_data): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This patch makes math/libm-test.inc more consistent regarding
including expectations for errno setting and "inexact" exceptions
where expected test results are given manually. Mostly this is a
matter of including ERRNO_UNCHANGED in expectations, but there are
also some cases where expectations regarding "inexact" were missing
for exactly determined functions (especially in cases where some other
exception was expected and it should also have been expected that
"inexact" was not set with that other exception), and one case for pow
where the NO_INEXACT_EXCEPTION expectation should not have been there
(the rule about not having "inexact" exceptions for NaN arguments is
only when those NaN arguments produce NaN results).
I deferred making such changes for complex functions and scalb.
Tested for x86_64 and x86.
* math/libm-test.inc (acos_test_data): Refine expectations for
errno and "inexact" exceptions.
(acosh_test_data): Likewise.
(asin_test_data): Likewise.
(asinh_test_data): Likewise.
(atan_test_data): Likewise.
(atanh_test_data): Likewise.
(atan2_test_data): Likewise.
(cbrt_test_data): Likewise.
(ceil_test_data): Likewise.
(copysign_test_data): Likewise.
(cosh_test_data): Likewise.
(erf_test_data): Likewise.
(erfc_test_data): Likewise.
(exp_test_data): Likewise.
(exp10_test_data): Likewise.
(exp2_test_data): Likewise.
(expm1_test_data): Likewise.
(fabs_test_data): Likewise.
(floor_test_data): Likewise.
(fma_test_data): Likewise.
(fmax_test_data): Likewise.
(fmin_test_data): Likewise.
(fmod_test_data): Likewise.
(fpclassify_test_data): Likewise.
(frexp_test_data): Likewise.
(hypot_test_data): Likewise.
(ilogb_test_data): Likewise.
(isgreater_test_data): Likewise.
(isgreaterequal_test_data): Likewise.
(isinf_test_data): Likewise.
(isless_test_data): Likewise.
(islessequal_test_data): Likewise.
(islessgreater_test_data): Likewise.
(isnan_test_data): Likewise.
(isnormal_test_data): Likewise.
(issignaling_test_data): Likewise.
(isunordered_test_data): Likewise.
(j0_test_data): Likewise.
(j1_test_data): Likewise.
(jn_test_data): Likewise.
(lgamma_test_data): Likewise.
(lrint_test_data): Likewise.
(llrint_test_data): Likewise.
(log_test_data): Likewise.
(log10_test_data): Likewise.
(log1p_test_data): Likewise.
(log2_test_data): Likewise.
(logb_test_data): Likewise.
(lround_test_data): Likewise.
(llround_test_data): Likewise.
(modf_test_data): Likewise.
(nearbyint_test_data): Likewise.
(nextafter_test_data): Likewise.
(nexttoward_test_data): Likewise.
(pow_test_data): Likewise.
(remainder_test_data): Likewise.
(remquo_test_data): Likewise.
(rint_test_data): Likewise.
(round_test_data): Likewise.
(signbit_test_data): Likewise.
(sinh_test_data): Likewise.
(sqrt_test_data): Likewise.
(tanh_test_data): Likewise.
(tgamma_test_data): Likewise.
(trunc_test_data): Likewise.
(y0_test_data): Likewise.
(y1_test_data): Likewise.
(yn_test_data): Likewise.
(significand_test_data): Likewise.
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.
However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm. This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs. This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.
Tested for x86_64, x86, mips64 and powerpc. For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear. Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.
[BZ #19016]
* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
allow more cases with X^2 + Y^2 >= 0.5.
* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise. Add -1 as
normal element in sum instead of special-casing based on values of
arguments.
* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise. Add
-1 as normal element in sum instead of special-casing based on
values of arguments.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
(__x2y2m1): Update comment.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise. Add -1
as normal element in sum instead of special-casing based on values
of arguments.
* math/s_clog.c (__clog): Handle more cases using log1p without
hypot.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The flt-32 version of powf can be inaccurate because of bugs in the
extra-precision calculation of (x-1)/(x+1) or (x-1.5)/(x+1.5) as part
of calculating log(x) with extra precision: a constant used (as part
of adding 1 or 1.5 through integer arithmetic) is incorrect, and then
the code fails to mask a computed high part before using it in
arithmetic that relies on s_h*t_h being exactly representable. This
patch fixes these bugs.
Tested for x86_64 and x86. x86_64 ulps for powf removed and
regenerated to reflect reduced ulps from the increased accuracy for
existing tests.
[BZ #18956]
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Add 0x00400000
not 0x0040000 for high bit of mantissa. Mask with 0xfffff000 when
extracting high part.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, pow functions can fail to
raise the underflow exception when the result is tiny and inexact but
one or more low bits of the intermediate result that is scaled down
(or, in the i386 case, converted from a wider evaluation format) are
zero. This patch forces the exception in a similar way to previous
fixes, thereby concluding the fixes for known bugs with missing
underflow exceptions currently filed in Bugzilla.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18825]
* sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN):
New macro.
(DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise.
(LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise.
* sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN.
(__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of
DBL_NARROW_EVAL, reloading the PIC register as needed.
* sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN.
(__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of
FLT_NARROW_EVAL. Use separate return path for case when first
argument is NaN.
* sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the
PIC register.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force
underflow for subnormal result.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use
math_check_force_underflow_nonneg.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use
math_check_force_underflow.
* sysdeps/x86_64/fpu/x86_64-math-asm.h
(LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro.
* sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>. Use
DEFINE_LDBL_MIN.
(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN.
* math/auto-libm-test-in: Add more tests of pow.
* math/auto-libm-test-out: Regenerated.